# R5C832 PCI-IEEE1394/SD Card/

Multi Media Card/MemoryStick/

www.DataSheet4U.con

xD Picture Card

Data Sheet

**REV. 1.00** 

RIGOH

| REVISION | DATE       | COMMENTS                    |
|----------|------------|-----------------------------|
| 0.90     | 11/22/2004 | First draft                 |
| 0.95     | 1/07/2005  | Changed the pin assignment. |
| 1.00     | 3/02/2005  | First public release        |

# -REVISION HISTORY-

ww.DataSheet4U.com

# **1** OVERVIEW

The R5C832 is a single chip solution offering 5 PCI functions (a PCI bus bridge to an IEEE1394, an SD Card, a Multi Media Card, a Memory Stick and an xD Picture Card).

- Low Power consumption
  - Low operating power consumption due to the improvement of Power Management
  - Software Suspend mode compliant with ACPI
  - Hardware Suspend
  - Supports CLKRUN#
  - Internal regulator allows 3.3V single power operation
- PCI-1394 Bridge/SD Card/Multi Media Card/Memory Stick/xD Picture Card interface
  - 1 port of IEEE1394
  - SD Card, Multi Media Card, Memory Stick and xD Picture Card sharing MDIOxx pins – Ricoh's proprietary driver for Multi Media Card, Memory Stick and xD Picture Card
- PCI Bus Interface

www.DataSheet4U.conCompliant with PCI Local Bus Specification3.0

- Maximum frequency 33MHz
- Supports PCI Master/Target protocol
- PCI configuration space for each function
- 3.3V Interface
- ♦ IEEE1394 Interface
  - Compliant with IEEE1394-1995 Standard Specification and IEEE1394a-2000 Standard Specification
  - Compliant with 1394 OHCI Release 1.1/1.0 Standard Specification
  - Provides Asynchronous receive/transmit FIFO and Isochronous receive/transmit FIFO
  - Data transmission rate of 100, 200 and 400Mbps
  - 1 port of 1394 Cable interface
  - 24.576MHz crystal oscillator and Internal 393.216MHz PLL
  - Programmable low power consumption modes for PHY block
- Media Card Interface
  - SD Card
    - Compliant with SD Memory Card Specification Version 1.1
    - Compliant with SD Input/Output (SDIO) Card Specification Version 1.1
    - Compliant with SD Host Controller Standard Specification Version 1.0
  - Multi Media Card
    - Compatible with Multi Media Card System
  - Memory Stick
    - Compliant with Memory Stick Standard Format Specification Version 1.4
    - Compliant with Memory Stick PRO Format Specification Version 1.00
  - xD Picture Card
    - Compliant with xD Picture Card Specification Version 1.20
    - Compliant with xD Picture Card Host Guideline Version 1.20
    - Supports Type M. Card as well as conventional cards
    - Supports Smart Media technology
- System Interrupt
  - Supports INTA# and INTB# for PC system interrupt (Each unit is programmable.)
- Supports 1394 LED, SD LED, MMC LED, Memory Stick LED and xD Picture Card LED as activity indicators
- Package
  - 116pin CSP (size=11x11mm, pitch= 0.8mm, t=1.4mm)
  - 128pin TQFP (size=14x14mm, pitch= 0.4mm, t=1.2mm)

# 2 BLOCK DIAGRAM



# **3 PIN DESCRIPTION**

# 3.1 Pin Assignments

# 3.1.1 116 pin CSP

**Bottom View** 



# 3.1.2 128 pin TQFP



# 3.2 Pin Characteristics

# 3.2.1 116 pin CSP

|                | Ball |              |        | Pin Characteristics |       | Nata |
|----------------|------|--------------|--------|---------------------|-------|------|
|                | No.  | Pin Name     | Dir    | PwrRail             | Drive | Note |
|                | J11  | UDIO5        | 0      | 3V                  | 4mA   |      |
|                | J9   | UDIO4        | I/O    | 3V                  | 4mA   |      |
|                | H11  | UDIO3        | I/O    | 3V                  | 4mA   |      |
|                | J12  | UDIO2        | I/O    | 3V                  | 4mA   |      |
|                | H10  | UDIO1        | I/O    | 3V                  | 4mA   |      |
|                | F11  | UDIO0/SRIRQ# | I/O    | 3V                  | 4mA   |      |
|                | D4   | INTA#        | O (OD) | Р                   | PCI   |      |
|                | D3   | INTB#        | O (OD) | Р                   | PCI   |      |
|                | D2   | CLKRUN#      | I/O    | Р                   | PCI   |      |
| ataSheet4U.col | E3   | PCIRST#      | 1      | Р                   | _     |      |
|                | E1   | PCICLK       | I      | Р                   | -     |      |
|                | E2   | GNT#         | I      | Р                   | _     |      |
|                | F3   | REQ#         | O (TS) | Р                   | PCI   |      |
|                | F2   | AD31         | I/O    | Р                   | PCI   |      |
|                | F1   | AD30         | I/O    | Р                   | PCI   |      |
|                | G3   | AD29         | I/O    | Р                   | PCI   |      |
|                | G2   | AD28         | I/O    | Р                   | PCI   |      |
|                | G1   | AD27         | I/O    | Р                   | PCI   |      |
|                | H3   | AD26         | I/O    | Р                   | PCI   |      |
|                | H2   | AD25         | I/O    | Р                   | PCI   |      |
|                | H1   | AD24         | I/O    | Р                   | PCI   |      |
|                | J1   | C/BE3#       | I/O    | Р                   | PCI   |      |
|                | J2   | IDSEL        | I      | Р                   | _     |      |
|                | J3   | AD23         | I/O    | Р                   | PCI   |      |
|                | J4   | AD22         | I/O    | Р                   | PCI   |      |
|                | K3   | AD21         | I/O    | Р                   | PCI   |      |
|                | K2   | AD20         | I/O    | Р                   | PCI   |      |
|                | K1   | AD19         | I/O    | Р                   | PCI   |      |
|                | L1   | AD18         | I/O    | Р                   | PCI   |      |
|                | M1   | AD17         | I/O    | Р                   | PCI   |      |
|                | L2   | AD16         | I/O    | Р                   | PCI   |      |
|                | M2   | C/BE2#       | I/O    | Р                   | PCI   |      |
|                | L3   | FRAME#       | I/O    | Р                   | PCI   |      |
|                | M3   | IRDY#        | I/O    | Р                   | PCI   |      |
|                | K4   | TRDY#        | I/O    | Р                   | PCI   |      |
|                | L4   | DEVSEL#      | I/O    | Р                   | PCI   |      |
|                | M4   | STOP#        | I/O    | Р                   | PCI   |      |

|         | Ball |          |         | Pin Characteristics |       | Noto |
|---------|------|----------|---------|---------------------|-------|------|
|         | No.  | Pin Name | Dir     | PwrRail             | Drive | Note |
|         | K5   | PERR#    | I/O     | Р                   | PCI   |      |
|         | L5   | SERR#    | O (OD)  | Р                   | PCI   |      |
|         | M5   | PAR      | I/O     | Р                   | PCI   |      |
|         | K6   | C/BE1#   | I/O     | Р                   | PCI   |      |
|         | L6   | AD15     | I/O     | Р                   | PCI   |      |
|         | M6   | AD14     | I/O     | Р                   | PCI   |      |
|         | L7   | AD13     | I/O     | Р                   | PCI   |      |
|         | M7   | AD12     | I/O     | Р                   | PCI   |      |
|         | L8   | AD11     | I/O     | Р                   | PCI   |      |
|         | M8   | AD10     | I/O     | Р                   | PCI   |      |
|         | L9   | AD9      | I/O     | Р                   | PCI   |      |
|         | M9   | AD8      | I/O     | Р                   | PCI   |      |
| et4U.co | M10  | C/BE0#   | I/O     | Р                   | PCI   |      |
|         | M11  | AD7      | I/O     | Р                   | PCI   |      |
|         | M12  | AD6      | I/O     | Р                   | PCI   |      |
|         | L10  | AD5      | I/O     | Р                   | PCI   |      |
|         | L11  | AD4      | I/O     | Р                   | PCI   |      |
|         | L12  | AD3      | I/O     | Р                   | PCI   |      |
|         | K9   | AD2      | I/O     | Р                   | PCI   |      |
|         | K10  | AD1      | I/O     | Р                   | PCI   |      |
|         | K11  | AD0      | I/O     | Р                   | PCI   |      |
|         | C2   | TPBIAS0  | I/O     | AP                  | 1394  |      |
|         | B1   | TPAP0    | I/O     | AP                  | 1394  |      |
|         | A1   | TPAN0    | I/O     | AP                  | 1394  |      |
|         | B2   | TPBP0    | I/O     | AP                  | 1394  |      |
|         | A2   | TPBN0    | I/O     | AP                  | 1394  |      |
|         | C1   | REXT     | I/O     | AP                  | -     |      |
|         | C5   | VREF     | I/O     | AP                  | -     |      |
|         | C6   | FIL0     | I/O     | AP                  | -     |      |
|         | B6   | ХО       | 0       | AP                  | -     |      |
|         | A6   | XI       | I       | AP                  | -     |      |
|         | A11  | MDIO19   | I/O(PU) | М                   | 8mA   |      |
|         | B10  | MDIO18   | I/O(PU) | М                   | 8mA   |      |
|         | A9   | MDIO17   | I/O(PU) | М                   | 8mA   |      |
|         | D9   | MDIO16   | I/O(PU) | М                   | 8mA   |      |
|         | B8   | MDIO15   | I/O(PU) | М                   | 8mA   |      |
|         | A8   | MDIO14   | I/O(PU) | М                   | 8mA   |      |
|         | C9   | MDIO13   | I/O(PU) | М                   | 8mA   |      |
|         | C8   | MDIO12   | I/O(PU) | М                   | 8mA   |      |
|         |      |          |         | 1                   | 1     | 1    |

ww.DataSheet4U.con

| Ball |          |         | Pin Chara | cteristics | Note |
|------|----------|---------|-----------|------------|------|
| No.  | Pin Name | Dir     | PwrRail   | Drive      | Note |
| B11  | MDIO11   | I/O(PU) | М         | 8mA        |      |
| A12  | MDIO10   | I/O(PU) | М         | 8mA        |      |
| A10  | MDIO09   | I/O(PU) | М         | 8mA        |      |
| В9   | MDIO08   | I/O(PU) | М         | 8mA        |      |
| F12  | MDIO07   | I       | 3V        | -          |      |
| E11  | MDIO06   | 0       | 3V        | 8mA        |      |
| E10  | MDIO05   | 0       | 3V        | 8mA        |      |
| D11  | MDIO04   | 0       | 3V        | 8mA        |      |
| D10  | MDIO03   | I (PU)  | 3V        | -          |      |
| C12  | MDIO02   | O (PU)  | 3V        | 8mA        |      |
| C11  | MDIO01   | l (PU)  | 3V        | _          |      |
| B12  | MDIO00   | I (PU)  | 3V        | -          |      |
| H12  | TEST     | I       | 3V        | -          |      |
| G11  | HWSPND#  | I       | 3V        | -          |      |
| J10  | MSEN     | I       | 3V        | _          |      |
| K12  | XDEN     | I       | 3V        | _          |      |
| G12  | PME#     | O (OD)  | 3V        | 4mA        |      |
| F10  | GBRST#   | I       | 3V        | _          |      |

Pin TypeI: Inpt Pin,O: Output Pin,I/O: Input OutI (PU): Input Pin with Internal Pullup Resister,I (PD): Input Pin with Internal Pulldown Resister,I/O (PU): Input Output Pin with Internal Pullup Resister,I/O (PD): Input Output Pin with Internal Pulldown Resister,I/O (TS): Three State Output Pin,O (OD): Oper I/O: Input Output Pin, O (OD): Open Drain Output Pin

#### **Power Rail**

| P: VCC_PCI3V | AP: AVCC_PHY3V | R: VCC_RIN  |
|--------------|----------------|-------------|
| 3V: VCC_3V   | M: VCC_MD3V    | C: VCC_ROUT |
| G: GND       | AG: AGND       |             |

Drive

PCI: PCI Compliant 1394: IEEE1394a-2000 Compliant

| Pin Name  | Ball No. | Pin Name   | Ball No.           |
|-----------|----------|------------|--------------------|
| VCC_PCI3V | K7, K8   | AVCC_PHY3V | A5, B5, C4         |
| VCC_3V    | G10      | AGND       | A7, B7, C7         |
| VCC_MD3V  | C10      | GND        | F6, F7, G6, G7     |
| VCC_RIN   | D12      | NC         | A3, A4, B3, B4, C3 |
| VCC_ROUT  | D1, E12  |            |                    |

# 3.2.2 128 pin TQFP

|       | Pin  |            |        | Pin Chara | cteristics | Note |
|-------|------|------------|--------|-----------|------------|------|
|       | No.  | Pin Name   | Dir    | PwrRail   | Drive      | Note |
|       | 1    | AD28       | I/O    | Р         | PCI        |      |
|       | 2    | AD27       | I/O    | Р         | PCI        |      |
|       | 3    | AD26       | I/O    | Р         | PCI        |      |
|       | 4    | GND        | DC     | G         | -          |      |
|       | 5    | AD25       | I/O    | Р         | PCI        |      |
|       | 6    | AD24       | I/O    | Р         | PCI        |      |
|       | 7    | C/BE3#     | I/O    | Р         | PCI        |      |
|       | 8    | IDSEL      | I      | Р         | -          |      |
|       | 9    | AD23       | I/O    | Р         | PCI        |      |
|       | 10   | VCC_PCI3V  | DC     | Р         | -          |      |
|       | 11   | AD22       | I/O    | Р         | PCI        |      |
| 4U.co | ີ 12 | AD21       | I/O    | Р         | PCI        |      |
|       | 13   | GND        | DC     | G         | _          |      |
|       | 14   | AD20       | I/O    | Р         | PCI        |      |
|       | 15   | AD19       | I/O    | Р         | PCI        |      |
|       | 16   | VCC_ROUT   | DC     | С         | _          |      |
|       | 17   | AD18       | I/O    | Р         | PCI        |      |
|       | 18   | AD17       | I/O    | Р         | PCI        |      |
|       | 19   | AD16       | I/O    | Р         | PCI        |      |
|       | 20   | VCC_PCI3V  | DC     | Р         | _          |      |
|       | 21   | C/BE2#     | I/O    | Р         | PCI        |      |
|       | 22   | GND        | DC     | G         | _          |      |
|       | 23   | FRAME#     | I/O    | Р         | PCI        |      |
|       | 24   | IRDY#      | I/O    | Р         | PCI        |      |
|       | 25   | TRDY#      | I/O    | Р         | PCI        |      |
|       | 26   | DEVSEL#    | I/O    | Р         | PCI        |      |
|       | 27   | VCC_PCI3V  | DC     | Р         | _          |      |
|       | 28   | GND        | DC     | G         | _          |      |
|       | 29   | STOP#      | I/O    | Р         | PCI        |      |
|       | 30   | PERR#      | I/O    | Р         | PCI        |      |
|       | 31   | SERR#      | O (OD) | Р         | PCI        |      |
|       | 32   | VCC_PCI3V  | DC     | Р         | _          |      |
|       | 33   | <br>PAR    | I/O    | Р         | PCI        |      |
|       | 34   | VCC_ROUT   | DC     | С         | _          |      |
|       | 35   | <br>C/BE1# | I/O    | P         | PCI        |      |
|       | 36   | AD15       | I/O    | Р         | PCI        |      |
|       | 37   | AD14       | 1/0    | Р         | PCI        |      |
|       | 38   | AD13       | 1/0    | Р         | PCI        |      |
|       | 39   | AD12       | 1/0    | P         | PCI        |      |
|       |      |            |        | •         | . 01       |      |

