LDO Regulators with a Watchdog Timer R5102V SERIES

APPLICATION MANUAL

LDO Regulators with a Watchdog Timer

R5102V SERIES

OUTLINE

The R5102V Series are Voltage Regulators with a watchdog timer (WDT) ICs with high accuracy output voltage and low supply current by CMOS process. Each of these ICs consists of an LDO regulator, VR1, and a regulator with ultra low supply current, VR2, and a watchdog timer.

Thus, the R5102V Series have the integrated function of a power source for a system and a system supervisor.

One of the built-in voltage regulators is a LDO type regulator, VR1, used with an external driver transistor.

VR1 has excellent electrical characteristics of high ripple rejection rate, high output voltage accuracy and low supply current. VR1 is appropriate for the condition that the voltage difference between input and output is small and output current is within several hundreds mA.

The output voltage of regulators can be set internally and individually with high accuracy for each IC by laser-trim.

Furthermore, when a system works incorrectly, the watchdog timer checks over microprocessor and generates a reset signal intermittently to prevent a whole system from being malfunction.

The time period for watching and holding a reset signal of the watchdog timer can also be set individually by an external capacitor (C_{TW}).

FEATURES

- Built-in a watchdog timer
- Time period for monitoring and generating a reset signal of the watchdog timer can be set by an external capacitor
- Regulators can be stopped individually by $\overline{\text{CE1}}$ pin and $\overline{\text{CE2}}$ pin.

(WDT) (Standby Mode) TYP. 0.1μ A (VR1), TYP. 0.1μ A (VR2)

- The output voltage of VR1 and VR2 can be set individually for each IC by laser trim
- High Accuracy of Output Voltage±2.0%
- Time period for system monitoring and reset can be set by an external capacitor
- Output Current......TYP. 1A (VR1), MIN. 30mA (VR2) (at VIN VOUT=1V)
- Small PackageSSOP-10 (0.5mm pitch) Refer to Package Dimensions

APPLICATION

• Power source for GSM

BLOCK DIAGRAMS

PIN DESCRIPTION

Symbol	Description
V _{DD}	Power Supply Pin
Rout2	Output Pin for Voltage Regulator 2
EXT	Driver Pin for External Transistor
Routi	Output Pin for Voltage Regulator 1
SCK	Clock Input Pin
RESET	Output Pin for Reset signal of Watchdog timer
CTW	External Capacitor Pin for Watchdog Timer
CE2	Control Switch Pin for Voltage Regulator 2 ("L" Active)
CE1	Control Switch Pin for Voltage Regulator 1 ("L" Active)
GND	Ground Pin

4 5

ABSOLUTE MAXIMUM RATINGS

Topt=25°C, Vss=0V

Symbol	Item	Input Voltage	Rating	Unit
Vin	Input Voltage		9	V
VCE1		Voltage of CE1 Pin	Vss-0.3 to V _{IN} +0.3	V
VCE2		Voltage of CE2 Pin	Vss-0.3 to V _{IN} +0.3	V
Vsck		Voltage of VSCK Pin	Vss-0.3 to V _{IN} +0.3	V
Rout1		Voltage of ROUT1 Pin	Vss-0.3 to V _{IN} +0.3	V
Rout2	O d and Walter	Voltage of ROUT2 Pin	Vss-0.3 to V _{IN} +0.3	
Vctw	Output voltage	Voltage of CTW Pin	Vss-0.3 to V _{IN} +0.3	V
VRESET		Voltage of RESET Pin	Vss-0.3 to 9	V
EXT	EXT Output Voltage	·	Vss-0.3 toVIN+0.3	V
Iout2	Output Current2		150	mA
Iext	EXT Current		50	mA
PD	Power Dissipation	Power Dissipation		mW
Topt	Operating Temperature Range		-40 to +85	°C
Tstg	Storage Temperature	Range	-55 to +125	°C

