屏库:全球液晶屏交易中心

 $\langle p \rangle$

PRODUCT SPECIFICATION

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: R208R3 SUFFIX: L01

 Customer:

 APPROVED BY
 SIGNATURE

 Name / Title

 Note

 Please return 1 copy for your confirmation with your signature and comments.

記錄	工作	審核	角色	投票
2011-09-19 19:40:28	APPL 產品管理處	yuhsiang.chang (張喻翔/514-10922)	Director	Accept

Version 3.0

5 Sept 2011

1/35

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	
3.2.2 BACKLIGHT UNIT	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	7
4.2.1(Master) : Left side (Front View)	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2 Vcc Power Dip Condition	12
4.3.3 BACKLIGHT UNIT	
4.3.4 INVERTER ELECTRICAL CHARATERISTIC	
4.3.5 INVERTER INPUT SIGNAL	
4.4 LVDS INPUT SIGNAL SPECIFICATIONS	
4.4.1 LVDS DATA MAPPING TABLE	
4.4.2 COLOR DATA INPUT ASSIGNMENT	
4.5 DISPLAY TIMING SPECIFICATIONS	
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	
5.1 OPTICAL SPECIFICATIONS	21
6. RELIABILITY TEST ITEM	
7. Input Parameters Detail	
7.1 Backlight on/off (BLON) and brightness adjustment (VDIM_IN / VDIM_OUT)	
8. PACKING	
8.1 PACKING SPECIFICATIONS	
8.2 PACKING METHOD	
8.3 PALLET	
9. CMI MODULE LABEL	
10. PRECAUTIONS	32

Version 3.0

5 Sept 2011

2/35

10.1 ASSEMBLY AND HANDLING PRECAUTIONS	 32
10.2 STORAGE PRECAUTIONS	 32
10.3 OPERATION PRECAUTIONS	 32
10.4 SAFETY PRECAUTIONS	 33
10.5 SAFETY STANDARDS	 33
10.6 OTHER	 33
Appendix. OUTLINE DRAWING	 34
••	

Version 3.0

5 Sept 2011

3 / 35

奇美電子 CHIMEL /NNOLUX PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
0.0	2006/12/12	All	R208R3 -L01 Specifications was first issued
1.0	2007/06/28	26 15	Correction, the select command of gamma table New Added, VDIM vs Dimming Range Chart
2.0	2007/08/20	9	New Added, Note(6)
3.0	2011/09/02	5 6 21	Power Supply Specification update Backlight Specification update Optical Specification update

Version 3.0

5 Sept 2011

4/35

1. GENERAL DESCRIPTION

1.1 OVERVIEW

R208R3-L01 is an 20.8" TFT Liquid Crystal Display module with 14 CCFL Backlight unit and 31 pins and one port 2ch-LVDS interface. This module supports 2048 x 1536 QXGA mode and displays 16.7M colors driven by 8bit drivers. The LCD module includes built-in inverter for Backlight.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	20.8" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	2048 (xR,G,B) x 1536	Pixel	-
Pixel Pitch	0.207 (H) x 0.207 (V)	mm	-
Pixel Arrangement	Sub-pixel Vertical stripe		-
Display Colors	16.7M	color	-
Transmissive Mode	Dual domain IPS, Normally Black	-	-
Surface Treatment	Anti-glare type	-	-
Luminance, White	600	cd/m2	-
Power Consumption	Total 76.32W (typ.) @ cell 9.12 W (typ.), BL 6	67.2 W (typ.)	(1)

Note (1) The specified power consumption: Total= cell + BL

2. MECHANICAL SPECIFICATIONS

[tem	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	456.2	457.0	457.8	mm	
Module Size	Vertical (V)	349.2	350.0	350.8	mm	(1)
	Thickness (T)		45	45.8	mm	
Bezel Area	Horizontal	-	427.9	-	mm	
	Vertical	-	322	-	mm	
Active Area	Horizontal	-	423.93	-	mm	
Active Alea	Vertical	_	317.95	_	mm	
Weight		-	-	2580	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltem	Symbol	Va	lue	Unit	Note	
lien	Gymbol	Min.	Max.	Onic		
Storage Temperature	TST	-20	60	°C	(1)	
Operating Ambient Temperature	TOP	0	55	°C	(1), (2)	

Note (1)

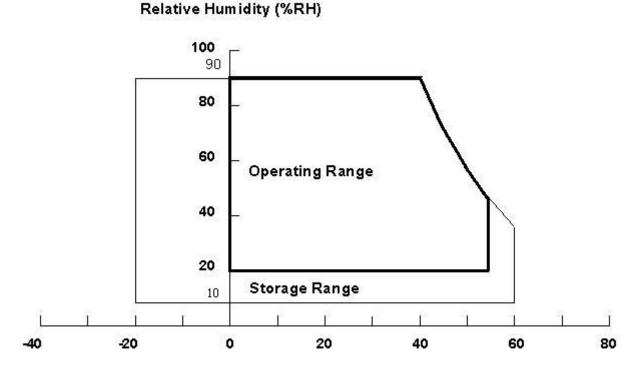
(a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Version 3.0

5 Sept 2011


5/35

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Temperature (°C)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

ltem	Item Symbol		Value		Note	
	eynisor	Min.	Max.	Unit	11010	
Power Supply Voltage	VCCS	-0.3	13.2	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	4.3	V	(1)	

3.2.2 BACKLIGHT UNIT

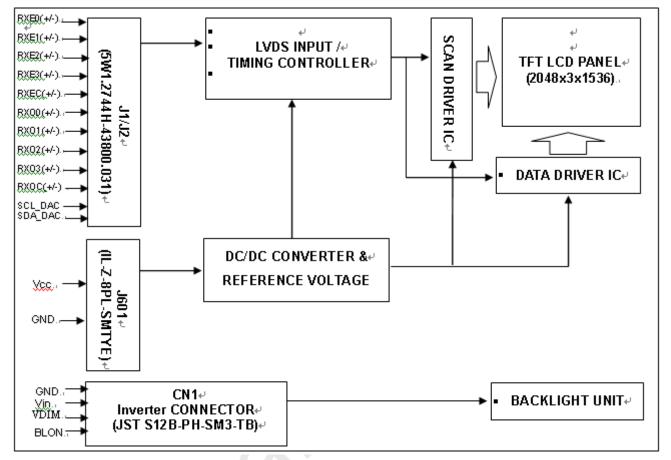
Item	Symbol	Value			Unit	Note	
nem	Symbol	Min.	Тур	Max.	Onic	Note	
Lamp Voltage	V_L	720	800	880	V _{RMS}		
Lamp current	IL	3	6	8	mA _{RMS}	(1), (2)	
Lamp frequency	FL	40		80	KHz		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 4.3.3 and 4.3.4 for further information).