| No.Pin NameDirPwrRailDrive40AD11I/OPPCI41VCC_PCI3VDCP-42AD40I/OPDO                                                                                                                  |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 40         AD11         I/O         P         PCI           41         VCC_PCI3V         DC         P         -           42         AD40         I/O         D         D         D |   |
| 41 VCC_PCI3V DC P -                                                                                                                                                                 |   |
|                                                                                                                                                                                     |   |
| 42 AD10 I/O P PCI                                                                                                                                                                   |   |
| 43 AD9 I/O P PCI                                                                                                                                                                    |   |
| 44 AD8 I/O P PCI                                                                                                                                                                    |   |
| 45 C/BE0# I/O P PCI                                                                                                                                                                 |   |
| 46 AD7 I/O P PCI                                                                                                                                                                    |   |
| 47 AD6 I/O P PCI                                                                                                                                                                    |   |
| 48 AD5 I/O P PCI                                                                                                                                                                    |   |
| 49 AD4 I/O P PCI                                                                                                                                                                    |   |
| 50 AD3 I/O P PCI                                                                                                                                                                    |   |
| 51 AD2 I/O P PCI                                                                                                                                                                    |   |
| et4U.com 52 AD1 I/O P PCI                                                                                                                                                           |   |
| 53 AD0 I/O P PCI                                                                                                                                                                    |   |
| 54 GND DC G –                                                                                                                                                                       |   |
| 55 XDEN I 3V –                                                                                                                                                                      |   |
| 56 UDIO2 I/O 3V 4mA                                                                                                                                                                 |   |
| 57 UDIO5 O 3V 4mA                                                                                                                                                                   |   |
| 58 MSEN I 3V –                                                                                                                                                                      |   |
| 59 UDIO4 I/O 3V 4mA                                                                                                                                                                 |   |
| 60 UDIO1 I/O 3V 4mA                                                                                                                                                                 |   |
| 61 VCC_RIN DC R -                                                                                                                                                                   |   |
| 62 GND DC G –                                                                                                                                                                       |   |
| 63 GND DC G –                                                                                                                                                                       |   |
| 64 VCC_ROUT DC C –                                                                                                                                                                  |   |
| 65 UDIO3 I/O 3V 4mA                                                                                                                                                                 |   |
| 66 TEST I 3V –                                                                                                                                                                      |   |
| 67 VCC_3V DC 3V -                                                                                                                                                                   |   |
| 68 GND DC G –                                                                                                                                                                       |   |
| 69 HWSPND# I 3V –                                                                                                                                                                   |   |
| 70 PME# O (OD) 3V 4mA                                                                                                                                                               |   |
| 71 GBRST# I 3V –                                                                                                                                                                    |   |
| 72 UDIO0/SRIRQ# I/O 3V 4mA                                                                                                                                                          |   |
| 73 MDIO07 I 3V -                                                                                                                                                                    | 1 |
| 74 MDIO06 O 3V 8mA                                                                                                                                                                  |   |
| 75 MDIO05 O 3V 8mA                                                                                                                                                                  | 1 |
| 76 MDIO04 O 3V 8mA                                                                                                                                                                  | 1 |
| 77 MDIO03 I (PU) 3V –                                                                                                                                                               | 1 |

|       | Pin |            |         | Pin Characteristics |       | Noto |
|-------|-----|------------|---------|---------------------|-------|------|
|       | No. | Pin Name   | Dir     | PwrRail             | Drive | Note |
|       | 78  | MDIO02     | O(PU)   | 3V                  | 8mA   |      |
|       | 79  | MDIO01     | I (PU)  | 3V                  | _     |      |
|       | 80  | MDIO00     | I (PU)  | 3V                  | -     |      |
|       | 81  | MDIO11     | I/O(PU) | М                   | 8mA   |      |
|       | 82  | MDIO10     | I/O(PU) | М                   | 8mA   |      |
|       | 83  | MDIO19     | I/O(PU) | М                   | 8mA   |      |
|       | 84  | MDIO09     | I/O(PU) | М                   | 8mA   |      |
|       | 85  | MDIO18     | I/O(PU) | М                   | 8mA   |      |
|       | 86  | VCC_MD3V   | DC      | М                   | -     |      |
|       | 87  | MDIO17     | I/O(PU) | М                   | 8mA   |      |
|       | 88  | MDIO08     | I/O(PU) | М                   | 8mA   |      |
| 41.1  | 89  | MDIO15     | I/O(PU) | М                   | 8mA   |      |
| +U.CO | 90  | MDIO13     | I/O(PU) | М                   | 8mA   |      |
|       | 91  | MDIO14     | I/O(PU) | М                   | 8mA   |      |
|       | 92  | MDIO16     | I/O(PU) | М                   | 8mA   |      |
|       | 93  | MDIO12     | I/O(PU) | М                   | 8mA   |      |
|       | 94  | XI         | I       | AP                  | _     |      |
|       | 95  | ХО         | 0       | AP                  | _     |      |
|       | 96  | FIL0       | I/O     | AP                  | _     |      |
|       | 97  | RSV        | I/O     | AP                  | _     |      |
|       | 98  | AVCC_PHY3V | DC      | AP                  | _     |      |
|       | 99  | AGND       | DC      | AG                  | _     |      |
|       | 100 | VREF       | I/O     | AP                  | _     |      |
|       | 101 | REXT       | I/O     | AP                  | _     |      |
|       | 102 | AGND       | DC      | AG                  | _     |      |
|       | 103 | AGND       | DC      | AG                  | _     |      |
|       | 104 | TPBN0      | I/O     | AP                  | 1394  |      |
|       | 105 | TPBP0      | I/O     | AP                  | 1394  |      |
|       | 106 | AVCC_PHY3V | DC      | AP                  | _     |      |
|       | 107 | AGND       | DC      | AG                  | _     |      |
|       | 108 | TPAN0      | I/O     | AP                  | 1394  |      |
|       | 109 | TPAP0      | I/O     | AP                  | 1394  |      |
|       | 110 | AVCC_PHY3V | DC      | AP                  | -     |      |
|       | 111 | AGND       | DC      | AG                  | _     |      |
|       | 112 | AVCC PHY3V | DC      | AP                  | _     |      |

| Pin |           | Pin Chara | cteristics | Noto  |      |
|-----|-----------|-----------|------------|-------|------|
| No. | Pin Name  | Dir       | PwrRail    | Drive | NOLE |
| 113 | TPBIAS0   | I/O       | AP         | 1394  |      |
| 114 | VCC_ROUT  | DC        | С          | -     |      |
| 115 | INTA#     | O(OD)     | Р          | PCI   |      |
| 116 | INTB#     | O(OD)     | Р          | PCI   |      |
| 117 | CLKRUN#   | I/O       | Р          | PCI   |      |
| 118 | GND       | DC        | G          | -     |      |
| 119 | PCIRST#   | I         | Р          | PCI   |      |
| 120 | VCC_ROUT  | DC        | С          | -     |      |
| 121 | PCICLK    | I         | Р          | -     |      |
| 122 | GND       | DC        | G          | -     |      |
| 123 | GNT#      | I         | Р          | -     |      |
| 124 | REQ#      | O (TS)    | Р          | PCI   |      |
| 125 | AD31      | I/O       | Р          | PCI   |      |
| 126 | AD30      | I/O       | Р          | PCI   |      |
| 127 | AD29      | I/O       | Р          | PCI   |      |
| 128 | VCC_PCI3V | DC        | Р          | _     |      |

Pin TypeI/O: Input Pin,I/O: Input Output Pin,I: (PU): Input Pin with Internal Pullup Resister,I (PD): Input Pin with Internal Pulldown Resister,I/O (PU): Input Output Pin with Internal Pullup Resister,I/O (PD): Input Output Pin with Internal Pulldown Resister,I/O (PD): Input Output Pin with Internal Pulldown Resister,I/O (PD): Input Output Pin with Internal Pulldown Resister,O (TS): Three State Output Pin,O (OD): Open Drain Output Pin

#### **Power Rail**

| P: VCC_PCI3V | AP: AVCC_PHY3V |
|--------------|----------------|
| 3V: VCC_3V   | M: VCC_MD3V    |
| G: GND       | AG: AGND       |

Drive

PCI: PCI Compliant 1394: IEEE1394a-2000 Compliant

R: VCC\_RIN C: VCC\_ROUT

| 3.2.3 Media Card Pin Assignme | nts |
|-------------------------------|-----|
|-------------------------------|-----|

|          | Pin             | Media I/F | SD Card | Multi Media Card | Memory Stick | xD Picture Card |
|----------|-----------------|-----------|---------|------------------|--------------|-----------------|
|          | 1               | MDIO00    | SDCD#   | MMCCD#           | -            | XDCD0#          |
|          | 2               | MDIO01    | -       | -                | MSCD#        | XDCD1#          |
|          | 3               | MDIO02    | -       | -                | -            | XDCE#           |
|          | 4               | MDIO03    | SDWP#   | -                | -            | XDR/B#          |
|          | 5               | MDIO04    | SDPWR0  | MMCPWR           | MSPWR        | XDPWR           |
|          | 6               | MDIO05    | SDPWR1  | -                | -            | XDWP#           |
|          | 7               | MDIO06    | SDLED#  | MMCLED#          | MSLED#       | XDLED#          |
|          | 8               | MDIO07    | SDEXTCK | -                | MSEXTCK      | -               |
|          | 9               | MDIO08    | SDCCMD  | MMCCMD           | MSBS         | XDWE#           |
|          | 10              | MDIO09    | SDCCLK  | MMCCLK           | MSCCLK       | XDRE#           |
|          | 11              | MDIO10    | SDCDAT0 | MMCDAT           | MSCDAT0      | XDCDAT0         |
| ataSheet | 4U <b>!2</b> om | MDIO11    | SDCDAT1 | -                | MSCDAT1      | XDCDAT1         |
|          | 13              | MDIO12    | SDCDAT2 | -                | MSCDAT2      | XDCDAT2         |
|          | 14              | MDIO13    | SDCDAT3 | -                | MSCDAT3      | XDCDAT3         |
|          | 15              | MDIO14    | -       | -                | -            | XDCDAT4         |
|          | 16              | MDIO15    | -       | -                | -            | XDCDAT5         |
|          | 17              | MDIO16    | -       | -                | -            | XDCDAT6         |
|          | 18              | MDIO17    | -       | -                | -            | XDCDAT7         |
|          | 19              | MDIO18    | -       | -                | -            | XDCLE           |
|          | 20              | MDIO19    | -       | -                | -            | XDALE           |

# 3.3 **Pin Functions Outline**

In this chapter, the detailed signal pins in the R5C832 are explained. Every signal is divided according to their relational interface.

# mark means the signal is on either active or asserted when the signal is low-level. Otherwise, no-mark means the signal is asserted when the signal is high-level.

The following the notations are used to describe the signal type.

| IN       | Input Pin                                                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUT      | Output Pin                                                                                                                                                                                                                                                                                                                              |
| OUT (TS) | Three State Output Pin                                                                                                                                                                                                                                                                                                                  |
| OUT (OD) | Open Drain Output Pin                                                                                                                                                                                                                                                                                                                   |
| I/O      | Input Output Pin                                                                                                                                                                                                                                                                                                                        |
| I/O (OD) | Input Output Pin (Output is Open Drain)                                                                                                                                                                                                                                                                                                 |
| s/h/z    | Sustained Tri–State is an active low tri–state signal owned and driven by one and only one agent at a time. The agent that drives an s/h/z pin low must drive it high for at least one clock before letting it float. A new agent cannot start driving an s/h/z signal any sooner than one clock after the previous owner tri–state is. |

# 3.3.1 PCI Local Bus interface signals

|  | Pin Name    | Туре                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--|-------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |             | ······································ | PCI Bus Interface Pin Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|  | PCICLK      | IN                                     | <b>PCI CLOCK:</b> PCICLK provides timing for all transactions on PCI. All other PCI signals are sampled on the rising edge of PCICLK.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|  | CLKRUN#     | I/O (OD)                               | <b>PCI CLOCK RUN:</b> This signal indicates the status of PCICLK and an open drain output to request the starting or speeding up of PCICLK. This pin complies with Mobile PCI specification. If CLKRUN# is not implemented, then this pin should be tied low. During PCI bus reset is asserted, this pin placed in a high-impedance state.                                                                                                                                                                                                                                |
|  | PCIRST#     | IN                                     | <b>PCI RESET:</b> This input is used to initialize all registers, sequences and signals of the R5C832 to their reset states. PCIRST# causes the R5C832 to place all output buffers in a high-impedance state. The negation of PCIRST# requires no-bounds.                                                                                                                                                                                                                                                                                                                 |
|  | AD [31:0]   | I/O                                    | ADDRESS AND DATA: Address and Data are multiplexed on the same PCI pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  | C/BE [3:0]# | I/O                                    | <b>BUS COMMAND AND BYTE ENABLES:</b> Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of transaction, C/BE [3:0]# define the bus command. During the data phase C/BE [3:0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data.                                                                                                                                                                                                               |
|  | PAR         | I/O                                    | <b>PARITY:</b> Parity is even parity across AD [31:0] and C/BE [3:0]#. PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after either IRDY# is asserted on a write transaction or TRDY# is asserted on a read transaction. The master drives PAR for address and write data phases; the target drives PAR for read data phases.                                                                                                                                                                               |
|  | FRAME#      | I/O<br>s/h/z                           | <b>CYCLE FRAME:</b> This signal is driven by the current master to indicate the beginning and duration of an access. FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has complete.                                                                                                                                                                                                                                             |
|  | TRDY#       | l/O<br>s/h/z                           | <b>TARGET READY:</b> This signal indicates the initialing agent's ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed on any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# and IRDY# are sampled asserted. During a read, TRDY# and IRDY# are sampled asserted. During a complete that valid data is present on AD [31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted both IRDY# and TRDY# are asserted together. |
|  | IRDY#       | l/O<br>s/h/z                           | <b>INITIATOR READY:</b> This signal indicates the initiating agent's ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed on any clock both TRDY# and IRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD [31:0]. During a read, it indicates the target is prepared to accept data. Wait cycles are inserted both IRDY# and TRDY# are asserted together.                                                                                           |
|  | STOP#       | l/O<br>s/h/z                           | <b>STOP:</b> This signal indicates the current target is requesting the master to stop the current transaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  | IDSEL       | IN                                     | <b>INITIALIZATION DEVICE SELECT:</b> This signal is used as chips select during configuration read and write transactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | DEVSEL#     | l/O<br>s/h/z                           | <b>DEVICE SELECT:</b> When actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected.                                                                                                                                                                                                                                                                                                                                                     |
|  | PERR#       | l/O<br>s/h/z                           | <b>PARITY ERROR:</b> This signal is only for the reporting of data parity errors during all PCI transactions except a Special Cycle. The R5C832 drives this output active "low" if it detects a data parity error during a write phase.                                                                                                                                                                                                                                                                                                                                   |

| Pin Name | Туре                                           | Description                                                                                                                                                                                                |  |  |  |  |  |
|----------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | PCI Bus Interface Pin Descriptions (Continued) |                                                                                                                                                                                                            |  |  |  |  |  |
| SERR#    | OUT (OD)                                       | <b>SYSTEM ERROR:</b> This signal is pure open drain. The R5C832 actively drives this output for a single PCI clock when it detects an address parity error on either the primary bus or the secondary bus. |  |  |  |  |  |
| REQ#     | OUT (TS)                                       | <b>REQUEST:</b> This signal indicates to the arbiter that the R5C832 desires use of the bus. This is a point to point signal.                                                                              |  |  |  |  |  |
| GNT#     | IN                                             | <b>GRANT:</b> This signal indicates the R5C832that access to the bus has been granted. This is a point to point signal.                                                                                    |  |  |  |  |  |
| GBRST#   | IN                                             | <b>GLOBAL RESET:</b> This input is used to initialize registers for control of PME_Context register. This should be asserted only once when system power supply is on.                                     |  |  |  |  |  |

