

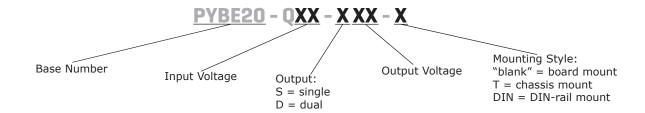
date 11/10/2023

page 1 of 9

SERIES: PYBE20 | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 20 W isolated output
- industry standard pin-out
- 4:1 input range (9~36 Vdc, 18~75 Vdc)
- single/dual regulated outputs
- 1500 Vdc isolation
- continuous short circuit protection
- efficiency up to 90%
- operating temperature range (-40~+85°C)
- EN/BS EN 62368-1



MODEL		put tage	output voltage		tput rent	output power	ripple & noise¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PYBE20-Q24-S3 ³	24	9~36	3.3	0	5000	16.5	100	86
PYBE20-Q24-S5 ³	24	9~36	5	0	4000	20	100	88
PYBE20-Q24-S9 ³	24	9~36	9	0	2222	20	100	89
PYBE20-Q24-S12 ³	24	9~36	12	0	1667	20	100	89
PYBE20-Q24-S15 ³	24	9~36	15	0	1333	20	100	90
PYBE20-Q24-S24 ³	24	9~36	24	0	834	20	100	90
PYBE20-Q24-D5 ³	24	9~36	±5	0	±2000	20	100	86
PYBE20-Q24-D9 ³	24	9~36	±9	0	±1111	20	100	88
PYBE20-Q24-D12 ³	24	9~36	±12	0	±834	20	100	88
PYBE20-Q24-D15 ³	24	9~36	±15	0	±667	20	100	88
PYBE20-Q48-S3	48	18~75	3.3	0	5000	16.5	100	86
PYBE20-Q48-S5	48	18~75	5	0	4000	20	100	86
PYBE20-Q48-S9	48	18~75	9	0	2222	20	100	89
PYBE20-Q48-S12	48	18~75	12	0	1667	20	100	87
PYBE20-Q48-S15	48	18~75	15	0	1333	20	100	90
PYBE20-Q48-S24	48	18~75	24	0	834	20	100	88
PYBE20-Q48-D5	48	18~75	±5	0	±2000	20	100	86
PYBE20-Q48-D12	48	18~75	±12	0	±834	20	100	88
PYBE20-Q48-D15	48	18~75	±15	0	±667	20	100	89

Notes:

- 1. From 5~100% load, nominal input, 20 MHz bandwidth oscilloscope, with 10 μF tantalum and 1 μF ceramic capacitors on the output. From 0~5% load, ripple and noise is <5% Vo.
- Measured at nominal input voltage, full load. The typical efficiencies for the chassis mount and DIN-rail mount versions are ~2% less than the board mount versions due to the input reverse polarity protection.
- 3. Model is not CE certified.
- 4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/description	n	min	typ	max	units
anarating input valtage	24 Vdc input models		9	24	36	Vdc
operating input voltage	48 Vdc input models		18	48	75	Vdc
start-up voltage	24 Vdc input models				9	Vdc
start-up voitage	48 Vdc input models				18	Vdc
	for maximum of 1 secon	nd				
surge voltage	24 Vdc input models		-0.7		50	Vdc
	48 Vdc input models		-0.7		100	Vdc
dan valta sa ahutdawa	24 Vdc input models		5.5	6.5		Vdc
under voltage shutdown	48 Vdc input models		12	15.5		Vdc
		3.3 Vdc output models			818	mA
	24 Vdc input models	5 Vdc output models			993	mA
current		all other models			969	MA
current		3.3 Vdc output models			409	mA
	48 Vdc input models	5 Vdc output models			497	mA
		all other models			485	mA
	turn on (3.5~12 Vdc or	open circuit)				
remote on/off (CTRL)⁴	turn off (<1.2 Vdc)					
	input current when swit	ched off		4	7	mA
filter	Pi filter					
input reverse polarity protection	only present on chassis	mount and DIN-rail mount m	odels			
no load power consumption				0.15		W

4. The voltage of the CTRL pin is referenced to input GND pin. Notes:

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3, 5 Vdc output models			10,000	μF
	9 Vdc output models			4,700	μF
	12 Vdc output models			1,600	μF
many income and aiting lands	24 Vdc output models			500	μF
maximum capacitive load ⁵	±5 Vdc output models			4,800	μF
	15, ±9 Vdc output models			1,000	μF
	±12 Vdc output models			800	μF
	±15 Vdc output models			625	μF
voltage accuracy ⁶	0% to full load		±1	±3	%
	from low line to high line, full load				
line regulation	positive outputs		±0.2	±0.5	%
	negative outputs		±0.5	±1	%
	from 5% to full load	,			
load regulation7	positive outputs		±0.5	±1	%
-	negative outputs		±0.5	±1.5	%

Note:

7. At $0\sim100\%$ load, the max load regulation is $\pm5\%$.

^{5.} Tested at input voltage range and full load. 6. At $0\sim5\%$ load, the max output voltage accuracy for the ±5 & ±9 Vdc output models is $\pm5\%$.