ELECTRICAL CHARACTERISTICS

Overall				-	Тс	opt=25°C
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
VIN	Input Voltage				8	V
Iss1	Supply Current	$V_{IN}=4.2V, V_{CE1}=V_{CE2}=0V$		30	60	μA
Rup	CE Pull-up Resistance		2.5	5	10	MΩ
Vсен	CE Input Voltage "H"		1.5		Vin	V
VCEL	CE Input Voltage "L"		0		0.25	V

• VR1 Topt=25°						opt=25°C
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	VIN-VOUT=1.0V IOUT=50mA	2.744	2.800	2.856	V
Iout	Output Current	VIN-VOUT=1.0V		$1^{*\text{NOTE}}$		А
Iext	EXT Current	VIN=4.0V, VEXT=2.0V	5	9	15	mA
ΔV out/ ΔI out	Load Regulation	VIN-VOUT=1.0V 1mA≤ IOUT≤100mA			60	mV
VDIF	Dropout Voltage	Iout=100mA		0.1	0.2	V
Iss	Supply Current	$V_{CE1}=0V V_{IN}=V_{CE2}=4.2V$		28	56	μA
ISTANDBY	Standby Current	VIN=VCE=8.0V	0.01	0.1	1.0	μA
Iextleak	EXT Leakage Current				0.5	μA
ΔV out/ ΔV in	Line Regulation	Iout=50mA Vout+0.5V≤Vin≤8V	0	0.05	0.20	%/V
RR	Ripple Rejection Rate	f=1kHz, Ripple 0.5Vp-p VIN-VOUT=1.0V		60		dB
VEXT	EXT Output Voltage				8	V
Ilim	Current Limit	Base Current, IB, of External PNP Tr.	5		15	mA
ΔV out/ ΔT	Output Voltage Temperature Coefficient	Iou⊤=10mA -40°C≤Topt≤85°C		±100		ppm/ °C

*NOTE Output Current depends on the external PNP transistor. Use a low saturation transistor with hFE range of 100 to 300.

• VR2					To	opt=25°C
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	VIN-VOUT=1.0V IOUT=10mA	3.234	3.300	3.366	V
Iout	Output Current	VIN-VOUT=1.0V	30			mA
ΔV out/ ΔI out	Load Regulation	VIN-VOUT=1.0V 1mA≤Iout≤50mA		20	30	mV
VDIF	Dropout Voltage	Iour=1mA		20	30	mV
Iss	Supply Current	$V_{CE2}=0V V_{IN}=V_{CE1}=4.2V$		5	10	μA
Istandby	Standby Current	$V_{IN}=V_{CE}=8.0V$	0.01	0.1	1.0	μA
ΔV out/ ΔV in	Line Regulation	Iout=30mA Vout+0.5V≤Vin≤8V	0	0.05	0.20	%/V
RR	Ripple Rejection Rate	f=1kHz, Ripple 0.5Vp-p VIN-VOUT=1.0V		40		dB
ΔV out/ ΔT	Output Voltage Temperature Coefficient	Iout=10mA -40°C≤Topt≤85°C		±100		ppm/ °C

• WDT				-	То	opt=25°C
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Iss	Supply Current	$V_{IN}=V_{CE1}=V_{CE2}=4.2V$		3	6	μA
Twd	Monitoring Time Period of WDT	C=0.68µF	5		10	s
Twr	Reset Hold Time of WDT	C=0.68µF	0.5		1.0	S
Vihsck	SCK "H" Input Voltage	V _{IN} =5.0V	Routi ×0.8		Vin	V
Vilsck	SCK "L" Input Voltage	V _{IN} =5.0V	0		Rоит1 ×0.1	mV
Істw	CTW Output Current	$V_{IN}=1.5V, V_{DS}=0.5V$	1	2		mA
Ireset	RESET Output Current	VIN=1.5V, VDS=0.5V	1	2		mA
Irleak	RESET Leakage Current	VIN=VDS=8V			1	μA
Vstart	RESET Minimum Operating Voltage			0.8	1.5	V
Vсен	Routh "H" Output Voltage		1.5		Vin	V
VCEL	Routh "L" Output Voltage		0		0.25	V
Тѕскѡ	SCK Input Pulse Width		500			ns