# 3.3.2 System Interrupt signals

|                  | Pin Name                                                                                | Туре        | Description                                                                                                                                                                                                                                                                  |
|------------------|-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w.DataSheet4U.co | n                                                                                       |             | System Interrupt Pin Descriptions                                                                                                                                                                                                                                            |
|                  | INTA#                                                                                   | OUT<br>(OD) | <b>PCI INTERRUPT REQUEST A:</b> This signal indicates a programmable interrupt request generated from the IEEE1394 interface. This signal is connected to the interrupt line of the PCI bus.                                                                                 |
|                  | INTB#                                                                                   | OUT<br>(OD) | <b>PCI INTERRUPT REQUEST B:</b> This signal indicates a programmable interrupt request generated from the SD Card interface, Multi Media Card interface, Memory Stick interface or xD Picture Card interface. This signal is connected to the interrupt line of the PCI bus. |
|                  | UDIO0/SRIRQ#<br>UDIO1/GPIO0<br>UDIO2/GPIO1<br>UDIO3/GPIO2<br>UDIO4/GPIO3<br>UDIO5/LED0# | I/O (TS)    | USER DEFINABLE INPUT/OUTPUT: These signals can be used as user-definable input/output. Users can define functions such as *GPIO, LED, IRQ and so on for each pin in the Global Misc Control 1 Register.<br>*GPIO : General Purpose I/O                                       |
|                  | PME#                                                                                    | OUT<br>(OD) | <b>POWER MANAGEMENT EVENT:</b> When PME_En bit in Power Management<br>Control/Status register is set or when Power Status is set to any state mode except D0,<br>this signal is assigned as PME#.                                                                            |

# 3.3.3 Other signals

| Pin Name | Туре                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | Other Signals Descriptions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HWSPND#  | IN                         | <b>Hardware Suspend:</b> This signal works as HWSPND# input. PCIRST# is not accepted as long as HWSPND# is asserted so that VCC_PCI3V can be powered off. When Serial IRQ mode is set, HWSPND# must be asserted after Serial IRQ mode on the chip-set has been deasserted. When Hardware Suspend mode is off, HWSPND# must be deasserted before Serial IRQ mode is enabled. When a power is on, follow the reset sequence shown in the chapter 4.5 in order to confirm the input of PCIRST# and PCLK. |  |  |  |  |
| MSEN     | IN                         | Memory Stick Function Enable: Memory Stick Function Enable signal.                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| XDEN     | IN                         | xD Function Enable: xD Picture Card Function Enable signal.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| TEST     | IN                         | TEST: This signal is a test mode pin. Usually, this pin must be tied low.                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| RSV      | I/O                        | Reserved: This signal is reserved. Usually, this pin must be open.                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

| Pin Name | Туре | Description                                                                                                                                     |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      | IEEE1394 Cable Interface Pin Descriptions                                                                                                       |
| TPAP0    | I/O  | TPA Positive : Twisted-pair cable A (positive) differential signal terminals.                                                                   |
| TPBP0    | I/O  | TPB Positive : Twisted-pair cable B (positive) differential signal terminals.                                                                   |
| TPAN0    | I/O  | TPA Negative : Twisted-pair cable A (negative) differential signal terminals.                                                                   |
| TPBN0    | I/O  | TPB Negative : Twisted-pair cable B (negative) differential signal terminals.                                                                   |
| TPBIAS0  | I/O  | <b>TP Bias :</b> Twisted-pair bias output. This pin is compliant with the IEEE1394a-2000, and also monitors Insertion/desertion of other cables |

# 3.3.4 IEEE1394 PHY Interface signals

# 3.3.5 IEEE1394 Control signals

|                    | Pin Name                          | Туре | Description                                                                                                                        |  |  |  |
|--------------------|-----------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                    | IEEE1394 Control Pin Descriptions |      |                                                                                                                                    |  |  |  |
| www.DataSheet4U.co | VREF                              | I/O  | <b>Voltage reference Resistance :</b> It is necessary to connect a capacitance of 0.01uF between this pin and AGND.                |  |  |  |
|                    | REXT                              | I/O  | <b>Resistance External:</b> It is necessary to connect a resistor of $10k\Omega \pm 1\%$ between this pin and AGND.                |  |  |  |
|                    | XI                                | IN   | X'tal In : 24.576MHz                                                                                                               |  |  |  |
|                    | ХО                                | OUT  | X'tal Out : 24.576MHz                                                                                                              |  |  |  |
|                    | FILO                              | I/O  | <i>Filter :</i> This pin connects to the PLL Filter. It is necessary to connect a capacitance of 0.01uF between this pin and AGND. |  |  |  |

# 3.3.6 Media Card Interface signals

# SD Card

| Pin Name                         | MDIO Pin<br>Name | Туре | Description                                                                                                                                                 |  |  |  |
|----------------------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SD Card Control Pin Descriptions |                  |      |                                                                                                                                                             |  |  |  |
| SDCDAT0                          | MDIO10           | I/O  | SD Data [3:0] : SD Card 4bit data bus signals.                                                                                                              |  |  |  |
| SDCDAT1                          | MDIO11           | I/O  |                                                                                                                                                             |  |  |  |
| SDCDAT2                          | MDIO12           | I/O  |                                                                                                                                                             |  |  |  |
| SDCDAT3                          | MDIO13           | I/O  |                                                                                                                                                             |  |  |  |
| SDCCMD                           | MDIO08           | I/O  | SD Command : SD Card Command signal.                                                                                                                        |  |  |  |
| SDCCLK                           | MDIO09           | OUT  | SD Clock : SD Card Clock signal.                                                                                                                            |  |  |  |
| SDWP#                            | MDIO03           | IN   | <b>SD Write Protect :</b> This signal indicates the state of SD card's write protect switch. This pin is connected to a reserved pin of the SD card socket. |  |  |  |
| SDCD#                            | MDIO00           | IN   | <b>SD Card Detect :</b> This signal indicates whether the SD card is inserted to a socket. This pin is connected to a reserved pin of the SD card socket.   |  |  |  |
| SDEXTCK                          | MDIO07           | IN   | <b>SD External Clock</b> : This signal must be connected to GND because the R5C832 does not support SDEXTCK for the SD Card.                                |  |  |  |
| SDPWR0                           | MDIO04           | OUT  | <b>SD Card Power0 Control</b> : This signal is provided to control the power supply (3.3V) for an SD card.                                                  |  |  |  |
| SDPWR1                           | MDIO05           | OUT  | <b>SD Card Power1 Control</b> : This signal is provided to control the power supply (1.8V) for an SD card. R5C832 does not support this signal.             |  |  |  |
| SDLED#                           | MDIO06           | OUT  | SD Card LED Control : This signal indicates an access state to the SD card.                                                                                 |  |  |  |

# Multi Media Card

| Pin Name | MDIO Pin<br>Name                          | Туре | Description                                                                                                                                                             |  |  |  |  |
|----------|-------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | Multi Media Card Control Pin Descriptions |      |                                                                                                                                                                         |  |  |  |  |
| MMCDAT   | MDIO10                                    | I/O  | MMC Data : Multi Media Card 1bit data bus signal.                                                                                                                       |  |  |  |  |
| MMCCMD   | MDIO08                                    | I/O  | MMC Command : Multi Media Card Command signal.                                                                                                                          |  |  |  |  |
| MMCCLK   | MDIO09                                    | OUT  | MMC Clock : Multi Media Card Clock signal.                                                                                                                              |  |  |  |  |
| MMCCD#   | MDIO00                                    | IN   | <b>MMC</b> Detect : This signal indicates whether the Multi Media Card is inserted to a socket. This pin is connected to a reserved pin of the Multi Media Card socket. |  |  |  |  |
| MMCPWR   | MDIO04                                    | OUT  | <i>MMC Power Control :</i> This signal is provided to control the power supply (3.3V) for an Multi Media card.                                                          |  |  |  |  |
| MMCLED#  | MDIO06                                    | OUT  | MMC LED Control : This signal indicates an access state to the Multi Media card.                                                                                        |  |  |  |  |

# Memory Stick

|             | Pin Name | MDIO Pin<br>Name | Туре | Description                                                                                                                                                                                 |
|-------------|----------|------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aSheet4U.co | m        |                  |      | Memory Stick Control Pin Descriptions                                                                                                                                                       |
|             | MSCDAT0  | MDIO10           | I/O  | Memory Stick Data [3:0] : Memory Stick Data signals. Normally, MSCDAT0 only                                                                                                                 |
|             | MSCDAT1  | MDIO11           | I/O  | is used.                                                                                                                                                                                    |
|             | MSCDAT2  | MDIO12           | I/O  |                                                                                                                                                                                             |
|             | MSCDAT3  | MDIO13           | I/O  |                                                                                                                                                                                             |
|             | MSBS     | MDIO08           | OUT  | Memory Stick Bus State : Memory Stick Bus State signal.                                                                                                                                     |
|             | MSCCLK   | MDIO09           | OUT  | Memory Stick Clock : Memory Stick Clock signal.                                                                                                                                             |
|             | MSCD#    | MDIO01           | IN   | <i>Memory Stick Card Detect :</i> This signal indicates whether the Memory Stick is inserted to a socket. This pin is connected to the INS signal of Memory Stick.                          |
|             | MSEXTCK  | MDIO07           | IN   | <b>Memory Stick External Clock :</b> This signal is input to the Memory Stick block.<br>This clock supports 0 - 40MHz. If the internal PCICLK is used, this signal can be connected to GND. |
|             | MSPWR    | MDIO04           | OUT  | <i>Memory Stick Power Control :</i> This signal is provided to control the power supply for the Memory Stick.                                                                               |
|             | MSLED#   | MDIO06           | OUT  | <i>Memory Stick LED Control :</i> This signal indicates an access state to the Memory Stick.                                                                                                |

# xD Picture Card

|    | Pin Name | MDIO Pin<br>Name                         | Туре | Description                                                                                                                                                                |  |  |  |
|----|----------|------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    |          | xD Picture Card Control Pin Descriptions |      |                                                                                                                                                                            |  |  |  |
|    | XDCDAT0  | MDIO10                                   | I/O  | xD Picture CardData [7:0] : xD Picture Card Data bus signals.                                                                                                              |  |  |  |
|    | XDCDAT1  | MDIO11                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT2  | MDIO12                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT3  | MDIO13                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT4  | MDIO14                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT5  | MDIO15                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT6  | MDIO16                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCDAT7  | MDIO17                                   | I/O  |                                                                                                                                                                            |  |  |  |
|    | XDCLE    | MDIO18                                   | OUT  | xD Picture Card CLE : xD Picture Card Command Latch Enable signal.                                                                                                         |  |  |  |
|    | XDALE    | MDIO19                                   | OUT  | xD Picture Card ALE : xD Picture Card Address Latch Enable signal.                                                                                                         |  |  |  |
|    | XDCD0#   | MDIO00                                   | IN   | xD Picture Card Detect : These signals indicate a detection of the xD Picture                                                                                              |  |  |  |
| 00 | XDCD1#   | MDIO01                                   |      | Card when two signals are set to 'Low' by insertion of xD Picture Card.                                                                                                    |  |  |  |
|    | XDWP#    | MDIO05                                   | OUT  | <b>xD Picture Card Write Protect :</b> This signal indicates the state of xD Picture Card's write protect. This pin is connected to the -WP signal of the xD Picture Card. |  |  |  |
|    | XDPWR    | MDIO04                                   | OUT  | <b>xD Picture Card Power Control :</b> This signal is provided to control the power supply for the xD Picture Card.                                                        |  |  |  |
|    | XDR/B#   | MDIO03                                   | IN   | <b>xD Picture Card R/B :</b> xD Picture Card Ready/Busy signal. When this signal is low, xD Picture Card is busy.                                                          |  |  |  |
|    | XDLED#   | MDIO06                                   | OUT  | <b>xD Picture Card LED Control:</b> This signal indicates an access state to the xD Picture Card.                                                                          |  |  |  |
|    | XDWE#    | MDIO08                                   | OUT  | xD Picture Card Write Enable: xD Picture Card Write Enable signal.                                                                                                         |  |  |  |
|    | XDCE#    | MDIO02                                   | OUT  | xD Picture Card Enable: xD Picture Card Enable signal.                                                                                                                     |  |  |  |
|    | XDRE#    | MDIO09                                   | OUT  | xD Picture Card Read Enable: xD Picture Card Read Enable signal.                                                                                                           |  |  |  |

# 3.3.7 Power and GND signals

| Pin Name   | Туре | Description                                                                                                                                                                                                                 |  |  |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |      | Power Pin Descriptions                                                                                                                                                                                                      |  |  |
| VCC_PCI3V  | PWR  | PCI VCC: Power Supply pins for the PCI interface signals. This pin can be powered at 3.3V.                                                                                                                                  |  |  |
| VCC_3V     | PWR  | <b>3V VCC</b> : This supply pin is connected to 3.3V. This pin must not be off on the suspend mode because of the power supply for PME# and GBRST#.                                                                         |  |  |
| VCC_MD3V   | PWR  | <b>Media VCC:</b> Power Supply pins for the Media interface signals. This pin can be powered at 3.3V.                                                                                                                       |  |  |
| VCC_RIN    | PWR  | <b>Regulator Input:</b> Power supply input pins for an internal regulator. This pin is connected to 3.3V.                                                                                                                   |  |  |
| VCC_ROUT   | PWR  | <b>Regulator Output:</b> Power supply output pins for an internal regulator. This pin is powered as an output from an internal regulator and as an input to the core logic. Add bypass condensers between this pin and GND. |  |  |
| AVCC_PHY3V | PWR  | <b>1394 PHY VCC:</b> Power supply for PHY analog block. This pin can be powered at 3.3V. This pin must not be off on the suspend mode because of the power supply for Cable interface block.                                |  |  |
| GND        | PWR  | Digital GND:                                                                                                                                                                                                                |  |  |
| AGND       | PWR  | Analog GND:                                                                                                                                                                                                                 |  |  |

# 4 FUNCTIONAL DESCRIPTION

# 4.1 Device Configuration

The R5C832 supports the PCI-IEEE1394 bridge function, the SD Card interface, the Multi Media Card interface, the Memory Stick interface and the xD Picture Card interface. Logically the R5C832 looks to the primary PCI as a separate secondary bus residing in a single device. The IEEE 1394, the SD Card, the Multi Media Card, the Memory Stick and the xD Picture Card have their own register spaces.

# 4.1.1 PCI Configuration Register Space

The PCI Configuration registers are used to control the basic operations, as settings and status control of the PCI device. Each function has 256 byte of configuration space.

# 4.1.2 1394 OHCI-LINK Register Space

The 1394 OHCI-LINK registers are 2Kbyte of register compliant with the 1394 OHCI specifications. The 1394 OHCI Register Base Address register points to the 2Kbyte memory mapped I/O space. These registers are used to control OHCI-LINK and to set DMA context.

# 4.1.3 1394 PHY Register Space

The 1394 PHY registers are compliant with the IEEE1394a-2000 standard specifications. These registers are used to set the PHY block (ex. the value of Gap count.) and are accessed through the PHY Control register in the 1394 OHCI-LINK register space.

# 4.1.4 SD Card Control Register Space

The SD Card Control registers, compliant with the SD Host Controller Standard specification, are 256byte of register assigned to control the SD card. These registers are used to set for access to the SD card, to give commands and to read/write data. These are placed in the memory mapped I/O space by the SD Card Register Base Address register.

# 4.1.5 Multi Media Card Control Register Space

The Multi Media Card Control registers are 256byte of register assigned to control the Multi Media Card. These registers are used to set for access to the Multi Media Card, to give commands and to read/write data. These are placed in the memory mapped I/O space by the Multi Media Card Register Base Address register.

# 4.1.6 Memory Stick Control Register Space

The Memory Stick Control registers are 256byte of register assigned to control the Memory Stick. These registers are used to set for access to the Memory Stick, to give commands and to read/write data. These are placed in the memory mapped I/O space by the Memory Stick Register Base Address register.

# 4.1.7 xD Picture Card Control Register Space

The xD Picture Card Control registers are 256byte of register assigned to control the xD Picture Card. These registers are used to set for access to the xD Picture Card, to give commands and to read/write data. These are placed in the memory mapped I/O space by the xD Picture Card Register Base Address register.

# 4.2 Error Support

# 4.2.1 Parity Error

The R5C832 provides the parity generation and the parity error detection on the primary PCI bus. Having detected an address parity error, the R5C832 asserts SERR# and sets the Detected Parity Error bit in the PCI Status register. Having detected a data parity error, the R5C832 asserts PERR# and sets the Detected Parity Error bit in the PCI Status register.

