

Preliminary

DESCRIPTION

The PT2465A is a stepping motor driver, the Hbridges output current controlled by PWM constantcurrent topology. Built-in micro-step sequencer could generate sinusoidal output current to the stepping motor by a single clock input.

The PT2465A support multiple excitation modes such as 2-phase, 1-2-phase, W1-2-phase and 2W1-2 phase mode. The motor rotation revs determinate by the clock frequency applies on CK pin and excitation mode, the CW/CCW pin logic level determinate bipolar stepping motor in forward or reverse direction.

APPLICATIONS

- Camera lens
- Camera peripheral devices
- Low power stepping motors
- HUD reflector

FEATURES

- Motor power supply voltage range:
 Control (Vcc): 2.7V to 5.5V
 - Motor (VM): 2.5V to 16V
- Maximum output current: 0.8 A
- H-bridge switches on-resistance: Ron = 1.5Ω (high side + low side, VM=7 V)
- Built-in microstep sequencer ticking by CK clock signal
- Programmable phase current excitation modes (2 phase, 1-2 phase, W1-2 phase and 2W1-2 phase)
- Control input pins with internal pull-down resistors
- Motor step monitor output (MO)
- Thermal shutdown (TSD) protection
- V_{CC} under voltage lock-out (UVLO) function
- 20 pins, thin small surface-mount package (TSSOP-20 173mil, 0.65 mm lead pitch)

BLOCK DIAGRAM

APPLICATION CIRCUIT

Figure 1, typical application circuit of the PT2465A

APPLICATION NOTE:

- 1. The bypass capacitors must be placed in between the power input and GND as close as possible.
- 2. The power rating of the RFA and RFB depends on output current setting, in this application a 0.25W, 0805 (imperial size) was recommended.

SPECIAL NOTICE FOR H-BRIDGE DRIVER OUTPUT

This device does not equip over current protection in the H bridge driver, if the outputs (AO1, AO2, BO1, BO2) has short-circuit event, includes both output of same H bridge shorted, tight to VM, V_{CC} or GND, or both H-bridge connected together, a large current might flow through the IC and causes permanently damage.

User must consider the PCB layout arrangement to avoid adjacent pin short circuit, or supplies the VM power by a regulator with overcurrent protection.

ORDER INFORMATION

Part Number	Package Type	Top Code
PT2465A-TX	20 PIN, TSSOP, 173MIL	PT2465A-TX

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
1	Vcc	Power	Power supply pin for logic block
2	STBY	I	Standby input
3	OSC	I	Setting the internal oscillator frequency, connect a capacitor to GND
4	M1		Excitation mode setting input 1
5	M2		Excitation mode setting input 2
6	VM	Power	Power supply input for H-bridge drivers
7	CW/CCW	I	Motor rotation direction selection
8	BO2	0	B-phase output 2, connect to motor coil
9	RFB	0	B-phase H-bridge current sensing, connector a sense resistor to power GND
10	BO1	0	B-phase output 1, connect to a motor coil
11	AO2	0	A-phase output 2, connect to a motor coil
12	RFA	0	A-phase H-bridge current sensing, connector a sense resistor to power GND
13	AO1	0	A-phase output 1, connect to a motor coil
14	RESET	I	Reset
15	GND	Power	Ground
16	MO	0	Monitor output (open drain), pulled up by an external resistor Initial state: $\overline{MO} = L$
17	TQ	I	PWM chopper output current setting (Torque)
18	DCY	I	Decay mode setting
19	ENABLE	I	Enable
20	СК	I	Step clock input

FUNCTION DESCRIPTION

SYSTEM BLOCK OVERVIEW

RECOMMEND POWER SEQUENCE

The PT2465A does not need special power on-off sequence either Vcc or VM powered in prior to another one. The under voltage locked out (UVLO) circuit inside the Vcc circuit will turn off the H bridge output when the Vcc voltage less than 2V.

Figure 3 shows a recommend power sequence. In power on period (t1), held the STBY and RESET in low state until the Vcc and VM are stabilized (t2) and release them in t3. For power off period, pull the STBY to low state (t4) before supplies voltage removed (t5).

