1 Product profile

1.1 General description

The device is designed to protect high-speed interfaces such as SuperSpeed USB, High-Definition Multimedia Interface (HDMI), DisplayPort, external Serial Advanced Technology Attachment (eSATA) and Low Voltage Differential Signaling (LVDS) interfaces against ElectroStatic Discharge (ESD).

The device includes four high-level ESD protection diode structures for ultra high-speed signal lines and is encapsulated in a leadless small DFN2510A-10 (SOT1176-1) plastic package.

All signal lines are protected by a special diode configuration offering ultra low line capacitance of only 0.5 pF. These diodes utilize a unique snap-back structure in order to provide protection to downstream components from ESD voltages up to ± 10 kV contact exceeding IEC 61000-4-2, level 4.

1.2 Features and benefits

- System ESD protection for USB 2.0 and SuperSpeed USB 3.1, HDMI 2.0, DisplayPort, eSATA and LVDS
- All signal lines with integrated rail-to-rail clamping diodes for downstream ESD protection of ±10 kV exceeding IEC 61000-4-2, level 4
- Matched 0.5 mm trace spacing
- Signal lines with ≤ 0.05 pF matching capacitance between signal pairs
- Line capacitance of only 0.5 pF for each channel
- · Design-friendly 'pass-through' signal routing

1.3 Applications

The device is designed for high-speed receiver and transmitter port protection:

- TVs and monitors
- DVD recorders and players
- · Notebooks, main board graphic cards and ports
- · Set-top boxes and game consoles

ESD protection for ultra high-speed interfaces

2 Pinning information

Table 1. Pinning

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	CH1	channel 1 ESD protection		
2	CH2	channel 2 ESD protection	10 9 8 7 6	1 2 4 5
3	GND	ground		
4	CH3	channel 3 ESD protection	1 2 3 4 5	
5	CH4	channel 4 ESD protection	Transparent top view	
6	n.c.	not connected		
7	n.c.	not connected		3, 8 018aaa001
8	GND	ground		
9	n.c.	not connected		
10	n.c.	not connected		

3 Ordering information

Table 2. Ordering information

Type number	Package				
	Name	Description	Version		
PUSB3FA0		plastic extremely thin small outline package; no leads;10 terminals; body 1 \times 2.5 \times 0.5 mm	SOT1176-1		

4 Marking

Table 3. Marking codes

Type number	Marking code
PUSB3FA0	96

5 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
VI	input voltage			-0.5	+1.5	V
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2, level 4	[1]			
		contact discharge		-10	+10	kV
		air discharge		-15	+15	kV
T _{amb}	ambient temperature			-40	+85	°C
T_{stg}	storage temperature			-55	+125	°C

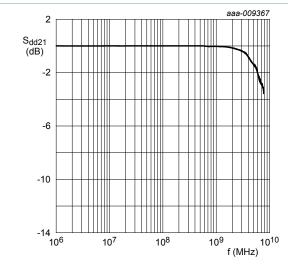
^[1] All pins to ground.

PUSB3FA0

ESD protection for ultra high-speed interfaces

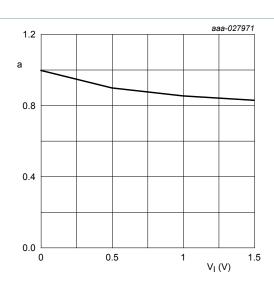
Characteristics

Table 5. Characteristics


 T_{amb} = 25 °C unless otherwise specified.