#### 4.2.2 PCI Bus Error concerned with 1394 OHCI

On the 1394 OHCI function, the R5C832 provides occurred PCI Bus errors and some information to recover the errors to system software, via the Context register or the descriptor.

#### 4.3 Interrupts

The R5C832 supports PCI interrupt signals INTA# and INTB#. They transmit to the system the Card Status Change Interrupt as a card insert/remove event, the DMA Interrupt and the Device Interrupt defined on 1394 OHCI, and interrupts defined on the SD Card/ Multi Media Card/ Memory Stick/ xD Picture Card interface. INTA# is assigned to the 1394 OHCI and INTB# is assigned to the SD Card/ Multi Media Card/ Memory Stick/xD Picture Card interfaces. INTA# is assigned to the 1394 OHCI and INTB# is assigned to the SD Card/ Multi Media Card/ Memory Stick/xD Picture Card interfaces. Interrupts of the 1394 can be reassigned by the INT Select bit (bit1) of the 1394 Misc Control 2 register, and Interrupts of SD Card/ Multi Media Card/ Memory Stick/ xD Picture Card interfaces can be reassigned by the INT Select bit (bit25) of the SD Misc Control register/ the MMC Misc Control register/ the MS Misc Control register/the xD Misc Control register.

| INT Select<br>Bit1 | 1394  | INT Select<br>Bit25 | SD/MMC/MS/xD |
|--------------------|-------|---------------------|--------------|
| 1                  | INTB# | 1                   | INTA#        |
| 0                  | INTA# | 0                   | INTB#        |

On the 1394 OHCI, the R5C832 transmits interrupt signals to the host on the end of the DMA transaction, and also transmits interrupts of the LINK layer and the PHY layer. The IntEvent register and the IntMask register in the OHCI registers control these interrupts. The IntEvent register is used to indicate generations of an interrupt event and the IntMask register is used to enable the selected interrupt. Writing into the IntEventClear by software enables to clear the interrupt. On the SD Card interface, the Multi Media Card interface, the Memory Stick interface and the xD Picture Card interface, the R5C832 can inform a card insert/remove event or an error as an interrupt to the system. PCI interrupt signals are open drain outputs.

In addition to primary interrupt functions, the R5C832 supports Serialized IRQ. When SRIRQ Enable bit (bit 29) of the Global Misc Control register is set to '1b', UDIO0 works as SRIRQ#. And GPIO and LED0# are also enabled. SRIRQ# output enables a Wired-OR structure that simply transfer a state of one or more device's IRQ to the host controller. Both of a device and a host controller enables a transferring start.

A transferring, called an IRQSER Cycle, consists of three frame types: one Start Frame, several IRQ/Data Frames, and one Stop Frame. Frames of INTA#, INTB#, INTC# and INTD# (PCI Interrupt signals) are output after IOCHK# frame is output.

All cycle uses PCICLK as its clock source. The IRQSER Start Frame has two operation modes: Quiet (Active) mode and Continuous (Idle) mode. On the Quiet (Active) mode, any device can initiate a Start Frame. By occurring of interruptive requests, the R5C832 outputs 1-pulse of PCICLK (Low) and Serialized IRQ is kept on Hi-Z during the rest of a Start Frame. After that, IRQ/DATA Frame follows.

In Continuous (Idle) mode, only Host Controller can initiate a Start Frame. The R5C832 becomes waiting state to detect 4-8 PCICLK of Start Pulse. These modes change automatically by monitoring the Stop pulse width in a Stop Frame. Quiet (Active) mode is repeated when width of Stop Pulse is 2PCICLK, and Continuous (Idle) mode is repeated when it is 3PCICLK. After assertion of the GBRST#, the default is Continuous (Idle) mode.

Timing of the Start Frame and the Stop Frame is as follows:

#### www.DataSheet4U.com

| Start Frame timing with source sampled a low pulse on IRQ1                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL START FRAME IRQ0 FRAME IRQ1 FRAME IRQ2 FRAME<br>or H R T S R T S R T S R T S R T                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                             |
| IRQSER START <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                   |
| Drive Source IRQ1 Host Controller None IRQ1 None                                                                                                                                                                                                                                                                                                                                            |
| 1. Start Frame pulse can be 4-8 clocks wide.<br>Stop Frame Timing with Host using 17 IRQSER sampling period                                                                                                                                                                                                                                                                                 |
| IRQ14     IRQ15     IOCHCK#     STOP FRAME     NEXT CYCLE       FRAME     FRAME     FRAME     FRAME     I       S     R     T     S     R     T                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                             |
| IRQSER                                                                                                                                                                                                                                                                                                                                                                                      |
| Driver None IRQ15 None Host Controller                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>H=Host, SL=Slave Control, R=Recovery, T=Turn-around, S=Sample</li> <li>Stop Pulse is 2 clocks wide for Quiet mode, and 3 clocks wide for Continuous mode.</li> <li>There may be none, one or more Idle states during the Stop Frame.</li> <li>The next IRQSER cycle's Start Frame pulse may or may not start immediately after the turn-around clock of the Stop Frame.</li> </ul> |

|                | IRQSER Sampling Periods | 3                      |
|----------------|-------------------------|------------------------|
| IRQ/Data Frame | Signal Sampled          | # of clocks past Start |
| 1              | IRQ0                    | 2                      |
| 2              | IRQ1                    | 5                      |
| 3              | SMI#                    | 8                      |
| 4              | IRQ3                    | 11                     |
| 5              | IRQ4                    | 14                     |
| 6              | IRQ5                    | 17                     |
| 7              | IRQ6                    | 20                     |
| 8              | IRQ7                    | 23                     |
| 9              | IRQ8                    | 26                     |
| 10             | IRQ9                    | 29                     |
| 11             | IRQ10                   | 32                     |
| 12             | IRQ11                   | 35                     |
| 13             | IRQ12                   | 38                     |
| 14             | IRQ13                   | 41                     |
| 15             | IRQ14                   | 44                     |
| U.com 16       | IRQ15                   | 47                     |
| 17             | IOCHCK#                 | 50                     |
| 18             | INTA#                   | 53                     |
| 19             | INTB#                   | 56                     |
| 20             | INTC#                   | 59                     |
| 21             | INTD#                   | 62                     |
| 32:22          | Unassigned              | 95                     |

# 4.4 Mixed Voltage Operation

The R5C832 has 4 independent power rails. The power for PCI (VCC\_PCI3V) is powered at 3.3V, and VCC\_RIN is powered at 3.3V. The 1394 OHCI interface (AVCC\_PHY3V) is powered at 3.3V. The SD Card interface, the Multi Media Card interface, the Memory Stick interface and the xD Picture Card interface (VCC\_3V and VCC\_MD3V) are powered at 3.3V.

# 4.5 Reset Event

Anytime GBRST# is asserted, all R5C832 internal state machines are reset and all registers are set to their default values (provided that each signals has followed the reset sequence below). PCIRST# is asserted, all registers are set to their default value except the following. The default values of each register are described in each register description.

# 1. These registers are initialized only by GBRST#, not by PCIRST#. (PCI RESET Resistant register).

1394 OHCI-LINK Config. Space:

| 2Ch | Subsystem Vendor ID          | [15:0] |
|-----|------------------------------|--------|
| 2Eh | Subsystem ID                 | [15:0] |
| 3Eh | MIN Grant & MAX Latency      | [15:0] |
| ACh | Writable Subsystem Vendor ID | [15:0] |
| AEh | Writable Subsystem ID        | [15:0] |
| 80h | 1394 Misc Control            | [15:0] |
| 9Ch | 1394 Misc Control 2          | [7:0]  |
| 9Eh | 1394 Misc Control 3          | [7:0]  |
| BEh | Writable MIN_GNT & MAX_LAT   | [15:0] |
| 98h | PHY Power Management         | [7:0]  |
| 99h | PHY Shadow                   | [7:0]  |
|     |                              |        |

|               | SD Card Interface Cont            | fig Space:                          |                  |
|---------------|-----------------------------------|-------------------------------------|------------------|
|               | · 2Ch                             | Subsystem Vendor ID                 | [15:0]           |
|               | · 2Eh                             | Subsystem ID                        | [15:0]           |
|               | · ACh                             | Writable Subsystem Vendor ID        | [15:0]           |
|               | · AEh                             | Writable Subsystem ID               | [15:0]           |
|               | · B0h                             | SD Clock Control                    | [23:0]           |
|               | · BAh                             | PMF Trigger Disable                 | [ <u>-</u> 010]  |
|               | BCh                               | SD Card Detect Control              | [23.0]           |
|               | · E0b                             | SD Canabilities 0                   | [20.0]<br>[15·0] |
|               | · E2h                             | SD Capabilities 1                   | [15:0]           |
|               | · E4b                             | SD Capabilities PSV                 | [10.0]           |
|               | . E8b                             | SD Capabilities_100V                | [31:0]           |
|               | . ECh                             | SD Maximum Current Capabilities     | [31:0]           |
|               | - ECH                             | SD Maximum Current Capabilities_KSV | [31:0]           |
|               | Foll                              |                                     | [31.0]           |
|               | · FCII<br>Multi Madia Card Interf | Rey<br>Config Shace:                | [7.0]            |
|               |                                   | ace Colling Space.                  | [45.0]           |
|               | · 2011                            |                                     | [15:0]           |
|               | · 2EN                             |                                     | [15:0]           |
| DataSheet4U.c | · ACh                             | Writable Subsystem Vendor ID        | [15:0]           |
|               | ·AEn                              | Writable Subsystem ID               | [15:0]           |
|               | ·B0h                              | MMC Clock Control                   | [23:0]           |
|               | ·BAh                              | PME Trigger Disable                 | [7:0]            |
|               | ·BCh                              | MMC Card Detect Control             | [23:0]           |
|               | · E0h                             | MMC Misc Control 0                  | [15:0]           |
|               | · F8h                             | MMC Misc Control 1                  | [31:0]           |
|               | ·FCh                              | Key                                 | [7:0]            |
|               | Memory Stick Interface            | Config Space:                       |                  |
|               | · 2Ch                             | Subsystem Vendor ID                 | [15:0]           |
|               | · 2Eh                             | Subsystem ID                        | [15:0]           |
|               | · 40h                             | Memory Stick Clock Control          | [23:0]           |
|               | · 4Ah                             | PME Trigger Enable                  | [7:0]            |
|               | · ACh                             | Writable Subsystem Vendor ID        | [15:0]           |
|               | · AEh                             | Writable Subsystem ID               | [15:0]           |
|               | · F8h                             | MS Misc Control                     | [31:0]           |
|               | · FCh                             | Кеу                                 | [7:0]            |
|               | xD Picture Card Interfa           | ce Config Space:                    |                  |
|               | · 2Ch                             | Subsystem Vendor ID                 | [15:0]           |
|               | · 2Eh                             | Subsystem ID                        | [15:0]           |
|               | · 40h                             | xD Picture Card Clock Control       | [23:0]           |
|               | · 4Ah                             | PME Trigger Enable                  | [7:0]            |
|               | · ACh                             | Writable Subsystem Vendor ID        | [15:0]           |
|               | · AEh                             | Writable Subsystem ID               | [15:0]           |
|               | · F8h                             | xD Misc Control                     | [31:0]           |
|               | · FCh                             | Key                                 | [7:0]            |
|               | 1394 OHCI Register:               |                                     |                  |
|               | · 24h                             | Global Unique ID High               | [31:0]           |
|               | · 28h                             | Global Unique ID Low                | [31:0]           |
|               | 1394 PHY Register:                |                                     |                  |
|               | ·All Registers                    |                                     |                  |
|               | SD Card Register:                 |                                     |                  |
|               | ·All Registers                    |                                     |                  |
|               | Multi Media Card Regis            | ster:                               |                  |
|               | ·All Registers                    |                                     |                  |
|               | Memory Stick Register:            |                                     |                  |
|               | ·All Registers                    |                                     |                  |
|               | xD Picture Card Regist            | er:                                 |                  |
|               | ·All Registers                    |                                     |                  |

2. These registers are not initialized by PCIRST# when the power state is D3 and PME Enable bit is set to "1". (PME\_Context register)

| 1394 OHCI-LINK Confi           | g. Space:                        |        |  |  |
|--------------------------------|----------------------------------|--------|--|--|
| · DEh                          | Power Management Capabilities    | [15]   |  |  |
| · E0h                          | Power Management Control/ Status | [15,8] |  |  |
| SD Card Config. Space          | :                                |        |  |  |
| · 82h                          | Power Management Capabilities    | [15]   |  |  |
| · 84h                          | Power Management Control/ Status | [15,8] |  |  |
| Multi Media Card Confi         | g. Space:                        |        |  |  |
| · 82h                          | Power Management Capabilities    | [15]   |  |  |
| · 84h                          | Power Management Control/ Status | [15,8] |  |  |
| Memory Stick Config. S         | pace:                            |        |  |  |
| · 82h                          | Power Management Capabilities    | [15]   |  |  |
| · 84h                          | Power Management Control/ Status | [15,8] |  |  |
| xD Picture Card Config. Space: |                                  |        |  |  |
| · 82h                          | Power Management Capabilities    | [15]   |  |  |
| · 84h                          | Power Management Control/ Status | [15,8] |  |  |

3. www.DataSheet4U.com

Excepting the above registers (PCI RESET Resistant register, PME\_Context register) and the global register, all the registers are initialized by the power state transition from D3 to D0 as long as the power state is D3.

#### **≡Reset Sequence**≡

Follow the sequence for initialization when a power is on.

- 1. Supply power to VCC\_3V, AVCC\_PHY3V, VCC\_MD3V and VCC\_RIN.
  - 2. Supply power to VCC\_PCI3V.
  - 3. Deassert GBRST#.
  - 4. Deassert HWSPND#.
  - 5. Deassert PCIRST#. (PCLK has to be supplied for 100µsec@33MHz before deasserting PCIRST#.)

Following Step3 by Step2 has no problem.

See the timing a detail of the timing shown in Chapter 5.3.3.

# 4.6 Power Management

The R5C832 implements two kinds of power management, software suspend mode and hardware suspend mode, in order to reduce the power consumption on suspend, in addition to the adoption of circuit to reduce the power consumption when power on. The software suspend mode conforms to the ACPI (Advanced Configuration and Power Interface) specification and the PCI Bus Power Management Standard. The R5C832, as a PCI device, implements four power states of D0, D1, D2, and D3.

The power management events for the R5C832 and their sources are listed below. The PME# source supports the Card Detect Change event only.

When the power state is except D0, the interrupt is disabled and only PME# can be asserted.

| Event                          | Source |
|--------------------------------|--------|
| 1394 LINKON                    | R5C832 |
| SD Card Detect Change          | R5C832 |
| Multi Media Card Detect Change | R5C832 |
| Memory Stick Detect Change     | R5C832 |
| xD Picture Card Detect Change  | R5C832 |

|                   | D0     | Fully function of OHCI device state. Unmasked interrupts generate INTx#. And also, PME# can be generated by PME_EN after setting PME_STS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | D1     | Ack_tardy is returned on accesses from the 1394. The PCI configuration space, the 1394<br>OHCI register and the GUID register are preserved. Functional interrupts are masked.<br>Unmasked interrupts can be generated by PME_EN after setting PME_STS. All transmit<br>contexts must be inactive before it attempts to place the R5C832 into the D1 power state.<br>IEEE1394 bus manager shall not be placed into D1. Placing the R5C832 into D1 enables<br>the ack_tardy generation. Software must ensure that IntEve.ack_tardy is 0b and should<br>unmask wake-up interrupt events such as IntEvent.phy and IntEvent.ack_tardy before<br>placing the R5C832 into D1. |
|                   | D2     | LPS is deasserted and stopping supply of SCLK is requested to the PHY. The PCI configuration space is retained and capable of access. The GUID register is retained, but the1394 OHCI register is lost. Functional interrupts are masked. But when the LinkOn signal that is occurred by accepting LinkOn packet or PHY.INTERRUPT is accepted from the PHY, PME# is generated by PME_EN after setting PME_STS.                                                                                                                                                                                                                                                          |
| vw.DataSheet4U.co | D3hot  | LPS is deasserted and stopping SCLK supply is requested to the PHY. The PCI configuration Space is capable of access, but all register except the PME context is lost. The GUID register is retained, but the1394 OHCI register is lost. On transitioning back to D0, the internal reset is automatically done even if PCIRST# is not asserted. Functional interrupts are masked. But when the LinkOn signal is accepted from the PHY, PME# is generated by PME_EN after setting PME_STS.                                                                                                                                                                               |
|                   | D3cold | In addition to the conditions of the D3hot state, VCC_RIN, VCC_3V, VCC_MD3V and AVCC_PHY3V are shifted to the auxiliary power source. D3cold supports functions like D3hot's.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 4.6.1 Function on 1394 OHCI-LINK

# PHY function

On D2 and D3 states, the PHY block can be set to one of the following low power consumption modes by register setting.

|                           | Doze Mode                                                    | Sleep Mode   |
|---------------------------|--------------------------------------------------------------|--------------|
| Select Condition          | Status of both ports is Disconnected, Disabled or Suspended. |              |
| Resume Time 200ns or less |                                                              | 10ms or less |

Doze Mode: Power consumption is lowered by:

- a) stopping the clock of the PHY digital block, and
- b) getting down the power of the PHY analog block.

