Version : <u>1.2</u>

TECHNICAL SPECIFICATION

MODEL NO.: PW062XS6

Customer's Confirmation		
Customer	_	
Ву	-	
PVI's Confirmation		

Dep	FAE	Panel	Electronic	Mechanical	Product	Prepared
		Design	Design	Design	Verification	by
SIGN	图 豐	京美宝 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	全事神	事件井	强烈	18 A A A A A A A A A A A A A A A A A A A

TECHNICAL SPECIFICATION

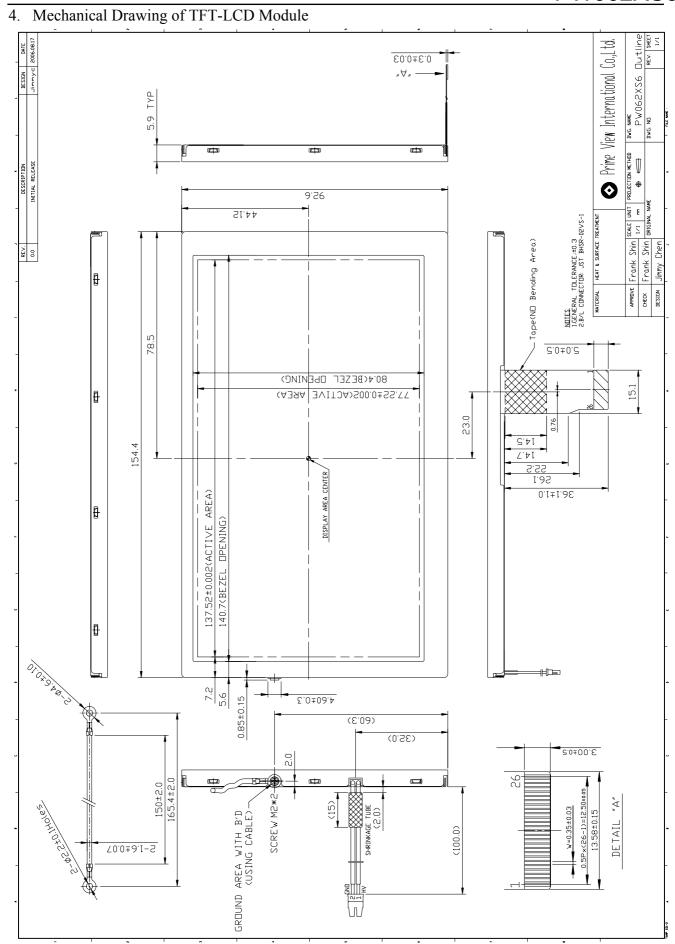
CONTENTS

NO.	ITEM	PAGE
-	Cover	1
1	Contents	2
1	Application	3
2	Features	3
3	Mechanical Specifications	3
4	Mechanical Drawing of TFT-LCD module	4
5	Input / Output Terminals	5
6	Pixel Arrangement	7
7	Absolute Maximum Ratings	8
8	Electrical Characteristics	8
9	Power Sequence	18
10	Optical Characteristics	18
11	Handling Cautions	22
12	Reliability Test	23
13	Block Diagram	24
14	Packing	25
-	Revision History	26

1. Application

This technical specification applies to 6.2" color TFT-LCD module, PW062XS6 The applications of the panel are car TV, portable DVD, GPS, multimedia applications and others AV system.

2. Features


- . Amorphous silicon TFT-LCD panel with Back-Light unit.
- . Pixel in stripe configuration
- . Compatible with NTSC and PAL system
- . Slim and compact
- . Up / Down and Left / Right Image Reversion
- . Support multi display mode (If you use this mode, you must use PVI-1004D's timing controller (made by PVI))

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	6.2 (diagonal)	Inch
Display Format	480 X R,G,B) X 34	Dot
Active Area	137.52 (H) ≯7.22 (V)	mm
Pixel Pitch	0.2865 (H) ¾ 0.33 (V)	mm
Pixel Configuration	Stripe	
Outline Dimension	154.4 (W) >92.6 (H) >5.90 (D)	mm
Weight	13640	g
Back-light	CCFL.1 tube	
Surface Treatment	Anti-Glare	
Display mode	Normally white	

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:3

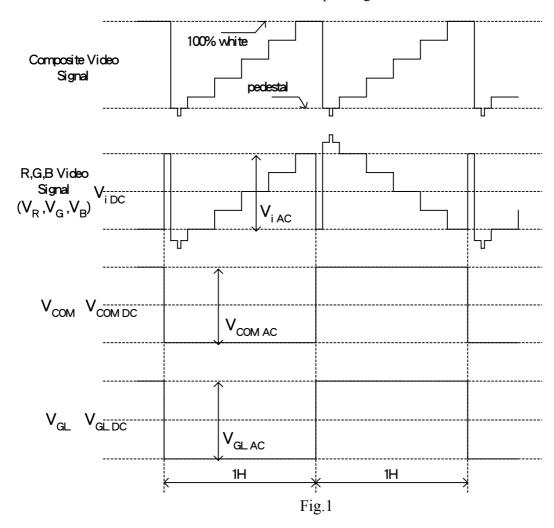
The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:4