Parameter	Conditions		Min	Тур	Max	Unit
breakdown voltage	I _I = 1 mA		6	-	-	V
reverse leakage current	per channel; V _I = 1.5 V		-	-	1	μΑ
forward voltage	I _I = 1 mA		-	0.7	-	V
line capacitance	f = 1 MHz; V _I = 1.5 V			0.5	0.6	pF
line capacitance difference	f = 1 MHz; V _I = 1.5 V	[1]	-	0.05	-	pF
dynamic resistance	surge	[2]				
	 positive transient 		-	0.41	-	Ω
	 negative transient 		-	0.26	-	Ω
	TLP	[3]				
	 positive transient 		-	0.43	-	Ω
	 negative transient 		-	0.28	-	Ω
clamping voltage	I _{PP} = 5.2 A	[2]				
	 positive transient 		-	4.6	-	V
	I _{PP} = -4.4 A	[2]				
	 negative transient 		-	-2.2	-	V
	breakdown voltage reverse leakage current forward voltage line capacitance line capacitance difference dynamic resistance	breakdown voltage $I_{I} = 1 \text{ mA}$ reverse leakage current per channel; $V_{I} = 1.5 \text{ V}$ forward voltage $I_{I} = 1 \text{ mA}$ line capacitance $f = 1 \text{ MHz}$; $V_{I} = 1.5 \text{ V}$ line capacitance difference $f = 1 \text{ MHz}$; $V_{I} = 1.5 \text{ V}$ dynamic resistance surge • positive transient • negative transient TLP • positive transient • negative transient clamping voltage $I_{PP} = 5.2 \text{ A}$ • positive transient $I_{PP} = -4.4 \text{ A}$	breakdown voltage $I_{I} = 1 \text{ mA}$ reverse leakage current per channel; $V_{I} = 1.5 \text{ V}$ forward voltage $I_{I} = 1 \text{ mA}$ line capacitance $f = 1 \text{ MHz}$; $V_{I} = 1.5 \text{ V}$ line capacitance difference $f = 1 \text{ MHz}$; $V_{I} = 1.5 \text{ V}$ dynamic resistance surge [2] • positive transient TLP [3] • positive transient • negative transient clamping voltage $I_{PP} = 5.2 \text{ A}$ • positive transient $I_{PP} = -4.4 \text{ A}$	breakdown voltage $I_l = 1 \text{ mA}$ 6 reverse leakage current per channel; $V_l = 1.5 \text{ V}$ - forward voltage $I_l = 1 \text{ mA}$ - line capacitance $f = 1 \text{ MHz}$; $V_l = 1.5 \text{ V}$ [1] - line capacitance difference $f = 1 \text{ MHz}$; $V_l = 1.5 \text{ V}$ [2] - dynamic resistance surge [2] • positive transient - • negative transient - TLP [3] • positive transient - • negative transient - clamping voltage $I_{PP} = 5.2 \text{ A}$ [2] • positive transient - $I_{PP} = -4.4 \text{ A}$ [2]	breakdown voltage $I_I = 1 \text{ mA}$ 6 reverse leakage current per channel; $V_I = 1.5 \text{ V}$ forward voltage $I_I = 1 \text{ mA}$ - 0.7 line capacitance $f = 1 \text{ MHz}$; $V_I = 1.5 \text{ V}$ $\begin{bmatrix} 11 \\ - \\ 0.5 \end{bmatrix}$ - 0.5 line capacitance difference $f = 1 \text{ MHz}$; $V_I = 1.5 \text{ V}$ $\begin{bmatrix} 11 \\ - \\ 0.05 \end{bmatrix}$ - 0.05 dynamic resistance $\begin{bmatrix} surge \\ \bullet \text{ positive transient} \\ \bullet \text{ negative transient} \\ \bullet \text{ positive transient} \\ \bullet \text{ negative transient} \\ \bullet \text{ positive transient} \\ \bullet posi$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

This parameter is guaranteed by design.


According to IEC 61000-4-5 (8/20 μ s current waveform). 100 ns Transmission Line Pulse (TLP); 50 Ω ; pulser at 80 ns.

ESD protection for ultra high-speed interfaces

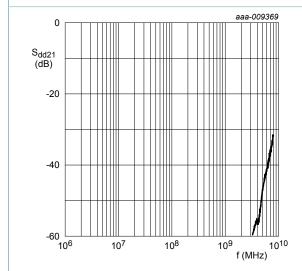

differential mode

Figure 1. Insertion loss; typical values

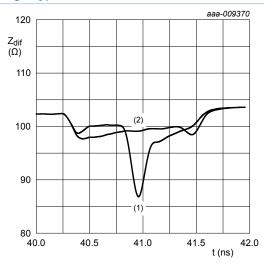
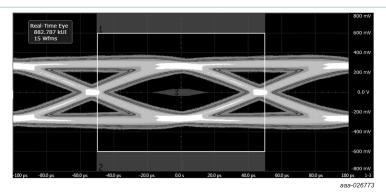

$$a = \frac{C_{\text{line}}}{C_{\text{line}(V_I = 0 \text{ V})}}$$

Figure 2. Relative capacitance as a function of input voltage; typical values

Sdd21 normalized to 100 Ω ;differential pairs CH1/CH2 versus CH3/CH4

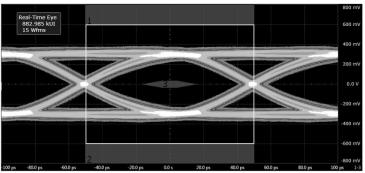
Figure 3. Crosstalk; typical values


 t_r = 200 ps; differential pair CH1 + CH2

(1) PUSB3FA0 on reference board

(2) Reference board without device under test (DUT)