Version 3.0

5 Sept 2011


6/35

PRODUCT SPECIFICATION

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

4.2.1(Master) : Left side (Front View)

PIN ASSIGNMENT (J1)

Version 3.0

Pin	Name	Description
1	NC	Not connection Should keep open.
2	NC	Not connection Should keep open.
3	NC	Not connection Should keep open.
4	GMA_SEL	0: Dicom; 1: Gamma 2.2 (0 : Ground ; 1 : 3.3V) ;default is zero
5	NC	Not connection Should keep open.
6	DGND	Digital Ground
7	SDA_DAC	I2C data for adjustment brightness. [Note (5)]
8	SCL_DAC	I2C clock for adjustment brightness. [Note (5)]
9	DGND	Digital Ground
10	LGND	LVDS Ground
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXO3-	Negative LVDS differential data input. Channel O3 (odd)
13	RXOC+	Positive LVDS differential clock input. (odd)
14	RXOC-	Negative LVDS differential clock input. (odd)
15	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
16	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
17	RXO1+	Positive LVDS differential data input. Channel O1 (odd)

5 Sept 2011

7 / 35

 $\langle p \rangle$

PRODUCT SPECIFICATION

奇美電子
CHIMEI INNOLUX

18	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
19	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
20	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
21	RXE3+	Positive LVDS differential data input. Channel E3 (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXEC+	Positive LVDS differential clock input. (even)
24	RXEC-	Negative LVDS differential clock input. (even)
25	RXE2+	Positive LVDS differential data input. Channel E2 (even)
26	RXE2-	Negative LVDS differential data input. Channel E2 (even)
27	RXE1+	Positive LVDS differential data input. Channel E1 (even)
28	RXE1-	Negative LVDS differential data input. Channel E1 (even)
29	RXE0+	Positive LVDS differential data input. Channel E0 (even)
30	RXE0-	Negative LVDS differential data input. Channel E0 (even)
31	LGND	LVDS Ground

4.2.2 J2(Slave) : Right side(Front View)

PIN ASSIGNMENT (J2)

Pin	Name	Description
1	BLON	Backlight on/off signal (HI:backlight ON, Low:backlight OFF)
2	VDIM-IN	Brightness Dimming Control Voltage(0~3V, 0V:MaxBrightness)
3	VDIM-OUT	Brightness Dimming Control Voltage Output Generated by I2C command
4	NC	Not connection Should keep open.
5	NC	Not connection Should keep open.
6	DGND	Digital Ground
7	NC	Not connection Should keep open.
8	NC	Not connection Should keep open.
9	DGND	Digital Ground
10	LGND	LVDS Ground
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXO3-	Negative LVDS differential data input. Channel O3 (odd)
13	RXOC+	Positive LVDS differential clock input. (odd)
14	RXOC-	Negative LVDS differential clock input. (odd)
15	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
16	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
17	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
18	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
19	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
20	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
21	RXE3+	Positive LVDS differential data input. Channel E3 (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXEC+	Positive LVDS differential clock input. (even)
24	RXEC-	Negative LVDS differential clock input. (even)
25	RXE2+	Positive LVDS differential data input. Channel E2 (even)
26	RXE2-	Negative LVDS differential data input. Channel E2 (even)
27	RXE1+	Positive LVDS differential data input. Channel E1 (even)
28	RXE1-	Negative LVDS differential data input. Channel E1 (even)
29	RXE0+	Positive LVDS differential data input. Channel E0 (even)
30	RXE0-	Negative LVDS differential data input. Channel E0 (even)
31	LGND	LVDS Ground

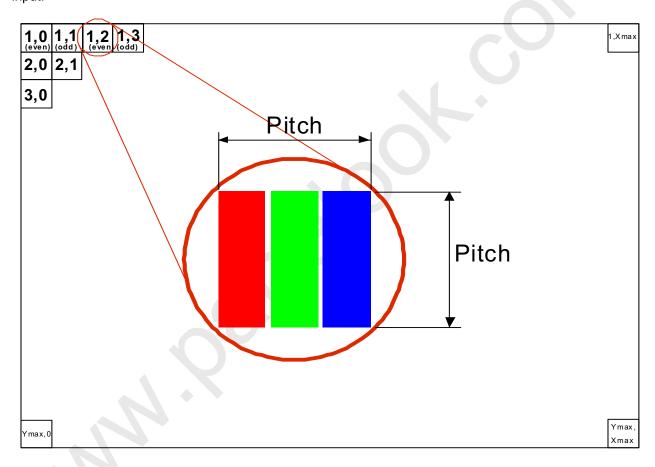
Note (1) Connector Part No.: ARC 5W1.2744H-43800.031or equivalent.

Note (2) The first pixel is even.

Voreion 21	
Version 3.0	

5 Sept 2011

8/35


PRODUCT SPECIFICATION

Note (3) Input signal of even and odd clock should be the same timing.

Note (4) You can adjust brightness by two methods, one is by I2C function of J1, the other is by pin 11 of Inverter connector(CN1). If you select one method to adjust brightness, another method's input pin(s) should be open.

Note (5) If you don't use I2C to adjust brightness by J1, you should make the pin7, pin8 of J1 open.