5. Input / Output Terminals

LCD Module Connector

FPC Down Connect, 26 Pins, Pitch: 0.5 mm

Pin No	Symbol	I/O	Description	Remark
1	GND	-	Ground for logic circuit	
2	V_{CC}	I	Supply voltage of logic control circuit for scan driver	Note 5-3
3	V_{GL}	ı	Negative power for scan driver	Note 5-2
4	$ m V_{GH}$	I	Positive power for scan driver	Note 3-2
5	STVD	I/O	Vertical start pulse	Note 5-5
6	STVU	I/O	Vertical start pulse	Note 3-3
7	CKV	I	Shift clock for scan driver	
8	U/D	I	Up / Down scan control input	Note 5-5
9	OEV	I	Output enable control for scan driver	
10	V_{COM}	I	Common electrode driving signal	Note 5-1
11	V_{COM}	I	Common electrode driving signal	Note 3-1
12	L/R	I	Left / Right control	Note 5-5
13	MOD	I	Sequential sampling and simultaneous sampling setting	Note 5-4
14	OEH	I	Output enable control for data driver	
15	STHL	I/O	Start pulse for horizontal scan line	Note 5-5
16	STHR	I/O	Start pulse for horizontal scan line	Note 3-3
17	CPH3	I	Sampling and shifting clock for data driver	
18	CPH2	I	Sampling and shifting clock for data driver	
19	CPH1	I	Sampling and shifting clock for data driver	
20	$V_{ m DD1}$	I	Supply voltage of logic control circuit for data driver	Note 5-3
21	GND	-	Ground for logic circuit	
22	VR	I	Alternated video signal (Red)	
23	VG	I	Alternated video signal (Green)	
24	VB	I	Alternated video signal (Blue)	
25	$V_{ m DD2}$	I	Supply voltage for analog circuit	Note 5-3
26	AV_{SS}	I	Ground for analog circuit	


The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:5

Note $5 - 1 : V_{COM (TYP.)} = 6 V_{PP.}$

Phase of the video signal input and V_{COM}

The relation between these values could refer to 8-1 Operating condition.

Liquid crystal transmission of the video signal input, V_{COM} and timing

	V_{COM}		
	H Level	L Level	
Video Signal Input Maximum	Black	White	
Video Signal Input Minimum	White	Black	

White: maximum transmission / Black: minimum transmission

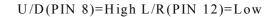
Note
$$5 - 2 : V_{GL(TYP)} = -12V$$
, $V_{GH(TYP)} = +17V$

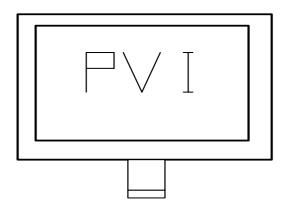
Note
$$5 - 3 : V_{DD1}, V_{CC(TYP.)} = +3.3V, V_{DD2 (TYP.)} = +5.0V$$

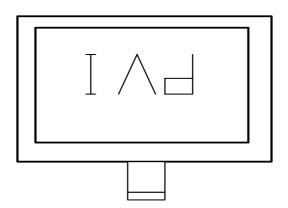
Note 5 – 4 : MOD=H: Simultaneous sampling

MOD=L: Sequential sampling

Please set CPH2 and CPH3 to GND when MOD=H


Note 5-5: STHL, STHR and L/R mode


L/R	STHL	STHR	Remark	
$High(V_{DD1})$	Input	Output	Left to Right	
Low(0 Volt)	Output	Input	Right to Left	


STVU, STVD, and U/D mode

U/D	STVD	STVU	Remark
High(V _{CC})	High(V _{CC}) Input		Down to Up
Low(0 Volt)	Output	Input	Up to Down

U/D(PIN 8)=Low L/R(PIN 12)=High

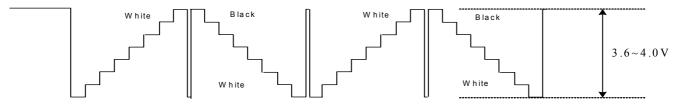
6. Pixel Arrangement

R G B R G B R G B 1 st Line R G B R G B 2 nd Line R G B 3 rd Line 1 st Pixel	R G B R G B R G B 480 th Pixel
$1 \text{ Pixel} = \mathbf{R} \mathbf{G} \mathbf{B}$	
R G B 232 th Line R G B R G B 233 th Line R G B R G B R G B 234 th Line	R G B R G B R G B

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:7

7. Absolute Maximum Ratings

The followings are maximum values , which if exceeded, may cause faulty operation or damage to the unit.


Parameter	Symbol	MIN.	MAX.	Unit	Remark	
Supply Voltage For Source Driver	V_{DD1}	-0.3	+5.8	V		
Supply Voltage For Source Driver	V_{DD2}	-0.3	+7.0	V		
Supply Voltage For Gate Driver		V_{CC}	-0.3	+6.0	V	
		V_{GH} - V_{GL}	-0.3	+40.0	V	
	H Level	V_{GH}	-0.3	+25.0	V	
	L Level	V_{GL}	-16	+0.3	V	