TYPICAL CHARACTERISTICS

RIGOH

Output Current1 IOUT1 (mA)

R5102V

10) Supply Current2 vs. Temperature

14) WDT Reset and Watchdog Timeout Periods vs. External Capacitance (Topt=25°C)

R5102V

TIMING DIAGRAM

OPERATION

^① When V_{DD} is turned on and Input Voltage reaches Vstart (nearly equal 0.8V), the output of RESET pin becomes "L" level.

- ② An External Capacitor starts to be charged through the CD pin when an Output Voltage of the Voltage Regulator1, VOUT1, equal or more than 1.5V, watchdog timer starts to operate, and the VRESET becomes to "H" level.
- ⁽³⁾ The operation mode changes from charging mode to discharging mode through C_{TW} pin when the voltage level of C_{TW} pin, V_{CTW}, reaches to the Vref2H.
- ④ While the C_{TW} pin is on the discharging mode, if a clock pulse is entered (synchronous with a rising edge of the pulse), the operation mode for C_{TW} pin changes from discharging mode to charging mode. And the external capacitor connected to C_{TW} pin is charged until its voltage level reaches to Vref2H.
- (5) While the C_{TW} pin is on the discharging mode, if V_{CTW} level drops to Vref2L, about 0.2V without clock pulse to CLK pin, the voltage level of Reset pin becomes from "H" to "L".
- * Watchdog Timeout period, tWD,: Discharging Time of C_{TW} pin level from Vref2H to Vref2L
 tWD can be set by connecting an external capacitor to C_W pin, tWD can be calculated as shown below;
 tWD (ms) ≈ 10000× C_W (µF); C_W means a value of an external capacitor connected to C_W pin.
- [®] C_{TW} pin mode is changed to charging mode from discharging mode when the Reset signal is generated.
- ★ Reset timeout period of the watchdog timer, tWR,: Time interval between Charging time of the C_{TW} pin from Vref2L to Vref2H. tWR can be calculated by the next equation as shown below; tWR (ms) ≈ tWD(ms)/10
- The when $\overline{\text{CE1}}$ pin voltage becomes to equal or more than 1.5V, (or crosses this level from "L" to "H") and output voltage level of Voltage Regulator 1 becomes to equal or less than 1.5V, watchdog timer stops operation and $V_{\overline{\text{RESET}}}$ becomes to "L" level.
- In Voltage level of CE1 pin becomes to equal or less than 0.25V (or crosses this level from "H" to "L"), and output voltage of the Voltage Regulator1 becomes to equal or more than 1.5V, charging to an external capacitor of CTW pin starts and watchdog timer operates, thus VRESET becomes to "H" level.
- When a Voltage level of V_{DD} pin becomes lower and output voltage of Voltage Regulator 1 becomes to equal or less
 than 1.5V, the watchdog timer will be halted and V_{RESET} becomes to "L" level.

APPLICATION NOTES

Phase Compensation

Phase compensation of VR1 is made by external capacitor to be stable operation under variable output current. Therefore, use a tantalum capacitor, C_L , with a value as much as 10μ F or more in any case.

If the value of ESR with the capacitor is large, loop oscillation might be occurred to the output. To avoid the case, careful evaluation including the frequency characteristics is required.

External PNP Transistor

When you choose the external transistor, basically consider of output current, input voltage, and power dissipation. Generally, the transistor with low $V_{CE(SAT)}$ and hFE value of which is in the range of 100 to 300, is appropriate.

Mounting on Board

Make the impedance between V_{DD} and GND minimize, otherwise when a large current flows, it would be a cause of making noise and unstable operation. And use a bypass capacitor with a value as much as 10μ F between V_{DD} pin and GND pin and make its wiring short as possible.

TYPICAL APPLICATION