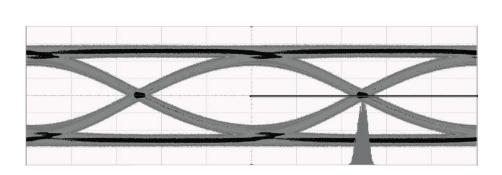
Figure 4. Differential Time Domain Reflectometer (TDR) plot; typical values


ESD protection for ultra high-speed interfaces

Data rate: 10 Gbit/s; Vertical scale: 200 mV/div; Horizontal scale: 20 ps/div

3.1 dB de-emphasis 2.2 dB pre-shoot

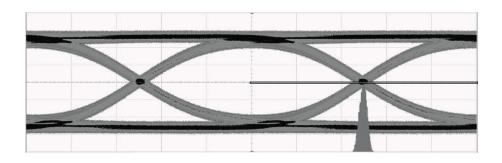
Figure 5. USB 3.1 eye diagram, Printed-Circuit Board (PCB) with PUSB3FA0


aaa-026774

Data rate: 10 Gbit/s; Vertical scale: 200 mV/div; Horizontal scale: 20 ps/div

3.1 dB de-emphasis 2.2 dB pre-shoot

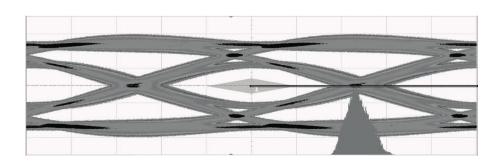
Figure 6. USB 3.1 eye diagram, PCB without PUSB3FA0 (reference)


ESD protection for ultra high-speed interfaces

aaa-014159

Test frequency: 148.5 MHz Differential swing voltage: 810 mV Horizontal scale: 34 ps/div

Figure 7. HDMI 2.0 TP1 eye diagram, PCB with PUSB3FA0 (2160p, 60 Hz

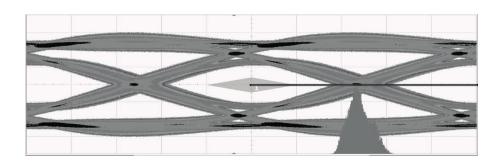


aaa-014160

Test frequency: 148.5 MHz Differential swing voltage: 800 mV Horizontal scale: 34 ps/div

Figure 8. HDMI 2.0 TP1 eye diagram, PCB without PUSB3FA0 (2160p, 60 Hz, reference)

ESD protection for ultra high-speed interfaces

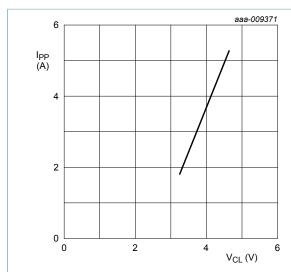


aaa-014161

Test frequency: 148.5 MHz Differential swing voltage: 809 mV Horizontal scale: 34 ps/div

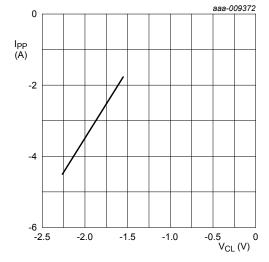
Remark: Measured at Test Point 2 (TP2) worst cable emulator, reference cable equalizer and worst case positive skew.

Figure 9. HDMI 2.0 TP2 eye diagram, PCB with PUSB3FA0 (2160p, 60 Hz)


aaa-014162

Test frequency: 148.5 MHz Differential swing voltage: 820 mV Horizontal scale: 34 ps/div

Remark: Measured at Test Point 2 (TP2) worst cable emulator, reference cable equalizer and worst case positive skew.