SYSTEM CLOCK

The clock oscillator (f_{OSC}) frequency determinate by external capacitance (C_{OSC}) connected on OSC pin, and can be calculated as follows: (for quick referce only, no tolerance guarantee)

$$\operatorname{fosc} = \frac{I}{\Delta V_{OSC} \times C_{OSC}} = \frac{200uA}{1V \times C_{OSC}}$$

The system clock (fsys) for the PWM chopper is derive from the fosc and divide by 2.

$$fsys = fosc/2$$

Princeton Technology

H BRIDGE OUTPUT OPERATION TABLE

		INPUTS		Operation Made	
СК	CW/CCW	RESET	ENABLE	STBY	
	L	Н	н	Н	CW mode, output current pulse move step forward at CK pulse rising edge.
_ _	н	Н	н	Н	CCW mode, output current pulse move step backward at CK pulse rising edge.
Х	Х	L	Н	Н	Initial state
Х	Х	Х	L	Н	Enable Wait mode (outputs = high impedance)
Х	Х	Х	Х	L	Standby mode (outputs = high impedance)

Table 1, control inputs setting

THERMAL SHUTDOWN (TSD) CIRCUIT

The PT2465A includes thermal shutdown protection circuit, which turns all of output driver off when junction temperature (T_J) exceeds 160°C (typ.). After the junction temperature was cool down and T_J reaches the TSD hysteresis lowest window threshold, typically 40°C below thermal shutdown did active, the output driver will automatically turn on.

In thermal shutdown mode, the internal circuitry and outputs assume the same states as in Enable Wait mode. Upon exit from thermal shutdown mode, they revert to those states which they assume when taken out of Enable Wait mode.

UNDER VOLTAGE LOCKOUT (UVLO) CIRCUIT

The PT2465A includes an under-voltage lockout circuit, which puts the H bridge output MOFETs in highimpedance state when the V_{CC} decreases under 1.85 V (typ.). The H bridge output MOSFETs are automatic turn on when V_{CC} exceeds the lockout threshold, which is raised to 2.2 V with a 350mV hysteresis.

Even when UVLO circuit is tripped, internal circuitry continues to operate in accordance with the CK input like when ENABLE is set LOW. Thus, after the PT2465A exits the UVLO mode, a RESET signal could be asserted to revert the device to Initial state if necessary.

RELATIONSHIP BETWEEN THE ENABLE, AND PHASE CURRENT OUTPUTS

Setting the ENABLE signal to LOW state will only disables the H-bridge outputs, the internal control logic and micro-stepping sequencer still operating accordance with the CK signal. Therefore, when the ENABLE signal goes HIGH state, the H bridge outputs be turn-on, and phase current output will coordinate with the vector of the microstep sequencer proceeded by the CK signal. Please refer to the figure 4 and figure 6.

RELATIONSHIP BETWEEN THE RESET. MO AND PHASE CURRENT OUTPUTS

Setting the RESET signal to LOW state will brings the H-bridge outputs to Initial state and held the MO output in LOW state. The Initial state means the A-phase output current in its peak value (100% of the ITRIP).

When the RESET signal goes HIGH and CK signal in LOW state, the output current will hold on Initial state and wait for next rising edge of the CK clock. When a CK clock rising edge is coming, the H bridge output current will guit the Initial state and move to next step ahead. Please refer to the figure 5 and figure 7.

 Princeton Technology Corp.

PT2465A

INITIAL STATE

The current and rotation directions of the device is defined as follow: A-Phase current from the AO1 to the AO2, and B-phase current from the BO1 to the BO2 means positive output current; and the I_A phase leading the I_B means CW (forward) mode. This table also applies to the phase current just exit from the standby mode.

Excitation Mode	A-Phase Current	B-Phase Current
2-phase	100%	-100%
1-2-phase	100%	0%
W1-2-phase	100%	0%
2W1-2-phase	100%	0%

Table 2, output current in initial state

WINDING CURRENT EXCITATION MODE

Please refer to the figure 8 to figure 15 for further waveform relationship. The output voltage of the excitation DAC is derived from the TQ voltage, and generates correspond level to support microstep driving.