8. Electrical Characteristics

8-1) Recommended Driving condition for TFT-LCD panel

Parameter	<u> </u>	Symbol	MIN.	Typ.	MAX.	Unit	Remark
	Analog	$V_{ m DD2}$	+4.5	+5.0	+5.5	V	
Supply Voltage For Source Driver	Lacia	V	+3.0	+3.3	+3.6	V	Depend on T/C signal
Direct	Logic	$ m V_{DD1}$	+4.5	+5.0	+5.5	V	voltage
	V	GH	+15	+17	+19	V	
C1 V-14 F C-4-	V_{G}	L DC	-13.0	-12	-11	V	DC Component of V _{GL}
Supply Voltage For Gate Driver	$ m V_{GLAC}$		-	+6.0	-	V_{P-P}	AC Component of V _{GL}
Dirvei	Logic	V _{CC}	+3.0	+3.3	+3.6	V	Depend on T/C signal
			+4.5	+5.0	+5.5	V	voltage
Analog Signal input Level	V	iAC	-	+3.6	+4.0	V	Note 8-1
(V_R, V_G, V_B)	V_{iDC}		-	2.5	-	V	
Digital input voltage	H level	V_{IH}	$0.7~\mathrm{V}_\mathrm{DD1}$	1	V_{DD1}	V	
Digital iliput voltage	L level	$V_{ m IL}$	-0.3	ı	$0.3~\mathrm{V_{DD1}}$	V	
Digital output voltage	H level	V_{OH}	$0.7~\mathrm{V}_{\mathrm{DD1}}$	-	$V_{ m DD1}$	V	
Digital output voltage	L level	V_{OL}	-0.3	-	$0.3~\mathrm{V_{DD1}}$	V	
V _{COM} Voltage		V _{COM AC}	-	+6.0	-	V_{P-P}	AC Component of V _{COM}
		V _{COM DC}	-	1.5	-	V	DC Component of V _{COM} Note 8-2

Note 8-1: Both NTSC and PAL system Video Signal input waveform is based on 8 steps gray scale.

Note 8-2 : PVI strongly suggests that the $V_{\text{COM DC}}$ level shall be adjustable , and the adjustable level range is 1.5V $\pm V$, every module's $V_{\text{COM DC}}$ level shall be carefully adjusted to show a best image performance.

8-2) Recommended driving condition for back light

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Lamp voltage	$V_{ m L}$	500	550	600	Vrms	$I_L=6mA$
Lamp current	$I_{\rm L}$	3	6	8	MA	Note 8-3
Lamp frequency	$P_{ m L}$	30	43	80	KHz	Note 8-4
Starting voltage (25°C) (Reference Voltage)	Vs	-	720	830	Vrms	Note 8-5

Note 8-3 : In order to satisfy the quality of B/L, no matter use what kind of inverter , the output lamp current must between Min. and Max. to avoid the abnormal display image caused by B/L.

Note 8-4: The waveform of lamp driving voltage should be as closed to a perfect sine wave as possible.

Note 8-5: The "Max of starting voltage" means the minimum voltage of inverter to turn on the CCFL. and it should be applied to the lamp for more than 1 second to start up. Otherwise the lamp may not be turned on.

8-3)Back Light driving

Back Light Connector: JST BHSR-02VS-1, Pin No.: 2, Pitch: 3.5 mm

Pin No	Symbol	Description	Remark
1	VL1	Input terminal (Hi voltage side)	
2	VL2	Input terminal (Low voltage side)	Note 8-6

Note 8-6: Low voltage side of back light inverter connects with Ground of inverter circuits.