OUTPUT (CONTINUED)

parameter	conditions/description	min	typ	max	units
cross regulation	dual output models: main output 50% load secondary output from 10~100% load			±5	%
start-up time	nominal input, constant resistive load		10		ms
adjustability ⁸	see application notes		±10		%
switching frequency ⁹	PWM mode		270		kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage 3.3, 5, ± 5 Vdc output models all other models		±5 ±3	±8 ±5	% %
temperature coefficient	at full load			±0.03	%/°C

Note:

PROTECTIONS

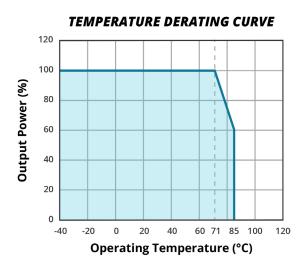
parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%
over current protection		110		190	%
short circuit protection	hiccup, continuous, self recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			МΩ
isolation capacitance	input to output, 100 kHz / 0.1 V PYBE20-Q24-S24 all other models		2,050 1,050		pF pF
safety approvals ^{10, 11}	certified to 62368-1: EN, BS EN certified to 60950-1: UL				
conducted emissions	CISPR32/EN55032, class A (no external circu	it); class B (externa	l circuit requi	red, see Figu	re 3-b, 4-b)
radiated emissions	CISPR32/EN55032, class A (no external circu	it); class B (externa	l circuit requi	red, see Figu	re 3-b, 4-b)
ESD	IEC/EN61000-4-2, contact \pm 4kV, class B				
radiated immunity	IEC/EN61000-4-3, 10V/m, class A				
EFT/burst	IEC/EN61000-4-4, ± 2kV, class B (external ci	rcuit required, see F	igure 3-a, 4-	a)	
surge	IEC/EN61000-4-5, line-line ± 2kV, class B (ex	kternal circuit requir	ed, see Figur	e 3-a, 4-a)	
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A				
voltage dips & interruptions	IEC/EN61000-4-29, 0%-70%, class B				
MTBF	as per MIL-HDBK-217F, 25°C	1,000,000			hours
RoHS	yes				

Note:

^{8.} For single output models only.
9. Value is based on full load. At loads <50%, the switching frequency decreases with decreasing load

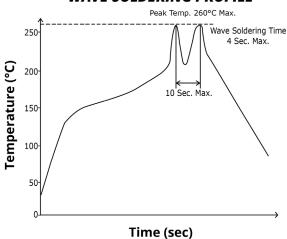

^{10.} UL approval only for board mount models.11. CE approval only applies for models that have 18~75 Vdc input range. Please refer to the model table.

date 11/10/2023 | page 4 of 9

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~55 Hz, for 30 minutes on each axis		10		G

DERATING CURVES



SOLDERABILITY¹²

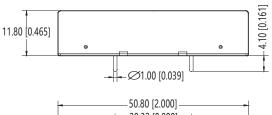
parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

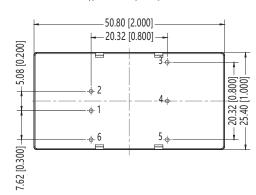
Note: 12. For board mount models only.

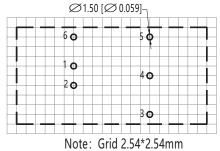
WAVE SOLDERING PROFILE

date 11/10/2023 | page 5 of 9

MECHANICAL


parameter	conditions/description	min	typ	max	units
	board mount: 50.80 x 25.40 x 11.80 [2.000				mm
dimensions	chassis mount: $76.00 \times 31.50 \times 21.20 [2.992 \times 1.240 \times 0.835 inch]$				mm
	DIN-rail mount: 76.00 x 31.50 x 25.80 [2.99	02 x 1.240 x 1.016 inch			mm
case material	aluminum alloy				
	board mount		25		g
weight	chassis mount		48		g
-	DIN-rail mount		68		g

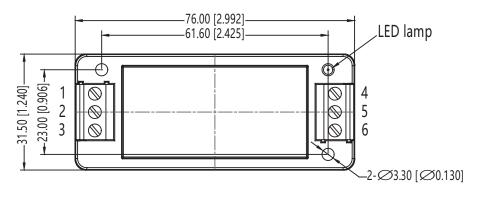

MECHANICAL DRAWING (BOARD MOUNT)

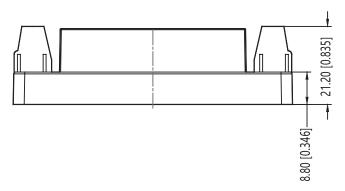

units: mm [inch] tolerance: ±0.50[±0.020]

pin diameter tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	GND	GND			
2	Vin	Vin			
3	+Vo	+Vo			
4	trim	0V			
5	0V	-Vo			
6	CTRL	CTRL			

Recommended PCB Layout Top View


MECHANICAL DRAWING (CHASSIS MOUNT)