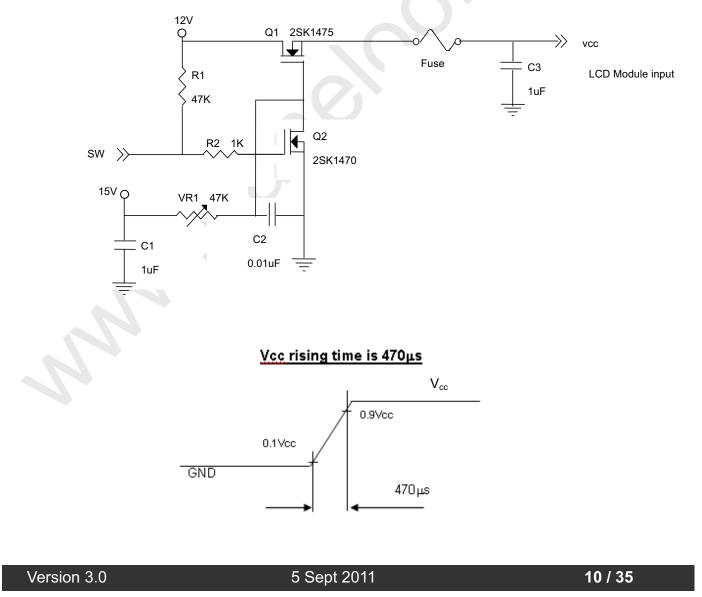
Note (6) The module uses a 100-ohm resistor between positive and negative data lines of each receiver input.

Version 3.0

5 Sept 2011

奇美電子 CHIMEI / NNOLUX

PRODUCT SPECIFICATION

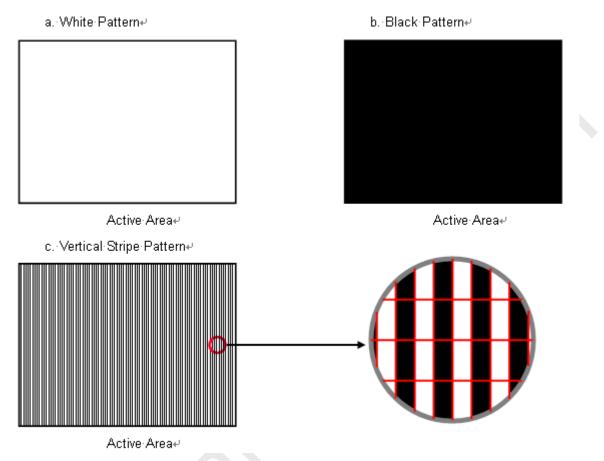

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

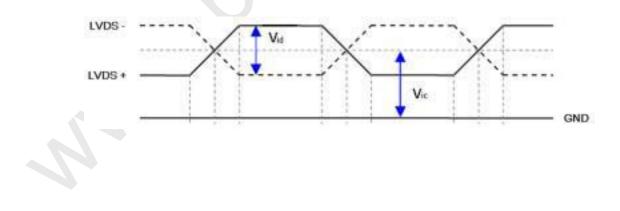
Parame	Symbol		Value	Unit	Note		
1 arame	Symbol	Min.	Тур.	Max.	Onit	Note	
Power Supply	Vcc	11.4	12	12.6	V	-	
Ripple Vo	Itage	V_{RP}	-	-	300	mV	-
Rush Cu	Rush Current			-	3.8	А	(2)
	White			760	1064	А	(3)a
Power Supply Current	Black			450	630	A	(3)b
	Vertical Stripe			720	1008	А	(3)c
Power Cons	umption	PLCD	-	9.12	11.85	Watt	(4)
LVDS differential	input voltage	Vid	100	-	600	mV	
LVDS common input v	Vic	1.0	1.25	1.4	V		
Logic High Inp	VIH	2.64	-		V		
Logic Low Inp	ut Voltage	VIL	-	-	0.66	V	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:


受手串-

CHIMEI INNOLUX



PRODUCT SPECIFICATION

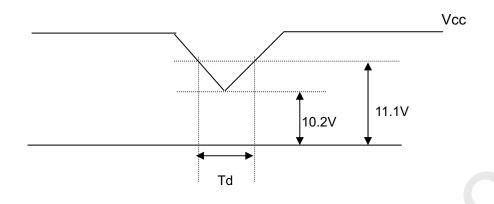
Note (3) The specified power supply current is under the conditions at Vcc =12.0 V, Ta = 25 ± 2 °C, Fr = 60Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current. Note (5) VID waveform condition

Version 3.0

5 Sept 2011

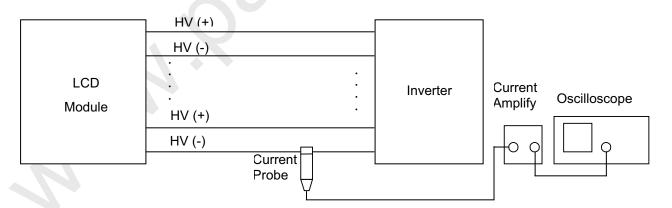
11 / 35


The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

PRODUCT SPECIFICATION

4.3.2 Vcc Power Dip Condition



Dip condition: $10.2V \le Vcc \le 11.1V$, $Td \le 20ms$

4.3.3 BACKLIGHT UNIT

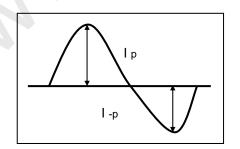
Parameter	Symbol		Value	Unit	Note	
i didifietei	Symbol	Min.	Тур.	Max.	Offic	NOLE
Lamp Input Voltage	VL	720	800	880	V _{RMS}	(I _L = 6 mA)
Lamp Current	١	3	6	8	mA _{RMS}	(1)
Lamp Turn On Voltage	V			1250 (25 °C)	V _{RMS}	(2)
Lamp rum On Voltage	Vs			1380(0 °C)	V _{RMS}	(2)
Operating Frequency	FL	40		80	KHz	(3)
Lamp Life Time	L _{BL}	50000 hr			Hrs	(5)

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

5 Sept 2011

12/35


Note (4) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I I₁ = 3~8 mArms until one of the following events occurs:

- (a) When the brightness becomes or lower than 50% of its original value.
- (b) When the effective ignition length becomes lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (5) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter, which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