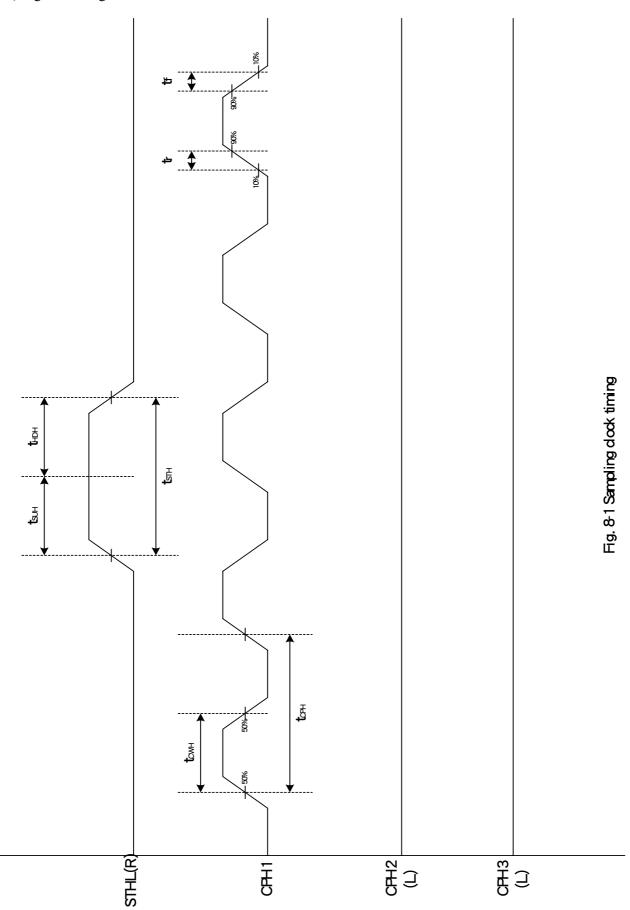
8-4) Power Consumption

Ta= 25 ℃

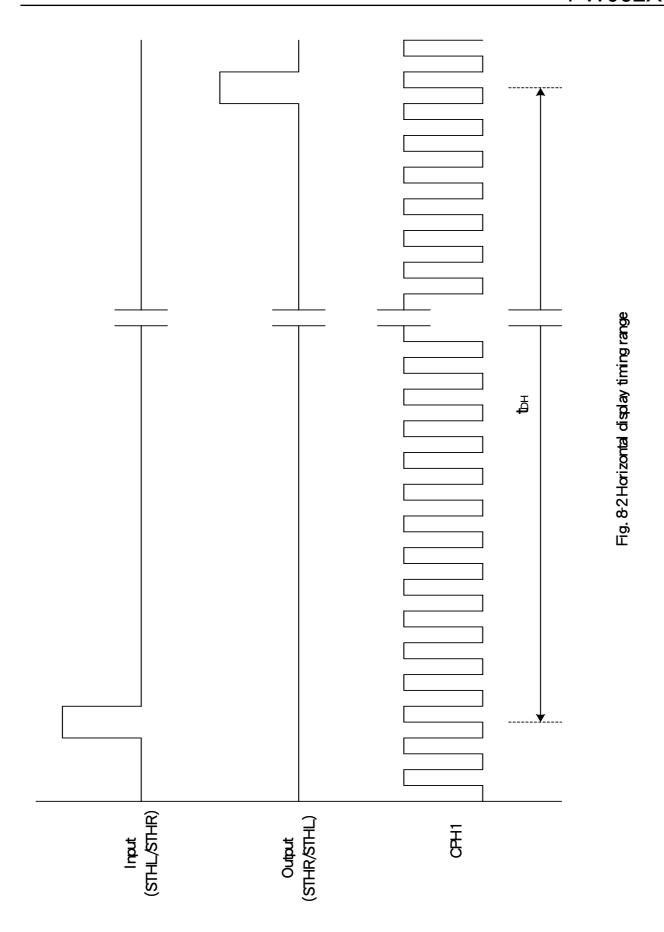
						144
Parameter	Symbol	Conditions	TYP.	MAX	Unit	Remark
Supply current for Gate Driver (Hi level)	I_{GH}	$V_{GH} = +17V$	0.09	0.11	mA	
Supply current for Gate Driver (Low level)	I_{GL}	$V_{GL} = -12V$	1.11	1.13	mA	V _{EE} center voltage
Supply current for Source Driver(Digital)	I_{DD1}	$V_{DD1} = +3.3V$	5.0	8.0	mA	
Supply current for Source Driver(Analog)	I_{DD2}	$V_{DD2} = +5.0V$	5.0	8.0	mA	
Supply current for Gate Driver (Digital)	I_{CC}	$V_{CC} = +3.3V$	0.02	0.026	mA	
LCD Panel Power Consumption		-	65	99	mW	Note 8-7
Back Light Lamp Power Consumption		-	3.30	ı	W	Note 8-8

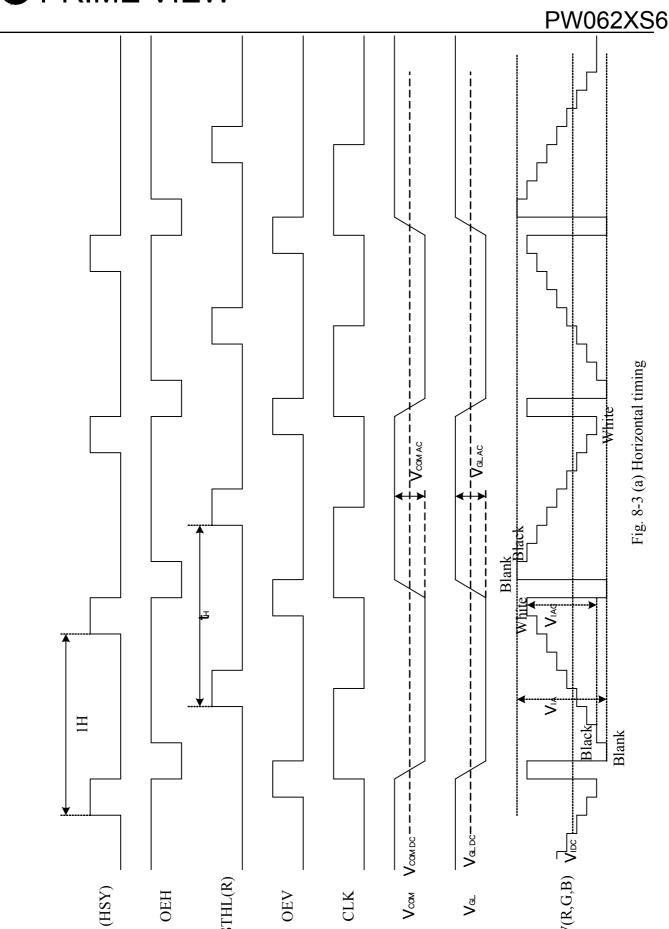
Note 8-7: The power consumption for back light is not included

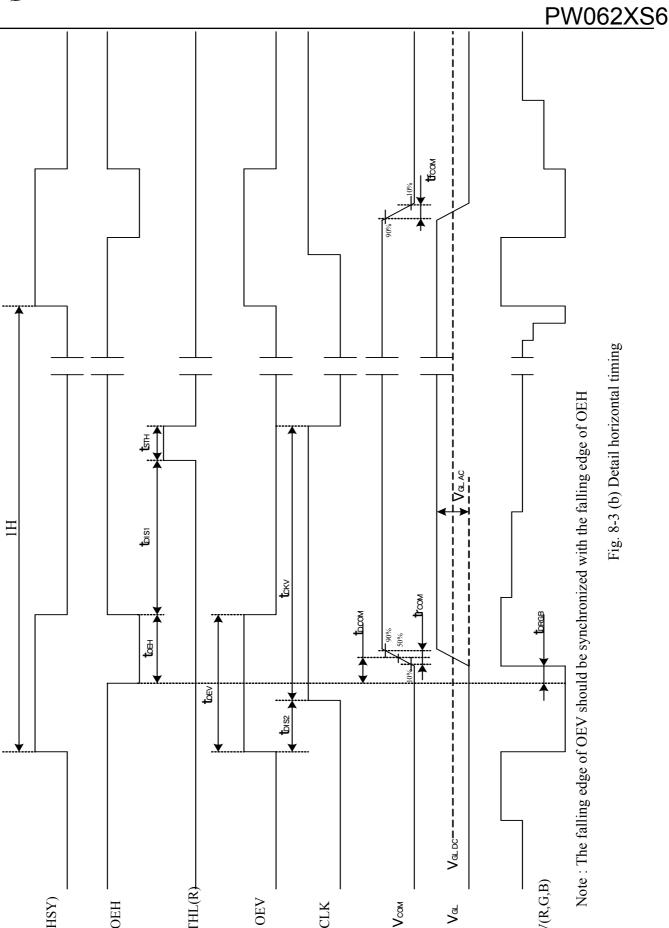
Note 8-8 : Back light lamp power consumption is calculated by $I_L W_L$.