Sleep Mode: Power consumption is further lowered than Doze Mode by a), b), and

c) getting down the power of PLL and the oscillator.

Setting D2PhyPM bit or D3PhyPM bit on the PHY Power Management register (the 1394 OHCI-LINK Configuration register addr.98h) enables a selection of Doze mode or Sleep mode. On Doze mode or Sleep mode, LinkOn event enables to resume from the power saving mode automatically and PME# is asserted. Each power saving modes cannot be set without the above selected conditions, even if the R5C832 is set to D2 state or D3 state. If the above Ports conditions are not satisfied, the R5C832 transacts as the Repeater PHY. In this time, setting D2ForcePM bit or D3ForcePM bit to 1b enables to ignore above conditions and to set Doze mode or Sleep mode automatically. But, it is disabled LinkOn event to resume from the power consumption mode automatically and to assert PME#. Writing into Power State bits enables to return to D0 state. In addition, don't cut power supply of VCC\_RIN, VCC\_3V, VCC\_MD3V and AVCC\_PHY3V on the suspend mode in spite of the Software and the Hardware.

| 4.6.2 | Function on S | SD Card/ Multi | Media Card/ | Memory Stick/ | xD Picture Care | d |
|-------|---------------|----------------|-------------|---------------|-----------------|---|
|       |               |                |             |               |                 |   |

| D0     | The maximum powered state. All PCI/ SD Card/ Multi Media Card/ Memory Stick/ xD Picture Card transactions are acceptable.                                                                                                                                                                                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D1     | Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK, MMCCLK and MSCCLK are output.                                                                                                                                                                                                                                                                                                      |
| D2     | Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK, MMCCLK and MSCCLK are output.                                                                                                                                                                                                                                                                                                      |
| D3hot  | Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK, MMCCLK and MSCCLK are stopped compulsorily. When the function is brought back to the D0 state, the reset is automatically performed regardless of the assertion of PCIRST#.                                                                                                                                                        |
| D3cold | In addition to the conditions of the D3hot state, VCC_RIN, VCC_3V and VCC_MD3V are shifted to the auxiliary power source. The R5C832 supports power management events from D3cold with the auxiliary power source. The R5C832 can generate PME# even in D3cold state without PCI clock if the event source is SD Card Detect Change or Multi Media Card Detect Change or Memory Stick Detect Change or xD Picture Card Detect Change. |

# 4.7 GPIO

UDIO1, 2, 3 and 4 pins work as GPIO (General Purpose I/O) pins when GPIO Enable bit of the Global Misc Control 1 register (C4h bit31) is set to "1" on Serialized IRQ mode (default) or on UDIO\_Select mode of the Global Misc Control 1 register. When GPIO Enable bit is set to "0", GPIO outputs are Hi-Z and GPIO inputs are disabled. Users can change the characteristics of the GPIO pins to either Input or Output by setting the General Purpose I/O 1 register of the Config register space (C8h). When GPIO Enable bit is set to "1", setting of GPIO is input mode (default). And it is possible to read the states of their pins through each bit of the GPIO register. On Output mode, the written states of each bit are output. If GPIO functions are not used on Serialized IRQ mode, no pull-up is required.

# 4.8 Subsystem ID, Subsystem Vendor ID

The R5C832 supports Subsystem ID and Subsystem Vendor ID to meet PC98/99/2001 Design Requirements. There are three ways to write into the Subsystem ID and the Subsystem Vendor ID registers from the system through BIOS.

- Write Enable bit (1394: bit4 in the 1394 Misc Control 2, SD: bit0 in the Key, MMC: bit0 in the Key, Memory Stick: bit0 in the Key, xD Picture Card: bit0 in the Key) control method. The BIOS can turn this bit on, change the Subsystem IDs, and turn it off.
- 2. Copy of the Subsystem ID and the Subsystem Vendor ID in PCI user defined space method. 1394/SD/MMC/MS/xD: ACh, AEh
- Load the Subsystem IDs from the Serial ROM method. Connecting UDIO5 to pull-down enables to use the Serial ROM. The R5C832 has the Serial ROM interface, and load the Subsystem ID and the Subsystem Vendor ID after PCI reset disabled.

These registers are initialized only by GBRST#.

# 4.9 Power Up/Down Sequence

Follow the sequence when the power sequence is ON/OFF.

- \* When the power sequence is ON:
  - 1. Supply power to VCC\_ RIN.
  - 2. Supply power to VCC\_3V, VCC\_MD3V and AVCC\_PHY3V.
  - 3. Supply power to VCC\_PCI3V.
- \* When the power sequence is OFF:
  - 1. Stop supplying power to VCC\_PCI3V.
  - 2. Stop supplying power to VCC\_3V, VCC\_MD3V and AVCC\_PHY3V.
  - 3. Stop supplying power to VCC\_RIN.

When the power sequence is on, sustain to timing of Global Reset (Chapter 5.3.3) in regards to the control of HWSPND# and GBRST#. GBRST# must be specially asserted on the power supply to AVCC\_PHY3V, because the only GBRST# enables to initialize the Cable interface block. The rising of VCC\_PCI3V should be within HWSPND# asserted time. When the power sequence is off, www.DataSheet4U.cothe special limit for Delay Time is none.

The R5C832 can operate the PHY as Repeater. Follow the power sequence when the R5C832 operates PHY as Repeater without providing VCC\_PCI3V.

- \* When the power sequence is ON:
  - 1. Supply power to VCC RIN.
  - 2. Supply power to VCC\_3V, VCC\_MD3V, and AVCC\_PHY3V.
- \* When the power sequence is OFF:
  - 1. Stop supplying power to VCC 3V, VCC MD3V, and AVCC PHY3V.
  - 2. Stop supplying power to VCC\_RIN.

In this case also, the special limit for delay time is none when the power sequence is off. Note the following.

- a. Asserting GBRST# enables to supply power to AVCC\_PHY3V, because the only GBRST# enables to initialize Cable interface. Also, sustain the delay time shown in the chapter 5.3.3 on use of GBRST#.
- b. HWSPND# is always set to 'Low'.

# 4.10 1394 OHCI

The 1394 OHCI block in the R5C832 employs DMA engines for high-performance data transfer, host bus interface and FIFO. The R5C832 supports two types of data transfer: asynchronous and isochronous. Prefer to the 1394 OHCI release 1.1/1.0 specifications for settings and procedures of the controller.

#### 4.10.1 Asynchronous Functions

The R5C832 supports all of transmission and reception defined in 1394 packet formats. Transmitted packets are read out of host memory and received packets are written into host memory, both using DMA. And the R5C832 can be programmed as a bus bridge between the host bus and the 1394 interface by the direct execution of the 1394 read/write requests to the host bus memory space.

# 4.10.2 Isochronous Functions

The R5C832 includes the cycle master function as defined in the 1394 specification. The cycle start packet is transferred at intervals of 8KHz cycle clock. This cycle master uses the internal cycle clock. When the R5C832 is not the cycle master, the R5C832 can sustain its internal cycle timer sychronized with the cycle master node by correcting its own cycle timer with the reload value from the cycle start packet. The R5C832 supports each DMA controller for each isochronous transmit and isochronous receive. Each DMA controller supports 4 different DMA contexts.

# 4.10.3 DMA

The R5C832 supports seven types of DMA. Each type of DMA has register space and data stream referred to as a DMA context.

| DMA Туре                             | Number of Contexts        |
|--------------------------------------|---------------------------|
| Asynchronous Transmit                | Request x 1, Response x 1 |
| Asynchronous Receive                 | Request x 1, Response x 1 |
| Isochronous Transmit                 | X 4                       |
| Isochronous Receive                  | X 4                       |
| Self-ID Receive                      | X 1                       |
| Physical Request & Physical Response | No Context                |

w.DataSheet4U.com

Each asynchronous and isochronous context is composed of buffer descriptor lists called a DMA context program, which is stored in main memory. The DMA controller finds the necessary data buffers through the DMA context programs.

The Self-ID receive controller is controlled not by the DMA context program but by the two other registers. The R5C832 supports the Physical Request DMA and the Physical Response DMA controllers in order to transmit the receive request, which is to read and write directly to the bus memory space. These controllers are also controlled not by the DMA context program but by the other reserved register.

# 4.10.4 LINK

The Link module sends packets which appear at the transmit FIFO interfaces to the PHY, and places correctly addressed packets into the receive FIFO. The features are as follows.

- Transmits and receives correctly formatted 1394 serial bus packets.
- Generates the appropriate acknowledge for all received asynchronous packets.
- Performs the cycle master function.
- Generates and checks 32-bit CRC.
- Detects missing cycle start packets.
- Interfaces to PHY.
- Receives isochronous packets at all times (Supports of asynchronous streams and cycle start packets including a CRC error).
- Ignores asynchronous packets received during the isochronous phase.

# 4.11 SD Card Interface

The R5C832 has one port of SD Card interface, consists of four serial data lines, one serial command line, card detection, write protection and SD clock.

# 4.11.1 Protocol

After the SD Card interface block in the R5C832 is initialized, the R5C832 outputs the data through the serial SDCMD signal by the host's command (Writing into the SD\_CMD register), and the SD Card's response to the command is inputted to the SDCMD signal. The contents of this card's response are stored into the SD\_RSP register. The SD Card is initialized after the SD Card interface block checked CRC, etc. After that, the data is transmitted between the R5C832 and the SD Card through the data lines. When the data is written into the SD memory card, the host writes the divided data (default 512byte) into the SD buffer of SD interface block, and the R5C832 transmits the serialized data from the SDDAT [3:0] of SD Interface block.

Conversely, when the data is read from the SD memory card, the SD Card writes the divided data (default 512byte) into the SDDAT [3:0] of SD interface block after initialization of the SD Card by the command response signal.

#### ww.DataSheet4U.com

# 4.12 Multi Media Card Interface

The R5C832 has one port of Multi Media Card interface, consists of one serial data line, one serial command line, card detection and MMC clock.

# 4.12.1 Protocol

After the Multi Media Card interface block in the R5C832 is initialized, the R5C832 outputs the data through the serial MMCCMD signal by the host's command (Writing into the MMC\_CMD register), and the Multi Media Card's response to the command is input to the MMCCMD signal. The contents of this card's response are stored into the MMC\_RSP register. The Multi Media Card is initialized after the Multi Media Card interface block checked CRC, etc. After that, the data is transmitted between the R5C832 and the Multi Media Card through the data lines. When the data is written into the Multi Media Card, the host writes the divided data (default 512byte) into the MMC buffer of Multi Media Card Interface block. Conversely, when the data is read from the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card writes the divided data (default 512byte) into the MMCDAT of Multi Media Card interface block after initialization of the Multi Media Card by the command response signal.

# 4.13 Memory Stick Interface

The R5C832 has one port of Memory Stick interface, consists of four serial data lines, one bus state line, card detection and MS clock.

# 4.13.1 Protocol

The Memory Stick interface block accesses to the Memory Stick registers and the Page Buffer by the Transfer Protocol Command (TPC) in compliance with the host. The R5C832 checks transmission of data between the Page Buffer in the Memory Stick and the Flash Memory and a status after accepting INT signal of the Memory Stick. After that, the R5C832 starts to read / write / erase the data.

# 4.14 xD Picture Card Interface

The R5C832 has one port of xD Picture Card interface, consists of eight serial data lines, seven control signals and card detection.

# 4.14.1 Protocol

The R5C832 accesses to the xD Picture Card through the 32-bit Data port register. Writing to the Data port register can transfer address, command and data to the xD Picture Card. The data transfer to the xD Picture Card enables in units of 8-bit, 16-bit or 32-bit. On the 16-bit or 32-bit access, the R5C832 can access to the xD Picture Card by increments of 8-bit unit automatically. Note that only lower 1byte works when write of address and command data.

# 4.15 Serial ROM Interface

The R5C832 can load data for Subsystem ID, Subsystem Vendor ID (the PCI Interface) and some PCI configuration registers default value from the Serial ROM (I<sup>2</sup>C BUS). After that, the R5C832 can set them to each register automatically.

#### 4.15.1 Outline

The R5C832 supports 100k mode and 7-bit address, and automatically stores the data (See Chapter 4.15.3) from the Serial ROM when the first PCI Reset is deasserted after deassertion of the GBRST#.

#### www.DataShe 4.15.2 User's Setting

Connecting the UDIO5 pin to a pull-down resistor of  $100k\Omega$  enables the use of the Serial ROM. When the first PCI Reset is deasserted, the R5C832 starts to sample UDIO5 pin. When UDIO5 pin is connected to a pull-down resistor of  $100k\Omega$ , the R5C832 attempts to load data through the Serial ROM. In this case, UDIO3 is reassigned to SCL (the clock signal) and UDIO4 is reassigned to SDA (the data signal). The SDA and the SCL must be connected to VCC\_3V through pull-up resistors of  $100k\Omega$ . When the UDIO5 pin is connected to VCC\_3V through a pull-up resistor of  $100k\Omega$ , the R5C832 does not load data through the Serial ROM. See the Global Misc Control 1 register for setting of UDIO3 and UDIO4.



# 4.15.3 Format

The R5C832 starts accesses to the Serial ROM by detecting a pull-down of the UDIO5 when the first PCI Reset is deasserted after deassertion of the GBRST#. The accessed data is stored to each register as follows. The retry states don't allow PCI's slave access during accesses to the Serial ROM. Each parts register of 1394 OHCI-LINK Configuration Space, 1394 OHCI Registers Space, SD Card Configuration Space, Multi Media Card Configuration Space, Memory Stick Configuration Space and xD Picture Card Configuration Space.