Version 3.0

5 Sept 2011

13 / 35

 $\langle p \rangle$

PRODUCT SPECIFICATION

4.3.4 INVERTER ELECTRICAL CHARATERISTIC

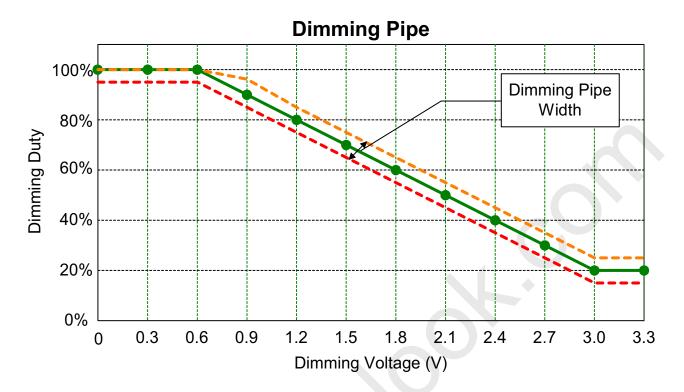
Item	Symbol	Description	Min.	Тур.	Max.	Unit
1	V _{in}	Input voltage	11.4	12	12.6	V
2	l _{in}	Input current (@Vin=12V)		6.5	7	Α
3	Pin	Input power		78	84	W
4	BLON	Inverter On/Off control: OFF	-0.1	0	0.8	V
4	BLOIN	Inverter On/Off control: ON	2	3.3	6	V
_		Output current control				
5	VDIM	VDIM: 0V, maximum brightness	0		3	V
		VDIM: 3V, minimum brightness				
6	Fb	Burst Mode Frequency	225	250	275	Hz
7	Freq.	Operating frequency	45	50	55	KHz
8	I _{out}	Output current, VDIM=0V (high side)	5.5	6	6.5	mA

4.3.5 INVERTER INPUT SIGNAL

Pin No.	Symbol	Description
1	Vin	Input voltage
2	Vin	Input voltage
3	Vin	Input voltage
4	Vin	Input voltage
5	Vin	Input voltage
6	Gnd	Ground
7	Gnd	Ground
8	Gnd	Ground
9	Gnd	Ground
10	Gnd	Ground
11	VDIM	Brightness control (0~3V)
12	BLON	Inverter On/Off control (5.0/0V)

Note (1) Connector Part No.: S12B-PH-SM3-TB (JST) or equivalent

Note (2) User's connector Part No.: → PHR-12 (JST)


Version 3.0

5 Sept 2011

PRODUCT SPECIFICATION

The following chart is the VDIM vs. Dimming Range for your reference.

Version 3.0

5 Sept 2011

15/35

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 \oslash

PRODUCT SPECIFICATION

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

LVDS output

LVDS output

LVDS output

LVDS output

LVDS output

LVDS output

Data order

Data order

Data order

Data order

Data order

Data order

D26

DE

D23

NA

D7

EG2

D18

EB3

D26

DE

D23

NA

4.4.1 LVDS DATA MAPPING TABLE

VESA MODE

LVDS Channel O2

LVDS Channel O3

LVDS Channel E0

LVDS Channel E1

LVDS Channel E2

LVDS Channel E3

LVDS_SEL = Groun	d or Open							
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Channel OU	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6
JEITA MODE								
LVDS_SEL = 3.3V								
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
	Data order	OG2	OR7	OR6	OR5	OR4	OR3	OR2
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	OB3	OB2	OG7	OG6	OG5	OG4	OG3

D25

NA

D17

OB1

D6

ER7

D15

EB2

D25

NA

D17

EB1

D24

NA

D16

OB0

D4

ER6

D14

EG7

D24

NA

D16

EB0

D22

OB7

D11

OG1

D3

ER5

D13

EG6

D22

EB7

D11

EG1

D21

OB6

D10

OG0

D2

ER4

D12

EG5

D21

EB6

D10

EG0

D20

OB5

D5

OR1

D1

ER3

D9

EG4

D20

EB5

D5

ER1

D19

OB4

D27

OR0

D0

ER2

D8

EG3

D19

EB4

D27

ER0

Version 3.0

5 Sept 2011

16/35

 $\langle p \rangle$

PRODUCT SPECIFICATION

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

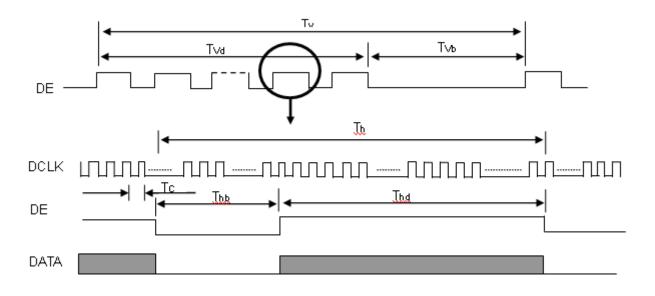
												Da	ita S	Sign	al										
	Color				Re									een							Blu				
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4		G2	G1	G0	B7	B6	B5			B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:			•	1	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	÷			:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iteu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0 <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	\sim	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 3.0

5 Sept 2011

17 / 35


4.5 DISPLAY TIMING SPECIFICATIONS

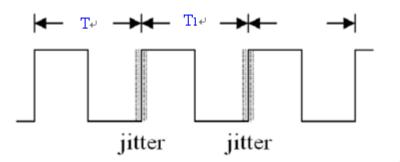
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _c	60	65	66	MHz	-
	Period	T _c	15.15	15.38	16.66	ns	
	Input cycle to cycle jitter	T _{rcl}				ns	(1)
	Input Clock to data skew	TLVCCS				ps	(2)
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	0.97*Fc		1.03*Fc	MHz	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	. (3)
	Frame Rate	Fr		60		Hz	$T_v = T_{vd} + T_{vb}$
	Total	T _v	1546	1612	1628	Th	-
Vertical Display Term	Active Display	T_{vd}	1536	1536	1536		-
	Blank	T _{vb}	T_v - T_{vd}	76	T_v - T_{vd}	Th	-
	Total	T _h	640	672	700	Tc	T _h =T _{hd} +T _{hb}
Horizontal Display Term	Active Display	T _{hd}	512	512	512	Tc	-
	Blank	T _{hb}	T _h -T _{hd}	160	$T_h - T_{hd}$	Tc	-