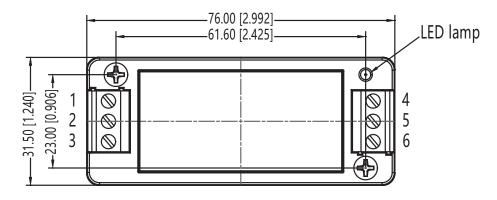

units: mm [inch]

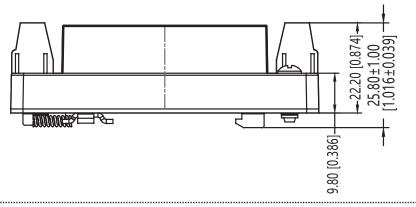
tolerance: ±0.50[±0.020]
wire range: 24~12 AWG

tightening torque: max 0.4 N*m

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	CTRL	CTRL			
2	GND	GND			
3	Vin	Vin			
4	0V	-Vo			
5	trim	0V			
6	+Vo	+Vo			

MECHANICAL DRAWING (DIN-RAIL MOUNT)


units: mm [inch]


tolerance: $\pm 0.50[\pm 0.020]$

installed on DIN rail TS35 wire range: 24~12 AWG

tightening torque: max 0.4 N*m

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	CTRL	CTRL			
2	GND	GND			
3	Vin	Vin			
4	0V	-Vo			
5	trim	0V			
6	+Vo	+Vo			

APPLICATION CIRCUIT

This series has been tested according to the following recommended circuits (Figures 1 & 2) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent impedance provided that the capacitance is less than the maximum capacitive load of the model.

Figure 1 **Single Output Models**

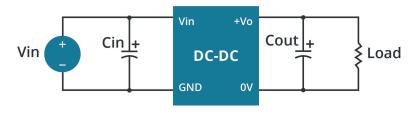


Figure 2 **Dual Output Models**

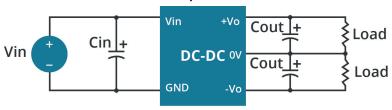


Table 1

Vout (Vdc)	Cin (µF)	Cout (µF)
3.3/5	100	470
9/12/15	100	220
24	100	100
±5	100	220
±9/±12/±15	100	100

EMC RECOMMENDED CIRCUIT

Figure 3 **Single Output Models**



Figure 4 **Dual Output Models**

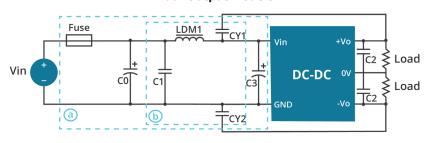


Table 2

Recommended External Circuit Components				
Vin (Vdc)	24	48		
FUSE	choose according to actual input current			
C0, C3	330 μF / 50 V	330 μF / 100 V		
C1	1 μF / 50 V	1 μF / 100 V		
C2	Refer to the Cout in Table 1			
LDM1	4.7 μH / 3.1 A			
CY1, CY2	1 nF / 2 kV			

APPLICATION NOTES

Output voltage trimming Leave open if not used.

Trim up

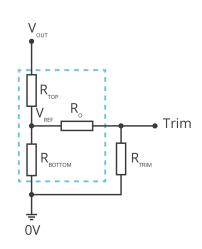
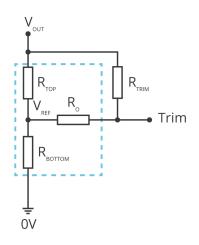



Figure 3

Trim down

$$R_{TRIM} = \frac{a \cdot R_{BOTTOM}}{R_{BOTTOM} - a} - R_{O} \qquad a = \frac{V_{REF}}{V_{OUT} - V_{REF}} \cdot R_{TOP}$$

Formula for Trim up

 $R_{TRIM} = \frac{a \cdot R_{TOP}}{R_{TOP} - a} - R_{O} \qquad a = \frac{V_{OUT} - V_{REF}}{V_{REF}} \cdot R_{BOTTO}$

Formula for Trim down

Table 3

V_{out}	R_{TOP}	R _{BOTTOM}	R_{o}	V_{REF}
(Vdc)	(kΩ)	(kΩ)	(kΩ)	(V)
3.3	4.801	2.87	12.4	1.25
5	2.883	2.87	10	2.5
9	7.500	2.87	15	2.5
12	11.000	2.87	15	2.5
15	14.494	2.87	15	2.5
24	24.872	2.87	17.8	2.5

Note: Value for $\rm R_{TOP'}$ $\rm R_{BOTTOM'}$ $\rm R_{O'}$ and $\rm V_{REF}$ refer to Table 3 (fixed internal values).

R_{TRIM}: Trim resistance

a: User-defined parameter, no actual meanings

 V_{OUT} : Nominal output voltage

REVISION HISTORY

rev.	description	date
1.0	initial release	01/24/2019
1.01	features and safety line updated	01/12/2021
1.02	derating curve and circuit figures updated, packaging removed	08/23/2021
1.03	Vref updated for 3.3 Vdc output model	02/07/2022
1.04	CE certification updated for 24V models	12/21/2022
1.05	CE note updated in the safety & compliance section	11/10/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.