# 4.15.3.1 1394OHCI-LINK Configuration Space

|              | Address | Bit7          | Bit6     | Bit5        | Bit4        | Bit3               | Bit2      | Bit1       | Bit0      |  |  |
|--------------|---------|---------------|----------|-------------|-------------|--------------------|-----------|------------|-----------|--|--|
|              | 00h     |               | •        |             | Subsystem V | Vendor ID[7:0]     |           |            |           |  |  |
|              | 01h     |               |          |             | Subsystem V | endor ID[15:8]     |           |            |           |  |  |
|              | 02h     |               |          |             | Subsyste    | em ID[7:0]         |           |            |           |  |  |
|              | 03h     |               |          | -           | Subsyste    | m ID[15:8]         |           |            |           |  |  |
|              | 04h     | LEDTX[1]      | LEDTX[0] | LEDRX[1]    | LEDRX[0]    | -                  | -         | -          | -         |  |  |
| DeteCheet    | 05h     | OHCI10        | -        | -           | -           | -                  | -         | -          | -         |  |  |
| ww.DataSheet | 06h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 07h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 08h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 09h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Ah     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Bh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Ch     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Dh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Eh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 0Fh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 10h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 11h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 12h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 13h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 14h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 15h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 16h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 17h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 18h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 19h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 1Ah     |               |          |             |             | -                  |           |            |           |  |  |
|              | 1Bh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 1Ch     | D2Phyl        | PM[1:0]  | D2ForcePM   | D3Phy       | /PM[1:0]           | D3ForcePM | CPSDis     | CPSFixVal |  |  |
|              | 1Dh     | CMC<br>Shadow | Р        | rwCShadow[2 | ::0]        | P0Dis<br>Shadow    | -         | -          | -         |  |  |
|              | 1Eh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 1Fh     |               |          |             |             | -                  |           |            |           |  |  |
|              | 20h     |               | -        |             | SIDWREN     | PMbit15<br>WrEn    | -         | -          | INTXSel   |  |  |
|              | 21h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 22h     |               | -        |             | -           | 1394LED<br>toLED0# | LEDDurati | onSel[1:0] | -         |  |  |
|              | 23h     |               |          |             |             | -                  |           |            |           |  |  |
|              | 24h     |               | Max Late | ency[3:0]   |             |                    | Min Gra   | nt[3:0]    |           |  |  |
|              | 25h     | -             | -        | -           | -           | -                  | -         | -          | -         |  |  |

# 4.15.3.2 1394 OHCI Register

| Address  | Bit7                       | Bit6                         | Bit5 | Bit4          | Bit3           | Bit2 | Bit1 | Bit0 |
|----------|----------------------------|------------------------------|------|---------------|----------------|------|------|------|
| 26h      | ProgPhyEn                  | aPhy<br>EnhanceEn            | -    | -             | -              | -    | -    | -    |
| 27h      |                            |                              |      | MiniROM A     | ddress[7:0]    |      |      |      |
| 28h      |                            |                              |      | Config ROM    | Header[7:0]    |      |      |      |
| 29h      |                            |                              |      | Config ROM    | Header[15:8]   |      |      |      |
| 2Ah      |                            |                              |      | Config ROM I  | Header[23:16]  |      |      |      |
| 2Bh      |                            |                              |      | Config ROM I  | Header[31:24]  |      |      |      |
| 2Ch      |                            | Bus Option[7:0]              |      |               |                |      |      |      |
| 2Dh      |                            | Bus Option[15:8]             |      |               |                |      |      |      |
| 2Eh      |                            |                              |      | Bus Option    | on[23:16]      |      |      |      |
| 2Fh      |                            |                              |      | Bus Option    | on[31:24]      |      |      |      |
| 30h      |                            |                              |      | Global Unique | e ID High[7:0] |      |      |      |
| 31h      |                            |                              |      | Global Unique | ID High[15:8]  |      |      |      |
| 32h      |                            |                              |      | Global Unique | ID High[23:16] |      |      |      |
| 33h      |                            | Global Unique ID High[31:24] |      |               |                |      |      |      |
| et_34hco | Global Unique ID Low[7:0]  |                              |      |               |                |      |      |      |
| 35h      | Global Unique ID Low[15:8] |                              |      |               |                |      |      |      |
| 36h      |                            | Global Unique ID Low[23:16]  |      |               |                |      |      |      |
| 37h      |                            | Global Unique ID Low[31:24]  |      |               |                |      |      |      |

# 4.15.3.3 SD Card Configuration Space

| Address | Bit7                     | Bit6          | Bit5          | Bit4              | Bit3              | Bit2             | Bit1        | Bit0         |  |
|---------|--------------------------|---------------|---------------|-------------------|-------------------|------------------|-------------|--------------|--|
| 38h     | -                        | -             | -             | -                 | -                 | LED Control[2:0] |             |              |  |
| 39h     |                          |               | Class Code[7: | 0](specific regis | ter-level program | iming interface) |             |              |  |
| 3Ah     |                          |               | (             | Class Code[15:    | 8](sub-class code | e)               |             |              |  |
| 3Bh     |                          |               | С             | lass Code[23:1    | 6](base class coo | le)              |             |              |  |
| 3Ch     |                          |               |               | Subsystem '       | Vendor ID[7:0]    |                  |             |              |  |
| 3Dh     |                          |               |               | Subsystem \       | /endor ID[15:8]   |                  |             |              |  |
| 3Eh     |                          |               |               | Subsyst           | em ID[7:0]        |                  |             |              |  |
| 3Fh     |                          |               |               | Subsyste          | em ID[15:8]       |                  |             |              |  |
| 40h     | -                        | -             | Timeout Cloo  | ck Select{1:0}    | -                 | -                | CLKSele     | ection[1:0]  |  |
| 41h     | -                        | -             | -             | -                 | -                 | PMETrgDis        | PMETrgDis   | PMETrgDis    |  |
|         |                          |               |               |                   |                   | (Card            | (Card       | (Card        |  |
|         |                          |               |               |                   |                   | Removed by       | Inserted by | Interrupt by |  |
|         |                          | SDCD#) SDCD#) |               |                   | SDCDAT1)          |                  |             |              |  |
| 42h     |                          | Card Detect ( | Counter[3:0]  |                   | -                 | -                | Card Dete   | ct Mode[1:0] |  |
| 43h     | -                        | -             | -             | -                 | -                 | -                | -           | Counter cut  |  |
| 44h     | -                        | SDLED         | -             | -                 | -                 | -                | -           | -            |  |
|         |                          | toLED0#       |               |                   |                   |                  |             |              |  |
| 45h     |                          |               |               | Write En          | able 0xFC         |                  |             |              |  |
| 46h     | -                        | -             | SDWPPol       | -                 | -                 | -                | CLKRUNDis,  | SDPWRPol     |  |
| 47h     | -                        | -             | LEDDurat      | ionSel[1:0]       | -                 | -                | INTSEL      | -            |  |
| 48h     |                          |               |               | Capab             | ility0[7:0]       |                  |             |              |  |
| 49h     |                          |               |               | Capabi            | lity0[15:8]       |                  |             |              |  |
| 4Ah     |                          |               |               | Capab             | ility1[7:0]       |                  |             |              |  |
| 4Bh     | Capability1[15:8]        |               |               |                   |                   |                  |             |              |  |
| 4Ch     | Maximum Current for 3.3V |               |               |                   |                   |                  |             |              |  |
| 4Dh     |                          |               |               | Maximum C         | urrent for 3.0V   |                  |             |              |  |
| 4Eh     |                          |               |               | Maximum C         | urrent for 1.8V   |                  |             |              |  |
| 4Fh     |                          | -             |               |                   |                   |                  |             |              |  |

| Address    | Bit7       | Bit6          | Bit5           | Bit4               | Bit3                                        | Bit2                | Bit1        | Bit0        |  |  |
|------------|------------|---------------|----------------|--------------------|---------------------------------------------|---------------------|-------------|-------------|--|--|
| 50h        |            |               |                | -                  | -                                           | - LED Control[2:0]  |             |             |  |  |
| 51h        |            |               | Class Code[7:0 | )](specific regist | er-level programming interface)             |                     |             |             |  |  |
| 52h        |            |               | (              | Class Code[15:8    | ](sub-class code                            | e)                  |             |             |  |  |
| 53h        |            |               | CI             | ass Code[23:16     | 6](base class cod                           | le)                 |             |             |  |  |
| 54h        |            |               |                | Subsystem \        | /endor ID[7:0]                              |                     |             |             |  |  |
| 55h        |            |               |                | Subsystem V        | endor ID[15:8]                              |                     |             |             |  |  |
| 56h        |            |               |                | Subsyste           | em ID[7:0]                                  |                     |             |             |  |  |
| 57h        |            |               |                | Subsyste           | m ID[15:8]                                  |                     |             |             |  |  |
| 58h        | -          | -             | Timeout Cloo   | k Select{1:0}      | -                                           | -                   | CLKSele     | ection[1:0] |  |  |
| 59h        | -          | -             | -              | -                  | -                                           | PMETrgDis           | PMETrgDis   | -           |  |  |
|            |            |               |                |                    |                                             | (Card               | (Card       |             |  |  |
|            |            |               |                |                    |                                             | Removed by          | Inserted by |             |  |  |
|            |            |               |                |                    |                                             | MMCCD#)             | MMCCD#)     |             |  |  |
| 5Ah        |            | Card Detect ( | Counter[3:0]   |                    | -                                           | - Card Detect Mode[ |             |             |  |  |
| 5Bh        | -          | -             | -              | -                  | -                                           | -                   | -           | Counter cut |  |  |
| 5Ch        | -          | MMCLED        | -              | -                  | -                                           | -                   |             |             |  |  |
|            |            | toLED0#       |                |                    |                                             |                     |             |             |  |  |
| ieet45DhCC | m          |               |                | Write En           | able 0xFC                                   |                     |             |             |  |  |
| 5Eh        | -          | -             | -              | -                  | -                                           | -                   | CLKRUNDis,  | MMCPWRPol   |  |  |
| 5Fh        | -          | -             | LEDDurati      | onSel[1:0]         | -                                           | -                   | INTSEL      | -           |  |  |
| 60h        |            |               |                |                    | -                                           |                     |             |             |  |  |
| 61h        |            |               |                |                    | -                                           |                     |             |             |  |  |
| 62h        |            |               |                | -                  | -                                           |                     |             | -           |  |  |
| 63h        | XD Disable |               |                |                    | SD Disable                                  | 1394 Disable        | MMC Disable | SDMMC_      |  |  |
|            |            |               |                | Mo_bloable         | SD_Disable 1394_Disable MINC_Disable Enable |                     |             |             |  |  |
| 64h        |            | UDI           | 01             |                    | UDIO0                                       |                     |             |             |  |  |
| 65h        |            | UDI           | 03             |                    |                                             | UD                  | 102         |             |  |  |
| 66h        |            | UDI           | 05             |                    | UDIO4                                       |                     |             |             |  |  |

# 4.15.3.4 Multi Media Card Configuration Space

# 4.15.3.5 Memory Stick Configuration Space

-

SIRQEN

GPIOEN

67h

| Address | Bit7                     | Bit6    | Bit5      | Bit4        | Bit3            | Bit2  | Bit1        | Bit0         |
|---------|--------------------------|---------|-----------|-------------|-----------------|-------|-------------|--------------|
| 68h     | Counter cut              | -       | -         | -           | -               | -     | Card Dete   | ct Mode[1:0] |
| 69h     | -                        | -       | -         | -           | -               | -     | CLK sele    | ection[1:0]  |
| 6Ah     | -                        | -       | -         | -           | -               | -     | PMETrgIn    | PMETrgRM     |
|         |                          |         |           |             |                 |       | (Card       | (Card        |
|         |                          |         |           |             |                 |       | Inserted by | Removed by   |
|         |                          |         |           |             |                 |       | MSCD#)      | MSCD#)       |
| 6Bh     | -                        |         |           |             |                 |       |             |              |
| 6Ch     | Subsystem Vendor ID[7:0] |         |           |             |                 |       |             |              |
| 6Dh     |                          |         |           | Subsystem V | /endor ID[15:8] |       |             |              |
| 6Eh     |                          |         |           | Subsyste    | em ID[7:0]      |       |             |              |
| 6Fh     |                          |         |           | Subsyste    | m ID[15:8]      |       |             |              |
| 70h     | -                        | MSLED   | -         | -           | -               | -     | -           | -            |
|         |                          | toLED0# |           |             |                 |       |             |              |
| 71h     |                          |         |           | Write En    | able 0xFD       |       |             |              |
| 72h     | -                        | -       | -         | -           | -               | -     | CLKRUNDis,  | MSPWRPol     |
| 73h     | -                        | -       | LEDDurati | ionSel[1:0] | -               | INTSE | EL[1:0]     | -            |

\_

-

| 4.15.3.0 | xD Ficture  | Caru Conng | juration Sp       | ace         |                 |               |               |              |
|----------|-------------|------------|-------------------|-------------|-----------------|---------------|---------------|--------------|
| Address  | Bit7        | Bit6       | Bit5              | Bit4        | Bit3            | Bit2          | Bit1          | Bit0         |
| 74h      |             |            |                   | Subsystem   | Vendor ID[7:0]  |               |               |              |
| 75h      |             |            |                   | Subsystem V | Vendor ID[15:8] |               |               |              |
| 76h      |             |            |                   | Subsys      | tem ID[7:0]     |               |               |              |
| 77h      |             |            |                   | Subsyste    | em ID[15:8]     |               |               |              |
| 78h      | -           | XDLED      | -                 | -           | -               | -             | -             | -            |
|          |             | toLED0#    |                   |             |                 |               |               |              |
| 79h      |             |            | Write Enable 0xFD |             |                 |               |               |              |
| 7Ah      | -           | -          | -                 | -           | -               | -             | CLKRUNDis,    | XDPWRPol     |
| 7Bh      | -           | -          | LEDDurati         | ionSel[1:0] | -               | INTSEL[1:0] - |               |              |
| 7Ch      | Counter cut | -          | -                 | -           | -               | -             | Card Dete     | ct Mode[1:0] |
| 7Dh      | -           | -          | -                 | -           | -               | -             | CLK selection | -            |
| 7Eh      | -           | -          | -                 | -           | -               | -             | PMETrgIn      | PMETrgRM     |
|          |             |            |                   |             |                 |               | (Card         | (Card        |
|          |             |            |                   |             |                 |               | Inserted by   | Removed by   |
|          |             |            |                   |             |                 |               | XDCD#)        | XDCD#)       |

# 4.15.3.6 xD Picture Card Configuration Space

ww.DataSheet4U.com

# 4.16 LED# Output

The R5C832 can output the activity signals of the 1394OHCI, the SD Card, the Multi Media Card, the Memory Stick and the xD PictureCard, as LED0#. The R5C832 uses UDIO0 pin as LED0#. See the Global Misc Control 1 register for the use of this pin. The default of the LED signal is 'Low' active. But, setting the LED Polarity bit of the Global Misc Control 1 register (C4h bit30) to "1b" enables to set the LED signal to 'high' active. This bit is common to the 1394 OHCI, the SD Card, the Multi Media Card, the Memory Stick and the xD Picture Card.

The LED signal is asserted at the same time the trigger of its signal is asserted. And the internal counter works after the trigger is deasserted. In default, the LED signal is kept for 64msec after the deassertion of the trigger, and is deasserted. When the trigger is reasserted in operation of the counter, the counter is cleared and restarted to count up at the same time the deassertion of the LED signal. See the below chart.



The LED Output Duration is selected from among 64msec(default), 1msec and No Duration time (through the trigger). The card and the 1394 have the different registers for selecting each other (See the following). The trigger signals for them also are different.

The R5C832 uses a counter operating PCLK for the LED Output Duration and therefore a stop request of PCLK by the CLKRUN protocol is refused in operation of the counter. When PCLK must be stopped for 64msec on system, modify the LED Output Duration.

LED0#: 1394 LED# + SD LED# + Multi Media Card LED# + Memory Stick LED# + xD LED#

# 4.16.1 1394 LED

The 1394 LED signal indicates the condition of the IEEE1394 interface block in the R5C832. This signal is asserted when the R5C832 is on transmission/reception.

Bit 2 and bit 1 of the Config (Func.0) 9Eh register can set the counter's duration.

| bit 2 1 | the LED Output Duration    |
|---------|----------------------------|
| 0 0     | 64 msec (default)          |
| 1 1     | 1 msec                     |
| 1 0     | No Duration Time (through) |
| 0 1     | Test Mode(3.8µsec)         |

# 4.16.2 SD LED/MMC LED

The SD LED and the MMC LED signals indicate conditions of the SD Card interface and the Multi Media Card interface in the R5C832. This signal is asserted when the R5C832 is on the transmission, the reception and the debounce duration of the card detection. Bit 29 and bit 28 of the www.DataSheet4U.coConfig (SD: Func.1, MMC: Func.2) F8h register can set the counter's duration.

| bit 29 28 | the LED Output Duration    |
|-----------|----------------------------|
| 0 0       | 64 msec (default)          |
| 1 1       | 1 msec                     |
| 1 0       | No Duration Time (through) |
| 0 1       | Test Mode (3.8µsec)        |
|           |                            |

# 4.16.3 MS LED/xD LED

The MS LED and the xD LED signals indicate conditions of the Memory Stick interface and the xD Picture Card interface in the R5C832. This signal is asserted when the R5C832 is on the transmission and the reception. Bit 29 and bit 28 of the Config (MS: Func.3, xD: Func.4) F8h register can set the counter's duration.

| _ | bit 29 28 | the LED Output Duration    |
|---|-----------|----------------------------|
|   | 0 0       | 64 msec (default)          |
|   | 1 1       | 1 msec                     |
|   | 1 0       | No Duration Time (through) |
|   | 0 1       | Test Mode (3.8µsec)        |
|   |           |                            |

# 4.16.4 LED Output Selection

Outputs to LED0# can be controlled by setting configuration registers. The LED for the 1394 is output by setting Config (Func.0) 9Eh bit3, the LED for the SD Card is output by setting Config (Func.1) F8h bit 6, the LED for the Multi Media Card is output by setting Config (Func.2) F8h bit6, the LED for the Memory Stick is output by setting Config (Func.3) F8h bit6, and the LED for the xD Picture Card is output by setting Config (Func.4) F8h bit6.