Inputs		Excitation Mode	Equivalent microsten		
M1	M2		Equivalent inicrostep		
L	L	2 phase	Full step		
Н	L	1-2 phase	Half step		
L	Н	W1-2 phase	1/4 microstep		
Н	Н	2W1-2 phase	1/8 microstep		

Table 3, excitation table

EXCITATION MODE AND PHASE CURRENT OUTPUT

技

Zbv

Princeton Technology Corp.

Figure 12, W1-2 phase excitation, CW mode

7

Figure 15, 2W1-2 phase excitation, CCW mode

CALCULATE PHASE OUTPUT CURRENT

The phase output current (ITRIP) determinate by following parameters, it can calculate as follows:

I_{TRIP} = (V_{TQ} × DAC ratio) / R_{Fx}

- 1. V_{TQ} equals to **0.125 V** when TQ = Low, while it equals to **0.5 V** when TQ = High.
- 2. RFx is the value of resistors used for output current detection, those resistors connected between the RFA to GND and the RFB to GND.
- 3. DAC ratio depends on excitation vector, for example: vector θ 4 means the DAC output ratio is 71% of the V_{TQ}.
- 4. For example: TQ = L (0.125 V), R_{FX} = 2 Ω , excitation DAC ratio = 100%, the output current will be 62.5mA.

OUTPUT CURRENT VECTOR LOCUS (NORMALIZING A SINGLE STEP TO 90 DEGREES)

Figure 16, current vector by summing both phase current

	Rotatio	n Angle	Vector Length			
θ	Ideal	Coloulated	Ideal	Calcu	ulated	
	lueal	Calculated	1-2, W1-2, 2	W1-2 phase	2-phase	
θ0	0.000°	0.000°	100	100.00	100	
θ1	11.250°	11.537°	100	100.02		
θ2	22.500°	22.334°	100	99.54		
θ3	33.750°	34.056°	100	100.12		
θ4	45.000°	45.235°	100	100.41	141.42	
θ5	56.250°	56.099°	100	100.12		
θ6	67.500°	66.926°	100	99.54		
θ7	78.750°	78.522°	100	100.02		
θ8	90.000°	90.000°	100	100.00	100	

 Table 4, current vector summing value for each angle

PWM CHOPPER DECAY MODE

The PWM chopper have two kind of discharge mode (refer to figure 18), the slow decay and fast decay. The slow decay mode discharge time determinate by the T_{OFF} period, the inductor's recirculate current flows in the low side loop of the H-bridge and dissipates stored energy by inductor's dc resistance.

The fast-decay mode could quick reduce the inductor current to lower level therefore it only active in phase current descend period, it will turn-on the opposite side MOSFETs of the H-bridge and feeds the regenerative current from inductor coil back to the power supply. Between the charge mode and decay mode, a short period dead time will be inserted to prevents H-bridge MOSFETs shoot-through.

Enable the PWM chopper, the charge current will flow through the H bridge to the winding coils, once the V_{RF} voltage reaches I_{TRIP} voltage the current comparator detected and turning PWM chopper into to slow decay mode and holding the recirculate current in the low side MOSFETs loop. The off-timer/counter determinate the off-time of the slow decay period, when winding current reaching the I_{TRIP} threshold, the counter starts counting from upcoming falling edge of the fsys clock which derived from the fosc signal, and PWM chopper off-time (ToFF) is preset to $4 \times f_{SYS}$ clock period.

Figure 17, PWM chopper operation

Figure 18, PWM chopper state

PHASE CURRENT ASCEND

When I_{TRIP} voltage rising, the PWM chopper remains slow decay until T_{OFF} expired, and next enter the charge mode. During current ascend period, PWM chopper working on charge and slow decay mode only.

PHASE CURRENT DESCEND

When the I_{TRIP} voltage decreasing, the phase output also goes to lower level, there have many parameters can affect the PWM chopper behavior: the excitation vector, TQ and DCY state. Refer to the table 5 for further detail.