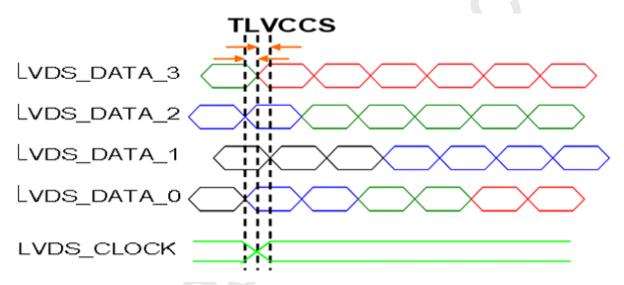
Note: Because this module is operated by DE only mode, H_{sync} and V_{sync} input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

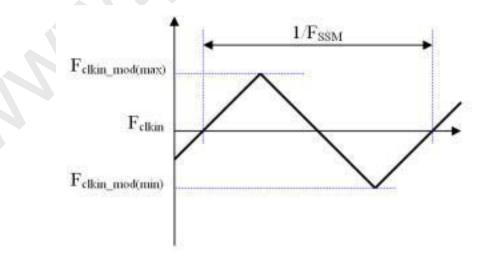
Version 3.0


5 Sept 2011

18/35



PRODUCT SPECIFICATION

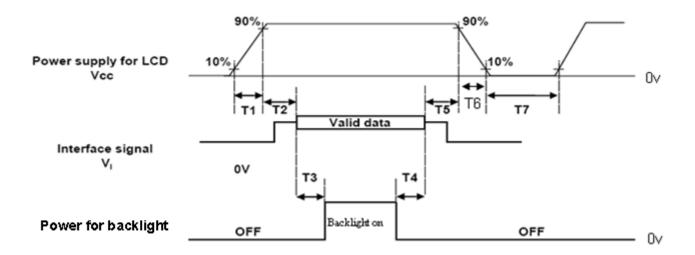

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Version 3.0

5 Sept 2011


19/35

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Units		
i arameters	Min	Тур.	Max	Onits
T1	0.5		10	ms
T2	0	-	50	ms
Т3	450		-	ms
T4	90	-	-	ms
T5	0	-	50	ms
T6	5	-	100	ms
T7	500	-	-	ms

Note.

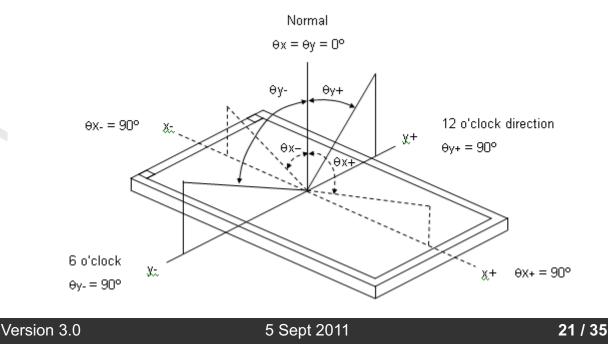
- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of V_{CC} = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T7 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows T6 specification; else slight noise is likely to occur when LCD is turned off (even backlight is already off).

Version	3.0

5 Sept 2011

20/35

PRODUCT SPECIFICATION


5. OPTICAL CHARACTERISTICS

5.1 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.1. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	R _x R _y			0.638 0.325			
Color	Green	G _x			0.292			
Chromaticity	Gleen	Gy		Typ	0598	Typ.+	-	(1), (5) (4), (5) (2), (5) (3) (5), (6)
(CIE 1931)	Blue	B _x	θ _x =0°, θ _Y =0°	0.03	0.147	0.03	Ť	
. ,		Β _γ	CS-1000T		0.056			
	White	W _x			0.294			
	<u> </u>	W _y		500	0.309		1/ 2	(4) (5)
Center Luminan	ce of White	L _C		500	600		cd/m ⁻	
Contrast Ratio		CR T _R		700	900		-	(2), (5)
Response Time	Response Time		θ _x =0°, θ _Y =0°		10	15	ms	(3)
		T _F	οχ Ο , ογ Ο		10	15	ms	(0)
White Variation(adjacent)		δW_a	θ _x =0°, θ _Y =0° USB2000	90			-	(5), (6)
White Variation(total)		δW_t	θ _x =0°, θ _Y =0° USB2000	70	80		-	(5), (6)
Viewing Angle		θ _{y+}		80	88			
		θ _{y-}	$CR \ge 10$	80	88		Dog	(1) (5)
		θ _{x+}	USB2000	80	88		Deg.	(1), (5)
		θ _x .		80	88			

Note (1)Definition of Viewing Angle (θx , θy):

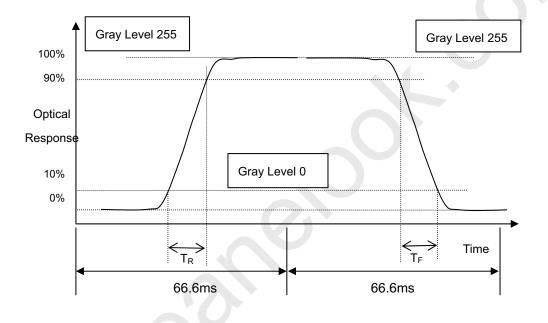
CHIMEI INNOLUX

実圕-

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (4).

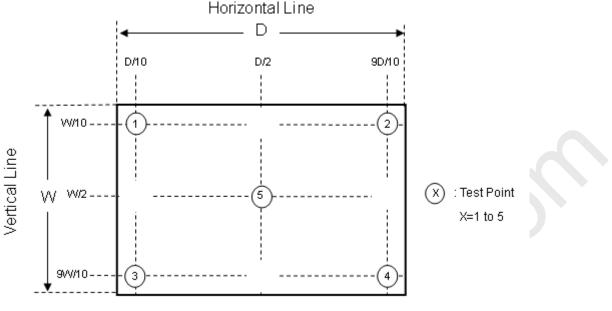
Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Luminance of White (L_c):

Measure the luminance of gray level 255 at center point

L(x) is corresponding to the luminance of the point X at the following figure.