# 4.17 1394 Cable Interface

The R5C832 builds in 1 port of 1394 Cable interface that supports the transmission speed of 400/200/100Mbps compliant with the IEEE1394a-2000 standard.

# 4.17.1 Cable Interface Circuit



<sup>\*</sup> means a port number in this figure. (Example: TPBIAS\*→TPBIAS0 or TPBIAS1)

The port consists of two twist-pairs; TPA and TPB. The TPA and the TPB are used in order to monitor transmission/reception of a control signal (Arbitration signal) and data, and the state of a cable line (the insert of a cable).

It is necessary for the TPA and the TPB to be connected to a termination of  $55\Omega$  resistances according to the cable impedance. This termination resistance should be arranged near the R5C832. On TPA side, TPBIAS should be placed to the center node of the termination resistance in order to set up a cable's common-mode DC potential. A capacitor of  $0.33\mu$ F for decoupling should be connected to the TPBIAS. On TPB side, a termination of  $5.1k\Omega$  and a capacitor of  $270\rho$ F should be connected to between the center node of the termination resistance and AGND. See the application manual for the substrate layout.

# 4.17.2 Transaction of Unused Ports

On no use of ports, TPBP\* and TPBN\* are directly connected to AGND, and TPAP\*, TPAN\* and TPBIAS\* are OPEN. After that, set Port Disable bit of the 1394 PHY Register. The PHY Shadow register in the 1394 Configuration registers space also can set the Port disable bit. See the Read/Write of the 1394PHY register (Ch. 4.17.4).

#### 4.17.3 CPS (Cable Power State)

The R5C832 does not support the CPS detect circuit.

#### 4.17.4 Read/Write of 1394 PHY Registers

The R5C832 builds in the 1394 PHY registers compliant with IEEE 1394-1995 and IEEE1394a-2000 standard. Refer to the 1394PHY Registers for details. Access to these registers is enabled by the PHY Control register of the 1394 OHCI Registers, and offsetting [31-11] bits of the 1394 OHCI Register Base Address (10h) in the 1394 Configuration register space enables access to the PHY Control register (0ECh).

# w w w . D a t a S h access to the PHY Control register (0ECh).

The data of 1394 PHY register is the little endian description. On access of the PHY Control register, the R5C832 converts the data from a little endian to a big endian. So the data is dealt only in a row without the bit number of data.

| PHY Register |    |    |    |    |    |    |    |    |
|--------------|----|----|----|----|----|----|----|----|
|              | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
| PHY Control  | ▼  |    | -  |    |    |    |    | ♦  |
| rdData       | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|              |    |    |    |    |    |    |    |    |
| wrData       | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |

For example, when 53h is written in wrData of the PHY Control register (bit 6, 4, 1, and 0 are set to "1"), 53h is written in the PHY Register as they are (bit 1, 3, 6, and 7 are set to "1"). Access to Contender bit, Power\_class field, and Disable bit for Port0/Port1 in the 1394 PHY register is enabled through the PHY Shadow register (99h) in the 1394 configuration register space. Refer to the PHY Shadow register in the Registers Description for details.

#### 4.17.5 Clock Circuit

The PHY block of the R5C832 requires 24.576MHz of clock frequency.





| Recommended Conditions<br>Crystal Oscillator                                                                                                                           |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Normal Frequency                                                                                                                                                       | : 24.576MHz                                                                                                                    |
| Frequency Tolerance                                                                                                                                                    | : ±50ppm(at 25°C)                                                                                                              |
| Temperature stability<br>Operating Temperature Range<br>Load Capacitance<br>Driver Level<br>Equivalent Series Resistance<br>Insulation resistance<br>Shunt Capacitance | : ±50ppm(reference to 25°C)<br>: -20~70°C<br>: 10pF<br>: 0.1mW<br>: 50ohm Max<br>: 500M ohm Min (at DC100V±15V)<br>: 7.0pF Max |
| External Clock Driver<br>Normal Frequency<br>Frequency Tolerance                                                                                                       | : 24.576MHz<br>: ±50ppm(at 25°C)                                                                                               |

# 4.17.6 PLL

ww.DataSheet4U.com

The PHY block of the R5C832 produces 393.216MHz of the internal clock that is 16 times as long as the 24.576MHz produced by the internal PLL circuit. Setting the Sleep Mode of the PHY block can stop the PLL circuit. Refer to the Power Management (Ch. 4.6) for settings of the Sleep Mode.

PLL External Circuit



# 4.17.7 Reference Voltage Circuit and Reference Current Circuit

The PHY block of R5C832 supports terminals of the external parts for the Reference voltage circuit and the Reference current circuit. Each terminal should be connected to indicated capacitors and resistors.

Reference Voltage Circuit Reference Current Circuit R5C832
VREF 0.01uF MGND R5C832
REXT 10kohm ±1% AGND

# 4.18 Function's Selection

The R5C832 can make each function disable by UDIO3 and UDIO4, MSEN and XDEN. Setting UDIO3 to pull-down disables the SD Card interface, setting UDIO4 to pull-down disables the Multi Media Card interface, setting MSEN to pull-down disables the Memory Stick interface, and setting XDEN to pull-down disables the xD Picture Card interface. Disabled function cannot detect the corresponding configuration register (Master Aborts). The function's selection is shown below. When using the Serial ROM, set the Global Function Disable register with the Serial ROM, because UDIO3 and UIDO4 are set to pull-up.

|     | Function Set Pin   |           |           |           | Function Enable/Disable |         |         |         | Function No. |     |     |    |    |
|-----|--------------------|-----------|-----------|-----------|-------------------------|---------|---------|---------|--------------|-----|-----|----|----|
|     | UDIO3              | UDIO4     | MSEN      | XDEN      | SD                      | MMC     | MS      | хD      | 0            | 1   | 2   | 3  | 4  |
|     | Pull-up            | Pull-up   | Pull-up   | Pull-up   | Enable                  | Enable  | Enable  | Enable  | 1394         | SD  | MMC | MS | хD |
|     | Pull-down          | Pull-up   | Pull-up   | Pull-up   | Disable                 | Enable  | Enable  | Enable  | 1394         | MMC | MS  | хD | I  |
|     | Pull-up            | Pull-down | Pull-up   | Pull-up   | Enable                  | Disable | Enable  | Enable  | 1394         | SD  | MS  | хD | 1  |
|     | Pull-down          | Pull-down | Pull-up   | Pull-up   | Disable                 | Disable | Enable  | Enable  | 1394         | MS  | хD  | I  | I  |
| J.a | ⊖r <b>₽</b> ull-up | Pull-up   | Pull-down | Pull-up   | Enable                  | Enable  | Disable | Enable  | 1394         | SD  | MMC | хD | 1  |
|     | Pull-down          | Pull-up   | Pull-down | Pull-up   | Disable                 | Enable  | Disable | Enable  | 1394         | MMC | хD  | I  | I  |
|     | Pull-up            | Pull-down | Pull-down | Pull-up   | Enable                  | Disable | Disable | Enable  | 1394         | SD  | хD  | I  | I  |
|     | Pull-down          | Pull-down | Pull-down | Pull-up   | Disable                 | Disable | Disable | Enable  | 1394         | хD  | -   | I  | I  |
|     | Pull-up            | Pull-up   | Pull-up   | Pull-down | Enable                  | Enable  | Enable  | Disable | 1394         | SD  | MMC | MS | I  |
|     | Pull-down          | Pull-up   | Pull-up   | Pull-down | Disable                 | Enable  | Enable  | Disable | 1394         | MMC | MS  | -  | -  |
|     | Pull-up            | Pull-down | Pull-up   | Pull-down | Enable                  | Disable | Enable  | Disable | 1394         | SD  | MS  | -  | I  |
|     | Pull-down          | Pull-down | Pull-up   | Pull-down | Disable                 | Disable | Enable  | Disable | 1394         | MS  | -   | -  | 1  |
|     | Pull-up            | Pull-up   | Pull-down | Pull-down | Enable                  | Enable  | Disable | Disable | 1394         | SD  | MMC | -  | I  |
|     | Pull-down          | Pull-up   | Pull-down | Pull-down | Disable                 | Enable  | Disable | Disable | 1394         | MMC | -   | -  | 1  |
|     | Pull-up            | Pull-down | Pull-down | Pull-down | Enable                  | Disable | Disable | Disable | 1394         | SD  | -   | -  | -  |
|     | Pull-down          | Pull-down | Pull-down | Pull-down | Disable                 | Disable | Disable | Disable | 1394         | -   | _   | -  | -  |

# 4.19 Internal Regulator

The R5C832 has an internal regulator, which converts the single 3.3V power into the power for the internal core logic. The following is the recommended circuit diagram.



# **5** ELECTRICAL CHARACTERISTICS

# 5.1 Absolute Maximum Rating

| Symbol | Parameter                      | Range          | Unit | Condition          | Note |
|--------|--------------------------------|----------------|------|--------------------|------|
|        |                                |                |      |                    |      |
| Vcc    | Supply Voltage Range           | -0.3 ~ 4.6     | V    | GND=0V             | 1    |
| Vte    | Voltage on Any Pin             | -0.3 ~ VCC+0.3 | V    | GND=0V             |      |
| Topr   | Ambient Temperature under bias | -40 ~ 85       | °C   |                    |      |
| Tstg   | Storage Temperature Range      | -55 ~ 125      | °C   |                    |      |
| ESD1   | Human Body Model               | ±2.0           | kV   | C=100pF<br>R=1.5kΩ |      |
| ESD2   | Charged Device Model           | ±1.0           | kV   |                    |      |
| LATUP  | Latch-up                       | ±100           | mA   | 5ms                | 2    |

# www.DataSheet4U.com

Note 1: Applied for VCC\_RIN, VCC\_3V, VCC\_PCI3V and VCC\_MD3V and AVCC\_PHY3V. Note 2: The clamping voltage of the trigger pulse power source should be below a value of Vte.

Note: Stresses above those listed may cause permanent damage to system components. These are stress ratings only. Functional operation at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

# 5.2 DC Characteristics

# 5.2.1 Recommended Operating Conditions for Power Supply

| Power Pin  | Parameter                                               | Min | Тур | Max | Unit | Note |
|------------|---------------------------------------------------------|-----|-----|-----|------|------|
|            |                                                         |     |     |     |      |      |
| VCC_PCI3V  | Supply Voltage for PCI interface (3.3V Operation)       | 3.0 | 3.3 | 3.6 | V    |      |
| VCC_RIN    | Supply Voltage for Regulator                            | 3.0 | 3.3 | 3.6 | V    |      |
| VCC_3V     | Supply Voltage for System and<br>Card Interface Signals | 3.0 | 3.3 | 3.6 | V    |      |
| VCC_MD3V   | Supply Voltage for Media interface<br>block             | 3.0 | 3.3 | 3.6 | V    |      |
| AVCC_PHY3V | Supply Voltage for Cable interface<br>block             | 3.0 | 3.3 | 3.6 | V    |      |

# 5.2.2 PCI Interface

# For 3.3V signaling

# (VCC\_PCI3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter              | Min           | Max           | Unit | Test Condition      | Note |
|--------|------------------------|---------------|---------------|------|---------------------|------|
|        |                        |               |               |      |                     |      |
| VIH    | Input High Voltage     | 0.5xVCC_PCI3V | VCC_PCI3V+0.3 | V    |                     | 1    |
| VIL    | Input Low Voltage      | -0.3          | 0.3xVCC_PCI3V | V    |                     | 1    |
| VOH    | Output High Voltage    | 0.9xVCC_PCI3V |               | V    | lout=-500μA         | 1    |
| VOL    | Output Low Voltage     |               | 0.1xVCC_PCI3V | V    | lout=1500μA         | 1    |
| IILk   | Input Leakage Current  |               | ±10           | μA   | Vin=0~<br>VCC_PCI3V | 1    |
| Cin    | Input Pin Capacitance  |               | 10            | pF   |                     | 1    |
| Cclk   | PCICLK Pin Capacitance |               | 12            | pF   |                     | 1    |

www.DataSheet4U.com

Note 1: Applied for PCICLK, CLKRUN#, PCIRST#, AD[31:0], C/BE#[3:0], PAR, FRAME#, IRDY#, TRDY#,STOP#, DEVSEL#, IDSEL, PERR#, SERR#, REQ#, GNT#, INTA#, INTB# pins

# 5.2.3 System Interface Pins

# System Interface Pins

(VCC\_3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter                          | Min        | Тур | Мах        | Unit | Test Condition | Note |
|--------|------------------------------------|------------|-----|------------|------|----------------|------|
|        |                                    |            |     |            |      |                |      |
| VIH1   | Input High Voltage                 | 0.8xVCC_3V |     | VCC_3V+0.3 | V    |                | 2    |
| VIL1   | Input Low Voltage                  | -0.3       |     | 0.3xVCC_3V | V    |                | 2    |
| VIH3   | Input High Voltage                 | 2.4        |     | VCC_3V+0.3 | V    |                | 4    |
| VIL3   | Input Low Voltage                  | -0.3       |     | 0.8        | V    |                | 4    |
| VOH1   | Output High Voltage                | 2.4        |     |            | V    | lout=-4mA      | 3    |
| VOL1   | Output Low Voltage                 |            |     | 0.4        | V    | lout=4mA       | 3    |
| IILk   | Input Leakage Current              |            |     | ±10        | μA   | Vin=0~VCC_3V   | 4    |
| IIL1   | Input Leakage Current<br>(Pull-up) |            | -80 |            | μA   | Vin=0          | 2    |
| IOZ    | Hi-Z Output Leakage Current        |            |     | ±10        | μA   | Vout=0~VCC_3V  | 3    |

Note 2: Applied for MDIO00, MDIO01, MDIO03 pins Note 3: Applied for MDIO04, MDIO05, MDIO06 pins Note 4: Applied for GBRST#, HWSPND#, MDIO07 pins

# 5.2.4 Cable Interface

| Symbol  | Parameter                              | Min    | Max      | Unit | Test Condition                     | Note |
|---------|----------------------------------------|--------|----------|------|------------------------------------|------|
|         |                                        |        | <u>.</u> |      |                                    |      |
| VID     | Differential Input Voltage             | 118    | 260      | mV   | Cable input, during data reception | 5,6  |
| l       |                                        | 168    | 265      | mV   | Cable input, during arbitration    |      |
| VICM    | TpB Common Mode Input                  | 1.165  | 2.515    | V    | 100Mbps speed signaling off        | 6    |
|         | Voltage                                | 0.935  | 2.515    | V    | 200Mbps speed signaling            |      |
|         |                                        | 0.523  | 2.515    | V    | 400Mbps speed signaling            |      |
| VOD     | Differential Output Voltage            | 172    | 265      | mV   | Cable output, load 56 $\Omega$     | 5,6  |
| ICM     | TpA, TpB Common Mode<br>Output Current | -0.81  | 0.44     | mA   | Driver enable, speed signal off    | 5,6  |
| ISPD2   | TpB200Mbps Speed Signal                | -4.81  | -2.53    | mA   |                                    | 6    |
| nISPD4  | TpB400Mbps Speed Signal                | -12.40 | -8.10    | mA   |                                    | 6    |
| VTPBIAS | TpBias Output Voltage                  | 1.665  | 2.015    | V    |                                    | 7    |