When the DCY in L state, the PWM chopper utilize pure slow decay mode in current decreasing period (figure 20) whatever the TQ and excitation vector setting. If the DCY in H state, the PWM chopper will inserted a fast decay in current decreasing period (figure 21), the fast decay time (T_{FD}) is based on internal fsys cycle multiple by N, the N value defined in Table 5, it is highly relatives to TQ and excitation vector.

	2W1-2phase			W1-2phase			1-2phase		
Input	Excitation Vector	T (fsys cy	^{⊧D} cle × N)	Excitation Vector	T (fsys cy	^{FD} cle × N)	Excitation Vector	Ti (fsys cyc	[₌] ⊳ cle × N)
DCY	%	TQ=H	TQ=L	%	TQ=H	TQ=L	%	TQ=H	TQ=L
	100	-	-	100			100		
	98	0	0	-					
	92	0	0	92	0	0			
	83	0	0	-					
L	71	0	0	71	0	0	71	0	0
	56	0	0	-					
	38	0	0	38	0	0			
	20	0	0	-					
	0	0	0	0	0	0	0	0	0
	100	-	-	100			100		
	98	2	1						
	92	2	1	92	2	1			
	83	2	1						
Н	71	2	1	71	4	2	71	4	2
	56	4	2						
	38	4	2	38	4	2			
	20	4	2						
	0	0	0	0	0	0	0	0	0

Table 5, fast decay time inserted during current descend period

fsvs______

Figure 20,PWM chopper without fast decay insertion during phase current descend

Figure 21, PWM chopper with fast decay insertion during phase current descend

DECAY MODE SELECTION

If the output current waveform shows no obvious distortion, the DCY pin should be stay in LOW state, it because the slow decay provides lower current ripple and higher average current to generates the toque. If the output current waveform shows highly non-linear distortion, it means the back EMF from the motor winding coil is starting affect the PWM chopper operation, to deduce this symptom, instead of the DCY pin to HIGH state to active the fast decay, it will discharge the regenerative current back to the power supply and helps reduces waveform distortion.

ABSOLUTE MAXIMUM RATINGS

over operating ambient temperature range (unless otherwise noted)

Parameters	Symbol	Conditions	Min.	Max.	Unit	
Supply voltage	Vcc		-0.3	6	V	
Supply voltage	VM		-0.3	18	v	
Maximum Rower Dissipation	Davaa	IC only	-	710		
Maximum Power Dissipation	FDISS	Mounted on PCB (note1)	-	1300	TIVV	
	Іоит	Iao, Ibo	-	0.8	Α	
Output current	IMO		-	1	mA	
Input voltage	VIN		-0.2	Vcc+0.2	V	
Output voltage	VMO		-0.2	Vcc	V	
Junction temperature	TJ		-30	150	°C	
Storage temperature	TSTG		-40	150	°C	

note1: refer to note 2 for PCB dimension.

ESD RATINGS

Parameters	Symbol	Target Pins	VALUE	Unit
Human body model (HBM)	VHBM	All pins	±2000	V
Charge device model (CDM)	Vcdm	All pins	±500	v

RECOMMENDED OPERATING CONDITION

Parameters	Symbol	Conditions	Min	Тур	Мах	Unit
Dower ourply veltere	Vcc	-	2.7	3.3	5.5	V
Power supply voltage	VM	-	2.5	7	16	V
Output current	IOUT	2.5 V < VM < 4.8 V	-	-	0.35	Α
Output current	IOUT	4.8 V < VM < 13.5 V	-	-	0.6	Α
Input voltage	VIN	-	-	-	Vcc	V
Clock frequency	fск	-	-	-	20	KHz
System frequency	fsys	-	80	460	780	KHz
Chopping frequency	fcнор	-	20	115	195	KHz
Ambient Temperature	TA		-20		85	°C

PACKAGE THERMAL CHARACTERISTIC

Parameters	Symbol	Condition	Тур	Unit
From chip conjunction dissipation to external environment ^(note2)	Rja	TSSOP, 20 pins, 173 mil Mounted on PCB	55	°C/W

note 2: The thermal resistance was measured on specified PCB: dimension=50mm x 80mm, FR-4, 2 layers board, thickness=1.6mm, copper thickness = 1oz (35µm), GND plane metal coverage >60%, still airflow.