Version 3.0


5 Sept 2011

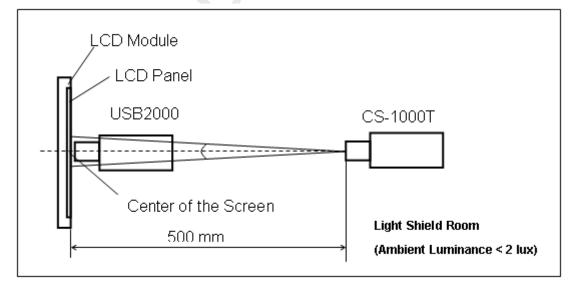
22/35

 $\langle p \rangle$

PRODUCT SPECIFICATION

Active Area

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.

Unless otherwise specified, the ambient conditions are as following.

Ambient Temperature: 25 ± 2 (degreeC)

Ambient Humidity: 25 ~ 85 (%)

Atmospheric Pressure: 86.0 ~ 104.0 (kP_a)

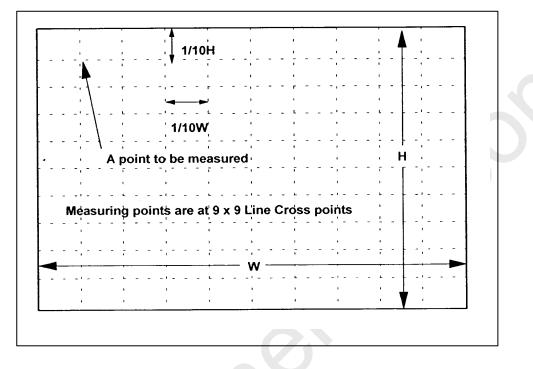
Version 3.0

5 Sept 2011

23/35

MEI INNOLUX

屏库:全球液晶屏交易中心


PRODUCT SPECIFICATION

Note (6) There is the Uniformity Measurement below:

'L_{bright} ' represents the Luminance of the point that is brighter than the other point to be compared.

'L_{dark} ' represents the Luminance of the point that is darker than the other point to be compared.

Measuring points are shown in the following Fig.

When the backlight is on with all pixels in the white (maximum gray) level, the luminance uniformity is defined as follows;

Where:

L_{bright}: The luminance of the brightness part of the area

L_{dark}: The luminance of the darkest part of the area

1. Screen Total

Luminance Uniformity = $\frac{L_{dark}}{L_{bright}} \ge 0.70$ over the entire screen.

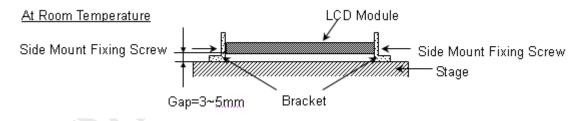
Version 3	0.
-----------	----

5 Sept 2011

24/35

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50 $^\circ\!\mathrm{C}$, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 55 $^\circ$ C, 240hours	
Low Temperature Operation (LTO)	Ta= 0 $^\circ\!\mathrm{C}$, 240hours	
High Temperature Storage (HTS)	Ta= 60 $^{\circ}$ C , 240hours	
Low Temperature Storage (LTS)	Ta= -20 $^\circ\!\!\mathbb{C}$, 240hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G _{rms} Wave: Half-sine Frequency: 10 - 300 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for each Axis)	8
Thermal Shock Test (TST)	-20 $^\circ C/30$ min , 60 $^\circ C/30$ min , 100 cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	


Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid

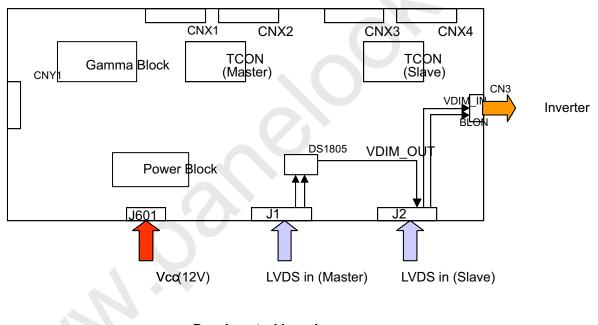
enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Version 3.0

5 Sept 2011

25/35


7. Input Parameters Detail

7.1 Backlight on/off (BLON) and brightness adjustment (VDIM_IN / VDIM_OUT)

The backlight unit can be controlled to turn on or turn off by BLON signal that is in the pin 1 of J2. The input voltage specification of BLON signal is described in section 3.3. If the input voltage level is low, the backlight unit will be turned off. If high, it will be turned on.

The backlight unit also can be controlled to adjust brightness by VDIM_IN signal that is in pin 2 of J2. The input voltage range is from 0V to 3V. The maximum brightness is acquirement when the input voltage is 0V. If the input voltage is 3V, the backlight unit will present the minimum brightness.

You can use I2C interface protocol to program DS1805 (DAC, Digital-to-Analog Converter) by pin7, 8 of J1. The port-1 of DS1805 will generate one voltage that you want. Then, the voltage is sent to VDIM_OUT signal that is in pin 3 of J2. The systems can feedback this signal to VDIM_IN signal to control the BLU brightness. Please refer to I2C interface protocol in MAXIM DS1805 datasheet for brightness adjustment.

Panel control board

7.2. I2C Specification

Following describes the I2C specifications equipped in the LCD module. Since the DAC (MAXIM DS1805) is used for Brightness, please refer to its own specifications in detail. 2 signals (SCL_DAC and SDA_DAC) in the LCD module interface are used for the DAC. The address for DAC is '0101101'b. Its port-1 is for Brightness. Reserved addresses are from '0010000'b to '0011111'b and from '0110000'b to '0111111'b.

Version 3.05 Sept 201126 / 35The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

奇美電子

- 7.2.1 I2C Feature Summary
- Standard mode (100KHz max) support
- 3.3V interface
- Slave mode operation only

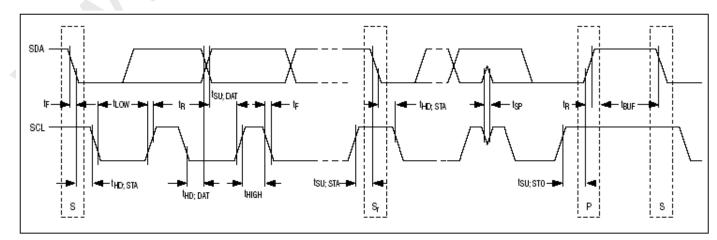
7.2.2 Electrical Specification

2 signals (SCL_DAC and SDA_DAC) are equipped at the LCD module interface. SCL_DAC is the clock input and SDA_DAC is the data input/output. These signals should be driven by Open-Drain or Open-Collector without any pull-up resister. Both signals are pulled up by 4.7K ohm resisters to 3.3V(typ.) respectively in the LCD module.