# www.DataSheet4U.cor

| Note 5: | Applied for | TPAP0, TPAN0 pins |
|---------|-------------|-------------------|
| Note 6: | Applied for | TPBP0, TPBN0 pins |
| Note 7: | Applied for | TPBIAS0 pin       |

# 5.2.5 UDIO0-5 pins

#### For PCI 3.3V signaling (VCC 3V=3.0~3.6V. Ta=0~70°C)

| Symbol | Parameter                   | Min        | Мах        | Unit | Test Condition | Note |
|--------|-----------------------------|------------|------------|------|----------------|------|
|        |                             |            |            |      |                |      |
| VIH    | Input High Voltage          | 0.5xVCC_3V | VCC_3V     | V    |                | 9    |
|        |                             |            | +0.3       |      |                |      |
| VIL    | Input Low Voltage           | -0.3       | 0.3xVCC_3V | V    |                | 9    |
| IILK   | Input Leakage Current       |            | ±10        | μA   | Vin=0~VCC_3V   | 9    |
| VOH    | Output High Voltage         | 2.4        |            | V    | lout=-4mA      | 8    |
| VOL    | Output Low Voltage          |            | 0.4        | V    | lout=4mA       | 8    |
| IOZ    | Hi-Z Output Leakage Current |            | ±10        | μA   | Vout=0~VCC_3V  | 8    |

Note 8: Applied for UDIO1-5 pins Note 9: Applied for UDIO1-4 pins

# 5.2.6 SD Card Interface

| (VCC | MD3V=3 0~3 6V | $T_{a=0} \sim 70^{\circ}C$ |
|------|---------------|----------------------------|
|      |               | 10-0.010 01                |

| Symbol | Parameter                          | Min                | Тур | Max               | Unit | Test Condition      | Note  |
|--------|------------------------------------|--------------------|-----|-------------------|------|---------------------|-------|
|        |                                    |                    |     |                   |      |                     |       |
| VIH    | Input High Voltage                 | 0.625x<br>VCC_MD3V |     | VCC_MD3V<br>+0.3  | V    |                     | 10    |
| VIL    | Input Low Voltage                  | -0.3               |     | 0.25x<br>VCC_MD3V | V    |                     | 10    |
| VOH    | Output High Voltage                | 0.75x<br>VCC_MD3V  |     |                   | V    | lout=-100µA@3V      | 10,11 |
| VOL    | Output Low Voltage                 |                    |     | 0.125xVCC_MD3V    | V    | lout=100µA@3V       | 10,11 |
| IIL    | Input Leakage Current<br>(Pull-up) |                    | -80 |                   | μA   | Vin=0               | 10    |
| IOZ    | HI-Z Output Leakage<br>Current     |                    |     | ±10               | μA   | Vout=0~<br>VCC_MD3V | 11    |

www.DataSheet4U.com

Note 10: Applied forSDCDAT [3:0], SDCCMD pinsNote 11: Applied forSDCCLK pin

# 5.2.7 Multi Media Card Interface

# (VCC\_MD3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter                          | Min                | Тур | Max               | Unit | Test Condition      | Note  |
|--------|------------------------------------|--------------------|-----|-------------------|------|---------------------|-------|
|        |                                    |                    |     |                   |      |                     |       |
| VIH    | Input High Voltage                 | 0.625x<br>VCC_MD3V |     | VCC_MD3V<br>+0.3  | V    |                     | 12    |
| VIL    | Input Low Voltage                  | -0.3               |     | 0.25x<br>VCC_MD3V | V    |                     | 12    |
| VOH    | Output High Voltage                | 0.75x<br>VCC_MD3V  |     |                   | V    | lout=-100μA@3V      | 12,13 |
| VOL    | Output Low Voltage                 |                    |     | 0.125xVCC_MD3V    | V    | lout=100µA@3V       | 12,13 |
| IIL    | Input Leakage Current<br>(Pull-up) |                    | -80 |                   | μA   | Vin=0               | 12    |
| IOZ    | HI-Z Output Leakage<br>Current     |                    |     | ±10               | μA   | Vout=0~<br>VCC_MD3V | 13    |

Note 12: Applied forMMCDAT, MMCCMD pinsNote 13: Applied forMMCCLK pin

# 5.2.8 Memory Stick Interface

# (VCC\_MD3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter                      | Min              | Тур | Мах          | Unit | Test Condition | Note |
|--------|--------------------------------|------------------|-----|--------------|------|----------------|------|
|        |                                |                  |     |              |      |                |      |
| VIH    | Input High Voltage             | 0.8x<br>VCC_MD3V |     | VCC_MD3V     | V    |                | 14   |
| VIL    | Input Low Voltage              | 0                |     | 0.2xVCC_MD3V | V    |                | 14   |
| VOH    | Output High Voltage            | VCC_MD3V<br>-0.3 |     |              | V    | lout=-8mA      | 14   |
| VOL    | Output Low Voltage             |                  |     | 0.4          | V    | lout=8mA       | 14   |
| IOZ    | HI-Z Output Leakage<br>Current |                  |     | ±10          | μA   |                | 14   |

Note 14: Applied for MSCDAT [3:0], MSCCLK, MSBS pins

# www.DataShe 5.2.9 xD Picture Card Interface

# (VCC\_MD3V=3.0~3.6V, Ta=0~70°C)

| (      |                                |      |     |              |      |                |       |  |  |
|--------|--------------------------------|------|-----|--------------|------|----------------|-------|--|--|
| Symbol | Parameter                      | Min  | Тур | Max          | Unit | Test Condition | Note  |  |  |
|        |                                |      |     |              |      |                |       |  |  |
| VIH    | Input High Voltage             | 2.1  |     | VCC_MD3V+0.3 | V    |                | 15    |  |  |
| VIL    | Input Low Voltage              | -0.3 |     | 0.7          | V    |                | 15    |  |  |
| VOH    | Output High Voltage            | 2.6  |     |              | V    | lout=-8mA      | 15,16 |  |  |
| VOL    | Output Low Voltage             |      |     | 0.4          | V    | lout=8mA       | 15,16 |  |  |
| IOZ    | HI-Z Output Leakage<br>Current |      |     | ±10          | μA   |                | 15,16 |  |  |

Note 15: Applied for XDDAT [7:0] pins

Note 16: Applied for XDRE#, XDWE#, XDCE#, XDALE, XDCLE, XDWP# pins

# 5.2.10 Serial ROM Interface

# For 3.3V signaling

(VCC\_3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter                                                                                   | Min        | Max        | Unit | Test Condition                           | Note |
|--------|---------------------------------------------------------------------------------------------|------------|------------|------|------------------------------------------|------|
|        |                                                                                             |            |            |      |                                          |      |
| VIH    | Input High Voltage                                                                          | 0.7xVCC_3V | VCC_3V+0.3 | V    |                                          | 17   |
| VIL    | Input Low Voltage                                                                           | -0.3       | 0.3xVCC_3V | V    |                                          | 17   |
| VOL1   | Output Low Voltage                                                                          |            | 0.4        | V    | lout=3mA                                 | 17   |
| Tof    | Output fall time from V IHmin to V<br>ILmax with a bus capacitance from 10<br>pF to 400 pF: | -          | 250        | ns   | with up to 3 mA sink<br>current at V o∟1 | 17   |
| П      | Input current each I/O pin                                                                  |            | ±10        | μA   | Vin=0.4~0.9xVCC_3V                       | 17   |
| Cin    | Input Pin Capacitance                                                                       |            | 10         | pF   |                                          | 17   |

Note 17: Applied for UDIO3-4 (On use of Serial ROM) pins

# 5.2.11 Power Consumption

# Power Supply Current

| Power Pin | Parameter                          | Min | Тур | Max | Unit | Condition                                                                                                                          | Note |
|-----------|------------------------------------|-----|-----|-----|------|------------------------------------------------------------------------------------------------------------------------------------|------|
|           |                                    |     |     |     |      |                                                                                                                                    |      |
| Icc       | Power Supply Current,<br>Operating |     |     | 75  | mA   | PCICLK=33MHz<br>VCC_3V=3.6V<br>VCC_MD3V=3.6V<br>VCC_PCI3V=3.6V<br>AVCC_PHY3V=3.6V<br>VCC_RIN=3.6V<br>VCC_RIN=3.6V<br>Vin=0V or VCC |      |

www.DataSheet4U.com

# 5.3 AC Characteristics

# 5.3.1 PCI Interface signals

# **PCI Clock**

(VCC\_PCI3V=3.0~3.6V, Ta=0~70°C)

| Symbol | Parameter                         | Min | Мах | Unit | Note |
|--------|-----------------------------------|-----|-----|------|------|
|        | PCICLK                            |     |     |      |      |
| t1a    | Cycle Time, PCICLK                | 30  |     | ns   |      |
| t1b    | Pulse Width Duration, PCICLK High | 11  |     | ns   |      |
| t1c    | Pulse Width Duration, PCICLK Low  | 11  |     | ns   |      |
| t1d    | Slew Rate, PCICLK Rising Edge     | 1   | 4   | V/ns |      |
| t1e    | Slew Rate, PCICLK Falling Edge    | 1   | 4   | V/ns |      |

PCICLK Timing



# **PCICLK Timing**

# PCI Reset

| (VCC_P | VCC_PCI3V=3.0~3.6V, Ta=0~70°C)                |     |     |      |      |  |  |  |  |  |
|--------|-----------------------------------------------|-----|-----|------|------|--|--|--|--|--|
| Symbol | Parameter                                     | Min | Max | Unit | Note |  |  |  |  |  |
|        | PCIRST#                                       |     |     |      |      |  |  |  |  |  |
| t2a    | Pulse Duration, PCIRST#                       | 1   |     | ms   |      |  |  |  |  |  |
| t2b    | Setup Time, PCICLK active at PCIRST# Negation | 100 |     | μs   |      |  |  |  |  |  |



# **PCI Reset Timing**

Data Sheet

# PCI Interface Output Signals

|        | $513v - 3.0 \times 3.0v$ , $1a - 0 \times 70$ C)   |           |            |           |                                               |
|--------|----------------------------------------------------|-----------|------------|-----------|-----------------------------------------------|
| Symbol | Parameter                                          | Min       | Max        | Unit      | Note                                          |
|        | AD [31:0], C/BE#[3:0], PAR, FRAME#, DEVSEL#, IR    | DY#, TRDY | ′#, STOP#, | PERR#, SE | RR#, CLKRUN#                                  |
| t3a    | Shared Signal Valid delay time from PCICLK         | 2         | 11         | ns        | Min: CL=0 pF<br>Max: CL=50 pF<br>(10 pF 3.3v) |
| t3b    | Enable Time, Hi-Z to active delay from PCICLK      | 2         |            | ns        |                                               |
| t3c    | Disable Time, Active to Hi-Z delay from PCICLK     |           | 28         | ns        |                                               |
|        | REQ#                                               |           |            |           |                                               |
| t3d    | Point to Point Signal Valid delay time from PCICLK | 2         | 12         | ns        | Min: CL=0 pF<br>Max: CL=50 pF<br>(10 pF 3 3y) |

# PCI Output Signals Timing



# PCI Output Signals Timing

#### PCI Interface Input Signals (VCC PCI3V=3.0~3.6V. Ta=0~70°C)

| Symbol | Parameter                                                                                      | Min | Max | Unit | Note |  |
|--------|------------------------------------------------------------------------------------------------|-----|-----|------|------|--|
|        | AD [31:0], C/BE#[3:0], PAR, FRAME#, DEVSEL#, IRDY#, TRDY#, STOP#, IDSEL, PERR#, SERR#, CLKRUN# |     |     |      |      |  |
| t4a    | Setup Time, Shared Signal Valid before PCICLK                                                  |     |     | ns   |      |  |
| t4b    | Hold Time, Shared Signal Hold Time after PCICLK High                                           | 0   |     | ns   |      |  |
|        | GNT#                                                                                           |     |     |      |      |  |
| t4c    | Setup Time, Point to Point Signal Valid before PCICLK                                          | 10  |     | ns   |      |  |



# PCI Input Signals Timing

# 5.3.2 Hardware Suspend mode

Timing chart for keeping the value of the internal register on the Suspend mode.



# www.DataSheet4U.co

| CC | ∏\$ymbol    | Parameter                     | Min               | Тур | Max | Unit |
|----|-------------|-------------------------------|-------------------|-----|-----|------|
|    | Tpd         | HWSPND# to PCIRST# delay      | 100* <sup>1</sup> |     |     | ns   |
|    | Три         | PCIRST# Setup time to HWSPND# | 100* <sup>1</sup> |     |     | ns   |
|    | *1 : PCICLK | =33MHz                        |                   |     |     |      |

# 5.3.3 Global Reset signals

Timing chart for initializing the internal register on the Power's on.



| Symbol | Parameter                | Min               | Тур | Max | Unit |
|--------|--------------------------|-------------------|-----|-----|------|
| Tpres  | Power_On to GBRST# delay | 1                 |     | 100 | ms   |
| Tprise | GBRST# to PCIRST# delay  | 60* <sup>2</sup>  |     |     | ns   |
| Tpspnd | HWSPND# to PCIRST# delay | 100* <sup>2</sup> |     |     | ns   |

\*<sup>2</sup>: PCICLK=33MHz

# 5.3.4 Serial ROM Interface signals

# SDA (UDIO4), SCL (UDIO3)

(VCC\_3V=3.0~3.6V, Ta=0~70°C)

| Symbol   | Parameter                                                                                      | Min | Max  | Unit | Note |
|----------|------------------------------------------------------------------------------------------------|-----|------|------|------|
|          | SDA (UDIO4), SCL (UDIO3)                                                                       |     |      |      |      |
| f SCL    | SCL clock frequency                                                                            | 0   | 100  | kHz  |      |
| t BUF    | Bus free time between a STOP and START condition                                               | 4.7 | -    | us   |      |
| t HD;STA | Hold time (repeated) START condition. After this<br>period, the first clock pulse is generated | 4.0 | -    | us   |      |
| t low    | LOW period of the SCL clock                                                                    | 4.7 | -    | us   |      |
| t high   | HIGH period of the SCL clock                                                                   | 4.0 | -    | us   |      |
| t SU;STA | Set-up time for a repeated START condition                                                     | 4.7 | -    | us   |      |
| t hd;dat | Data hold time for I 2 C-bus devices                                                           | 0   |      | us   |      |
| t su;dat | Data set–up time                                                                               | 250 | -    | ns   |      |
| CORI     | Rise time of both SDA and SCL signals                                                          | -   | 1000 | ns   |      |
| t F      | Fall time of both SDA and SCL signals                                                          | -   | 300  | ns   |      |
| t su;sto | Set–up time for STOP condition                                                                 | 4.0 | -    | us   |      |
| t sp     | Pulse width of spikes which must be suppressed by the input filter                             | n/a | n/a  | ns   |      |
| Сb       | Capacitive load for each bus line                                                              | -   | 400  | pF   |      |

t

All values referred to V IHmin and V ILmax levels (see 5.2.10).







# NOTICE

- 1. The products and the product specifications described in this Data Sheet are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. This Data Sheet may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this Data Sheet shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
  - 5. The products listed in this Data Sheet are intended and designed for use as general electronic components in standard applications (office equipment, computer equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or miss-operation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
  - 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature, and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
  - 7. Anti-radiation design is not implemented in the products described in this Data Sheet.
  - 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

www.DataSheet4U.com

# **RICOH Company, Ltd. Electronic Devices Company**

Head Office

13-1, Himemurocho, Ikeda-shi, Osaka 563-8501 JAPAN Phone: +81-72-748-6262, Fax: +81-72-753-2120

Yokohama Office

3-2-3, Shinyokohama, Kouhoku-ku, Yokohama-shi, Kanagawa 222-8530 JAPAN Phone: +81-45-477-1703, Fax: +81-45-477-1694

# **RICOH CORPORATION** Electronic Devices Division

Cupertino Office

4 Results Way, Cupertino, CA, 95014 USA Phone: 408-346-4463