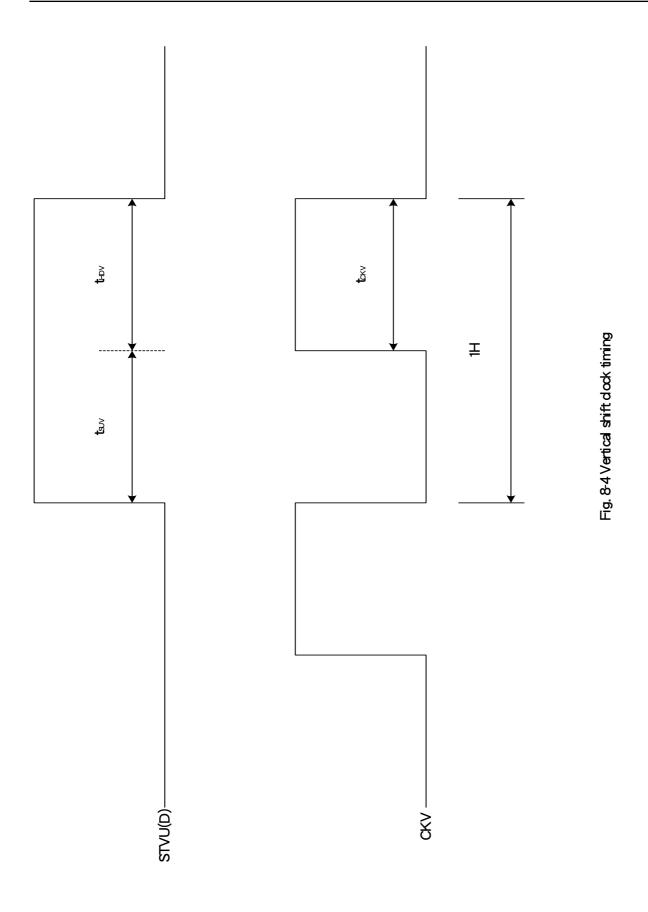
8-5) Timing Characteristics Of Input Signals


Characteristics	Symbol	Min.	Тур.	Max.	Unit	Remark
Rising time	$t_{\rm r}$	-	-	10	ns	
Falling time	$t_{\rm f}$	-	-	10	ns	
High and low level pulse width	t_{CPH}	9.2	9.6	10.0	M_{HZ}	CPH1~CPH3
CPH pulse duty	t_{CWH}	30	50	70	%	CPH1~CPH3
STH setup time	$t_{ m SUH}$	20	-	1	ns	STHR,STHL
STH hold time	$t_{ m HDH}$	20	-	ı	ns	STHR,STHL
STH pulse width	t_{STH}	-	1	-	t_{CPH}	STHR,STHL
STH period	t_{H}	61.5	63.5	65.5	$\mu_{\rm S}$	STHR,STHL
OEH pulse width	t_{OEH}	-	1.40	-	μ s	OEH
Sample and hold disable time	$t_{\rm DIS1}$	-	7.43	-	μs	
OEV pulse width	t _{OEV}	-	18	-	μs	OEV
CKV pulse width	t_{CKV}	-	31.75	-	μs	CKV
Clean enable time	$t_{\rm DIS2}$	-	9.0	-	μ _S	
Horizontal display start	t_{SH}	-	480	-	t_{CPH}	
STV setup time	$t_{ m SUV}$	400	-	ı	ns	STVU,STVD
STV hold time	$t_{ m HDV}$	400	-	ı	ns	STVU,STVD
STV pulse width	$t_{ m STV}$	-	-	1	t_{H}	STVU,STVD
Horizontal lines per field	t_{V}	256	262	268	t_{H}	
Vertical display start	$t_{ m SV}$	-	3	1	t_{H}	
Vertical display timing range	$t_{ m DV}$	-	234	1	t_{H}	
VCOM rising time	t_{rCOM}	-	-	5	μ s	
VCOM falling time	t_{fCOM}	-	-	5	μs	
VCOM delay time	t_{DCOM}	-	-	3	μs	
RGB delay time	t_{DRGB}	-	-	1	μ s	