Electrical Specification of I2C Slave

	Symbol	Min	Max	Unit
Input Low voltage	Vil	-0.5	0.5	V
Input High voltage	Vih	2.3	3.6	V
Input Hysteresis voltage	Vhys	0.4	-	V
Input leakage current	li	-30	30	uA
@ Vil-Min or Vih-Max (*1)				
Output Low voltage	Vol	-	0.5	V
Output High impedance leakage current (*3)	loh	-30	30	uA

NOTE:


*1: Without pull up resisters (4.7K ohm)

8.2.3 Timing Specification

In the following figure and table, slave is the MCU in the LCD module and master is the scalar to drive the LCD module.

"S" is the START condition and "P" is the STOP condition.

I2C Bus timing

Version 3.0

5 Sept 2011

27 / 35

 $\langle P \rangle$

PRODUCT SPECIFICATION

I2C Timing Specification of I2C Slave

	Symbol	Min	Max	Unit	Notes
Frequency of SCL	fSCL	0	100	KHz	
Bus Free Time from STOP to START	tBUF	4.7	-	us	
Setup time of START(Repeated START)	tSU:STA	4.7	-	us	
Hold time of START(Repeated START)	tHD:STA	4.0	-	us	
Low time of SCL	tLOW	4.7	-	us	
High time of SCL	tHIGH	4.0	-	us	
Data hold time	tHD:DAT	0	-	us	
Data setup time	tSU:DAT	250	-	ns	
Data change from SCL falling edge (to	tCH:DAT	300	900	ns	
master)					
Rise time	tR	-	1000	ns	
Fall time	tF	_	300	ns	
Setup time of STOP	tSU:STO	4.0	-	us	
Spike suppression	tSP	-	50	ns	

8. PACKING

8.1 PACKING SPECIFICATIONS

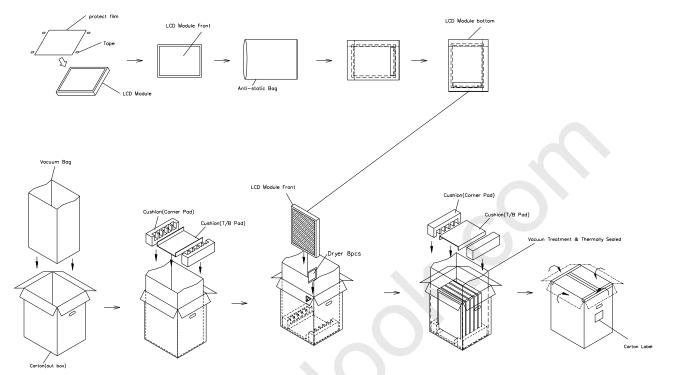
- (1) 5 LCD modules / 1 Box
- (2) Box dimensions: 468(L) X 402(W) X 591(H) mm
- (3) Weight: approximately: 15kg (5 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	-
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Corner , 3 Edge, 6 Face, 61cm	Non Operation

Version 3.0


5 Sept 2011

28/35

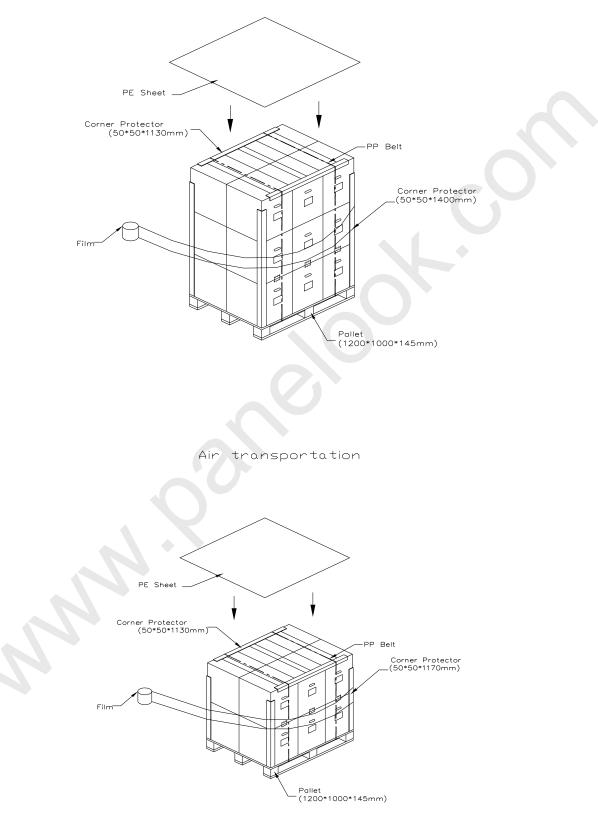
奇美電子 CHIMEI/NNOLUX

> Box Dimensions : 468(L)*402(W)*591(H)mm 5 modules / 1 box

Version 3.0

5 Sept 2011

29/35


CHIMEI INNOLUX

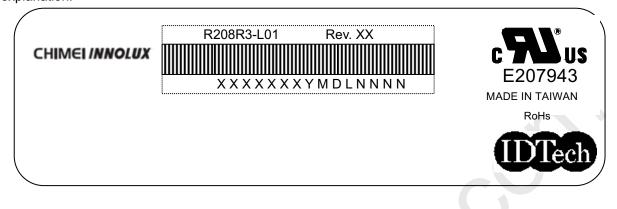
PRODUCT SPECIFICATION

8.3 PALLET

Sea and land transportation

Version 3

5 Sept 2011


30/35

9. CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: R208R3-L01
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) CMI barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMI internal use	-
XX	Revision	Cover all the change
Х	CMI internal use	
XX	CMI internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

Version 3.0

5 Sept 2011

31 / 35

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

10.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° C to 35° C and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

10.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below :

Temperature : 20±15℃

Humidity: 65±20%

Display pattern: continually changing pattern (Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude ,display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, Its reliability and function may not be guaranteed.