Figure 10. HDMI 2.0 TP2 eye diagram, PCB without PUSB3FA0 (2160p, 60 Hz, reference)

ESD protection for ultra high-speed interfaces

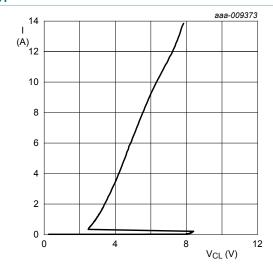

IEC 61000-4-5; t_p = 8/20 μ s; positive pulse

Figure 11. Dynamic resistance with positive clamping; typical values

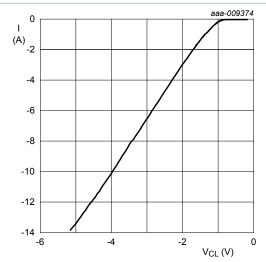

IEC 61000-4-5; t_p = 8/20 µs; negative pulse

Figure 12. Dynamic resistance with negative clamping; typical values

 t_p = 100 ns; Transmission Line Pulse (TLP)

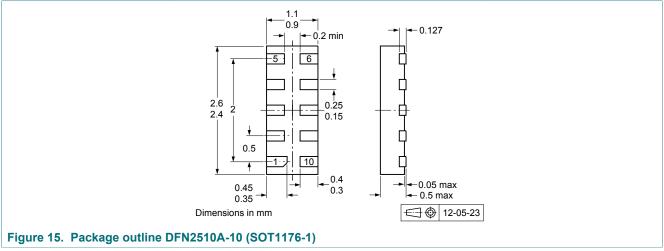
Figure 13. Dynamic resistance with positive clamping; typical values

t_p = 100 ns; Transmission Line Pulse (TLP)

Figure 14. Dynamic resistance with negative clamping; typical values

The device uses an advanced clamping structure showing a negative dynamic resistance. This snap-back behavior strongly reduces the clamping voltage to the system behind the ESD protection during an ESD event. Do not connect unlimited DC current sources to the data lines to avoid keeping the ESD protection device in snap-back state after exceeding breakdown voltage (due to an ESD pulse for instance).

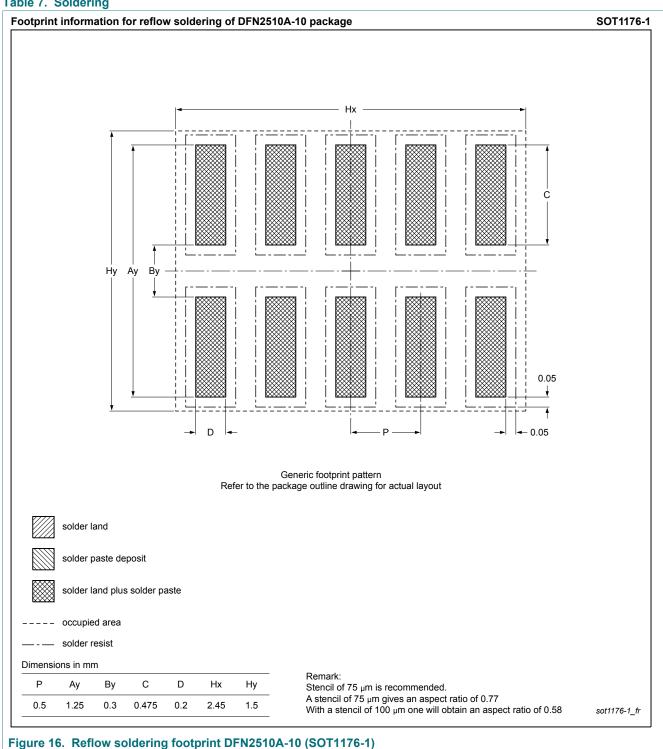
ESD protection for ultra high-speed interfaces


7 Application information

The device is designed to provide high-level ESD protection for high-speed serial data buses such as HDMI, DisplayPort, eSATA and LVDS data lines.

When designing the Printed-Circuit Board (PCB), give careful consideration to impedance matching and signal coupling. Do not connect the signal lines to unlimited current sources like, for example, a battery.

8 Package outline


Table 6. Package outline

ESD protection for ultra high-speed interfaces

Soldering

Table 7. Soldering

ESD protection for ultra high-speed interfaces

10 Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PUSB3FA0 v.1	20180201	Product data sheet	-	-

ESD protection for ultra high-speed interfaces

Contents

1	Product profile	1
1.1	General description	
1.2	Features and benefits	
1.3	Applications	1
2	Pinning information	2
3	Ordering information	
4	Marking	
5	Limiting values	
6	Characteristics	3
7	Application information	
8	Package outline	
9	Soldering	
10	Revision history	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.