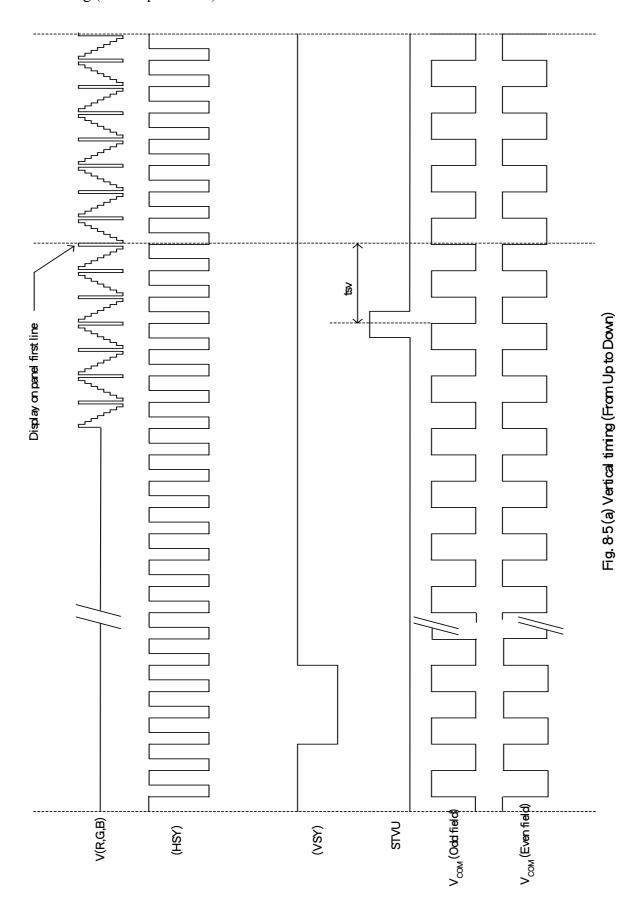

8-6) Signal Timing Waveforms

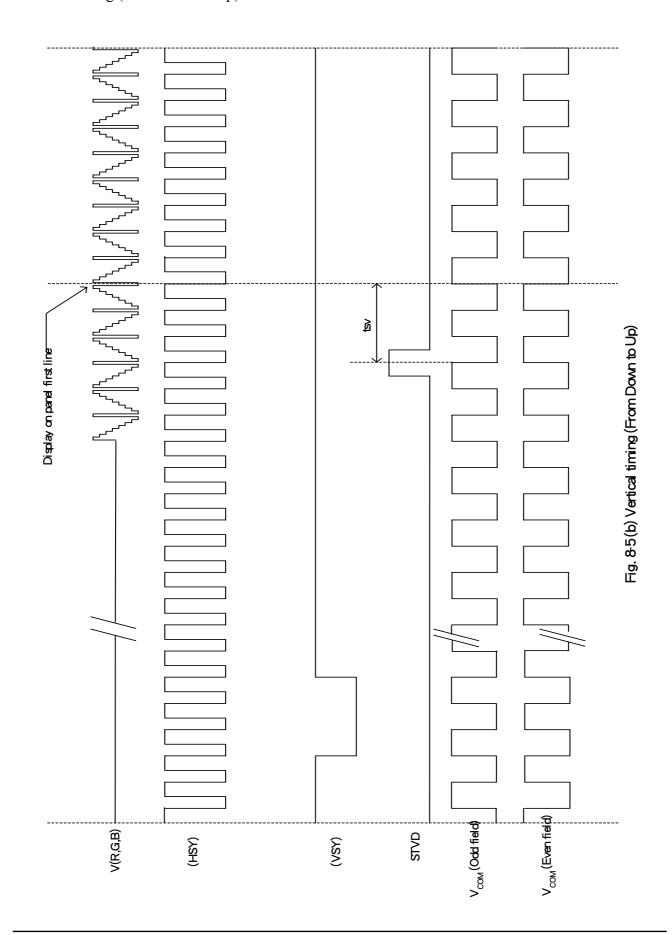


The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:12

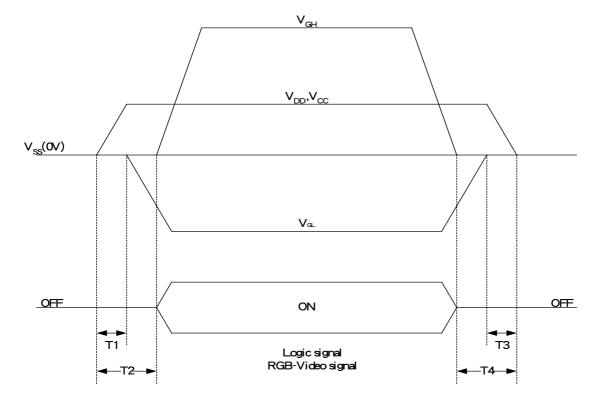


The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:13


The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:14



Vertical timing (From up to down)

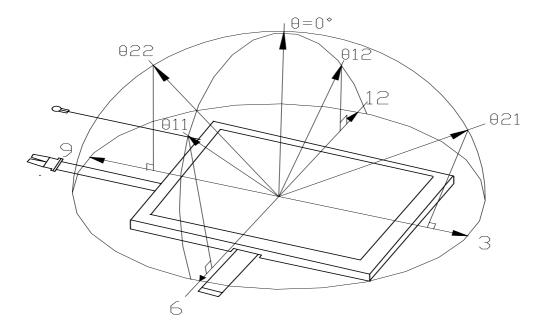

Vertical timing (From down to up)

9. Power on Sequence

The Power on Sequence only effect by V_{CC} , V_{SS} , V_{DD} , V_{GL} and V_{GH} , the others do not care.