Version 3.0

5 Sept 2011

32/35

奇美電子 CHIMEL /NNOLUX

PRODUCT SPECIFICATION

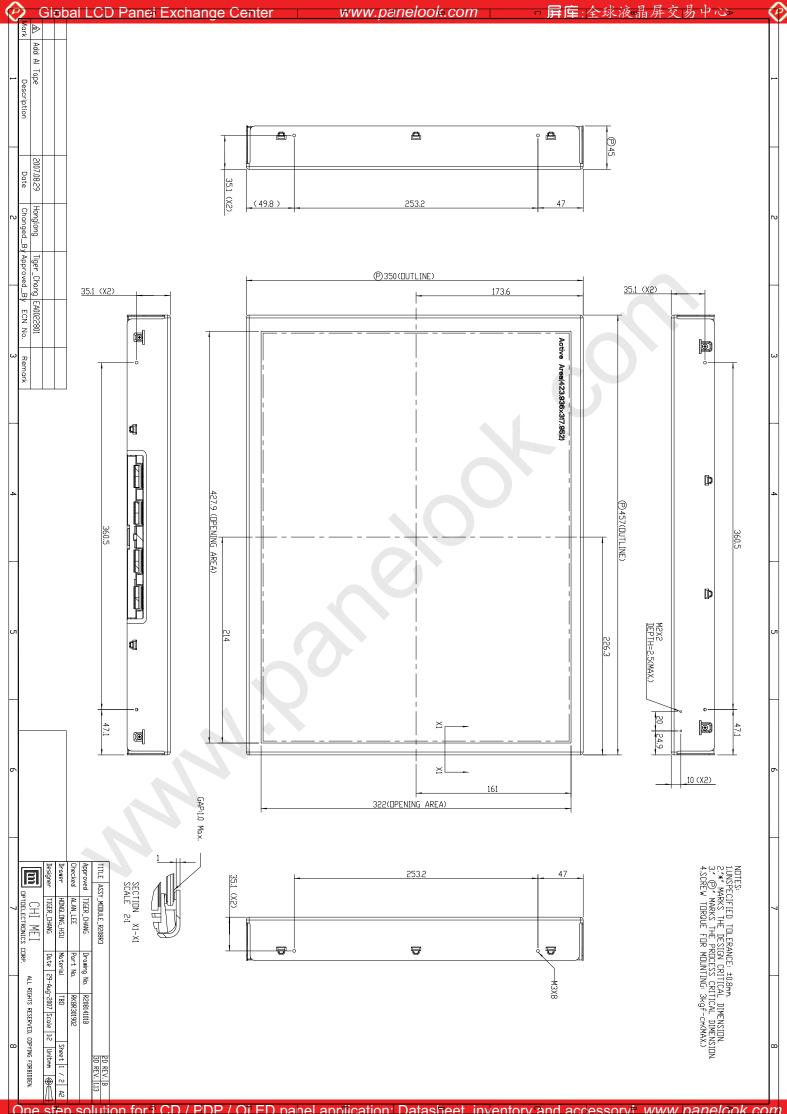
10.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

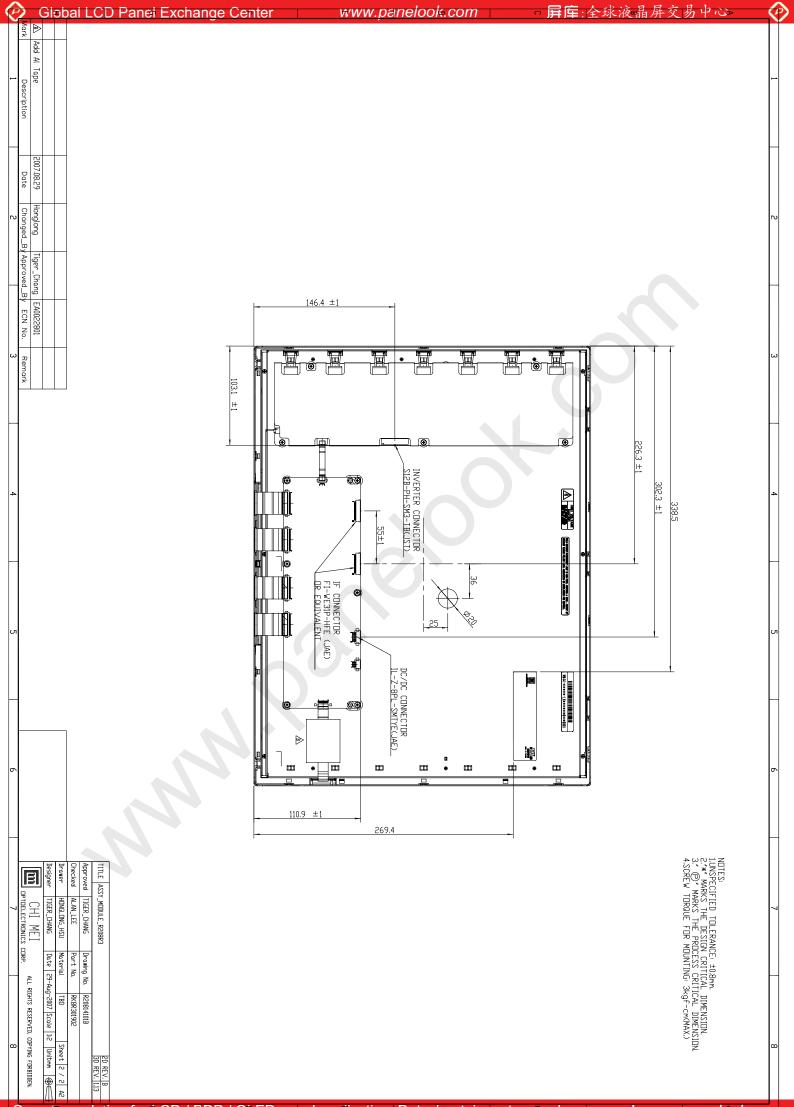
10.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.


10.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.


Version 3.0

5 Sept 2011

33 / 35

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com