- 1) $10 \text{ms} \le T1 < T2$
- 2) 0ms<T $3 \le$ T $4 \le 10$ ms

10. Optical Characteristics


10-1) Specification

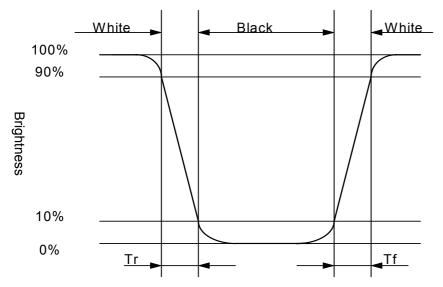
Ta = 25°C

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks	
	Horizontal	θ 21, θ 22		55	60	-	deg	Note 10-1	
Viewing Angle	Vertical	0 12	CR≧10	30	35	-	deg		
	Vertical	0 11		45	50	-	deg		
Contrast Ratio		CR	At optimized Viewing angle	200	350	-		Note 10-2	
Response time	Rise	Tr	$\theta = 0^{\circ}$	1	15	30	ms	Note 10-4	
Response time	Fall	Tf		ı	25	50	ms		
Brightness		L	$\boldsymbol{\theta} = 0^{\circ}$	300	350	-	cd/m²		
White Chromaticity		X	$oldsymbol{ heta}=0^{\circ}$	0.28	0.31	0.34		Note 10-3	
		у	0 -0	0.30	0.33	0.36			
Uniformity U		-	70	75	-	%	Note 10-5		
Lamp Life Time			+25℃	30000	-	-	hr		

Note 10-1: The definitions of viewing angles

Note 10-2 : CR = Luminance when Testing point is White

Luminance when Testing point is Black


(Testing configuration see 8-2)

Contrast Ratio is measured in optimum common electrode voltage.

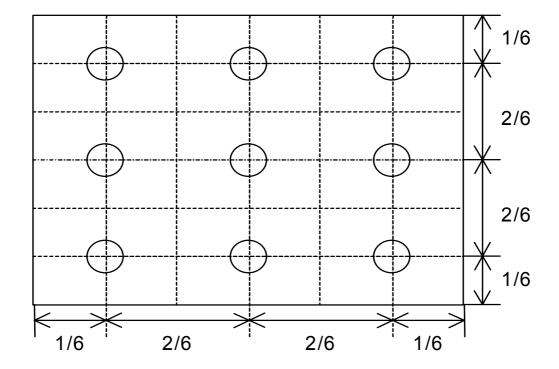
Note 10-3 : 1.Topcon BM-7(fast) luminance meter 1 $^{\circ}$ field of view is used in the testing (after 20 \sim 30 minutes operation).

2.Lamp current : 6 mA 3.Inverter model : TDK-347.

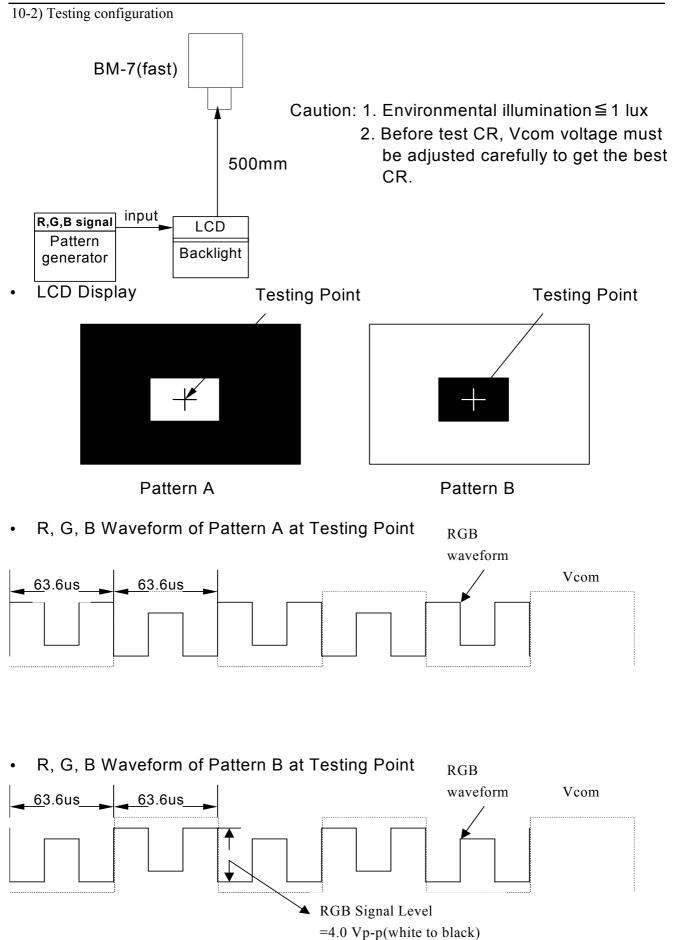
Note 10-4: The definition of response time:

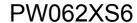
Note 10-5: The uniformity of LCD is defined as

U = The Minimum Brightness of the 9 testing Points
The Maximum Brightness of the 9 testing Points


Luminance meter: BM-5A or BM-7 fast (TOPCON)

Measurement distance: 500 mm +/- 50 mm


Ambient illumination : < 1 Lux


Measuring direction: Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

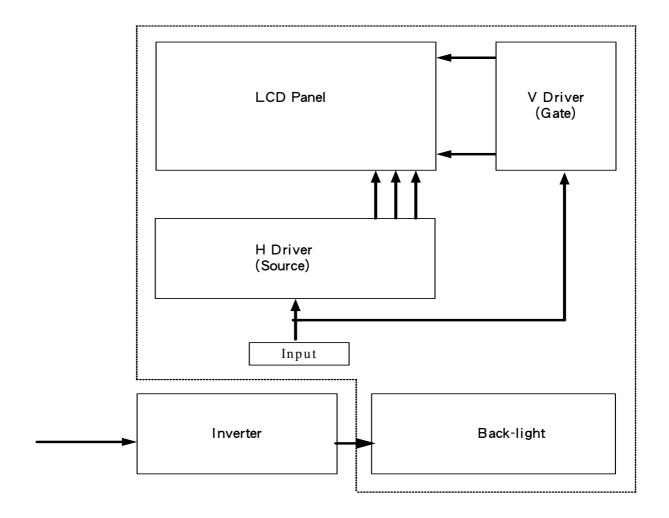
11. Handling Cautions

- 11-1) Mounting of module
 - a) Please power off the module when you connect the input/output connector.
 - b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
 - 1. The noise from the backlight unit will increase.
 - 2. The output from inverter circuit will be unstable.
 - 3.In some cases a part of module will heat.
 - c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
 - d) Protective film (Laminator) is applied on surface to protect it against scratches and dirt. It is recommended to peel off the laminator before use and taking care of static electricity.
- 11-2) Precautions in mounting
 - a) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
 - b) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
 - c) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
- 11-3) Others
 - a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
 - b) Store the module at a room temperature place.
 - c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
 - d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
 - e) Observe all other precautionary requirements in handling general electronic components.

12. Reliability Test

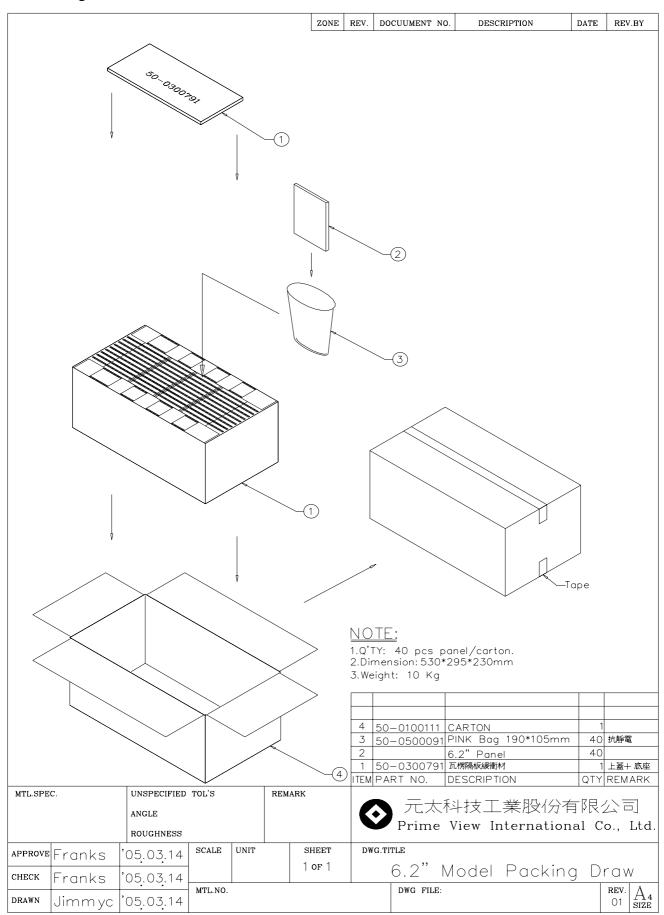
No.	Test Item	Test Condition
1	High Temperature Storage Test	$Ta = +80^{\circ}C$, 240 hrs
2	Low Temperature Storage Test	$Ta = -30^{\circ}C$, 240 hrs
3	High Temperature Operation Test	$Ta = +80^{\circ}C$, 240 hrs
4	Low Temperature Operation Test	$Ta = -20^{\circ}C$, 240 hrs
5	High Temperature & High Humidity Operation Test	$Ta = +60^{\circ}C, 90\%RH, 240 \text{ hrs}$
6	Thermal Cycling Test (non-operating)	-20°C ←→ +70°C, 200Cycles 30 min 30 min
7	Vibration Test (non-operating)	$Frequency: 10 \sim 55 \ H_Z$ $Amplitude: 1 \ mm$ $Sweep \ time: 11 \ mins$ $Test \ Period: 6 \ Cycles \ for \ each \ direction \ of \ X, \ Y, \ Z$
8	Shock Test (non-operating)	100G, 6ms Direction: ±X, ±Y, ±Z Cycle: 3 times
9	Electrostatic Discharge Test (non-operating)	200pF, 0Ω ±200V 1 time / each terminal

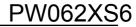
Ta: ambient temperature


Note: The protective film must be removed before temperature test.

[Criteria]

- 1. Main LCD should normally work under the normally condition no defect of function, screen quality and appearance (including : mura ,line defect ,no image)
- 2. After the temperature and humidity test, the luminance and CR (Contrast ratio) ,should not be lower than minimum of specification
- 3. After the vibration and shock test, can't be find chip broken




13. Block Diagram

14. Packing

Revision History

Rev.	Issued Date	Revised Contents
1.0	Nov 09, 2005	Release version
1.1	Dec,16, 2005	Page22. 12. Reliability Test
		Modify from
		High Temperature Operation Test= -80°C, 240 hrs To
		High Temperature Operation Test=+80°C, 240 hrs
1.2	Aug, 10,2006	Modify Page3 3.Mechanical Specifications
		Pixel Pitch from 0.342(H) 3 0.33 (V) to 0.2865 (H) 3 0.33 (V)