ELECTRICAL CHARACTERISTICS

Typical value at T_A=25°C, V_M=7V, V_{CC}=3.3V, R_{NF}=2 Ω , C_{OSC}=220pF.

All other values at T_J=-20°C to 85°C, V_M=3 to 16V, V_{CC}=3 to 5.5V (unless otherwise noted)

Parameters	Symbol	Conditions	Min.	Тур.	Max.	Unit
Control logic (Figure 23)						
	V _{IH1}	CW/CCW, RESET, ENABLE, CK,	0.7			
	VIL1	M1, M2, Vcc=3.3V			0.15	
	V _{IH2}	CW/CCW, RESET, ENABLE, CK,	0.7			Vcc
input voltage	VIL2	M1, M2, Vcc=5.5V			0.15	
	V _{IH3}	STRY TO DOV	0.7			
	VIL3	STBT, TQ, DCT			0.15	
Input hysteresis	V _{HYS}	CW/CCW, RESET, ENABLE, CK, M1, M2		250		mV
Input ourrent	I _{INH}	V _{IN} = 3.0 V	5	15	25	
input current	linl	V _{IN} = GND			1	μΑ
MO output voltage	Vмо	$I_{MO} = 1 \text{ mA}$			0.5	V

Supply current (Figure 24)								
	Icc1	Outputs = open	ENABLE = H		1.7	2	mA	
Supply current	ICC2	RESET = H	ENABLE = L		1.7	2	mA	
	Іссз	Standby mode				1	μA	
	I _{M1}	Outputs = open	ENABLE = H		300	500	μA	
	I _{M2}	RESET = H	ENABLE = L		300	500	μA	
	Імз	Standby mode				1	μA	
I _{TRIP} (Figure 25)								
ITRIP full scale voltage	Vrfa	2-phase excitation	TQ=L	0.1	0.125	0.165	V	
	Vrfb	Vector = 100%	TQ=H	0.445	0.5	0.555	V	
H-bridge output (Figure 26, 27, 28)								
Channel-to-channel V _{RF} tolerance	ΔVo	B-phase to A-phase, TQ = L		-11		11	%	
H-bridge switches	D	I _{OUT} = 0.1 A, T _J = 25°C I _{OUT} = 0.6 A, T _J = 125°C			1.5	1.8	0	
resistance (HS+LS)	KDS(on)				1.8	2.2	Ω	
Body diode forward	V _{FU}	Ι _{Ουτ} = -0.5 Α			0.95	1.2	V	
voltage	V _{FL}				0.95	1.2	V	
Output leakage current	I _{ОН}	VM=13V	high side			1		
	IOL		low side			1	μΛ	
Protections								
Under voltage lock out	UVL	Output off				1.85	V	
threshold	UVH	Output on		2.2			V	
Thermal shutdown	T _{SD}				160		°C	
T _{SD} hysteresis	TSDHYS				40		°C	

Desemptore	Symbol	Conditions			Min	Turn	Max	Lin:4	
Parameters		Excitation Mode		Vector	win.	тур.	wax.	Unit	
Excitation DAC output ratio	TQRATIO	2W1-2	W1-2	1-2	$\theta = 0/8$		100		
		2W1-2	-	-	θ =1/8	92	98	101	
		2W1-2	W1-2	-	$\theta = 2/8$	86	92	98	
		2W1-2	-	-	$\theta = 3/8$	77	83	89	
		2W1-2	W1-2	1-2	$\theta = 4/8$	65	71	77	%
		2W1-2	-	-	$\theta = 5/8$	50	56	62	
		2W1-2	W1-2	-	$\theta = 6/8$	32	38	48	
		2W1-2	-	-	$\theta = 7/8$	14	20	32	
		2W1-2					100		

Note: Relative to the peak current at $\theta = 0$.

AC TIMING CHARACTERISTICS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
System clock frequency	fsys	C _{OSC} = 220 pF	300	460	620	KHz
CK high duration	t _{ск} (H)			25		μs
CK low duration	t _{ск} (L)			25		μs
Timing characteristics	tr	lood, EmH, EOO	20		100	ns
	tf	10au. 5111H, 5012	15		80	
	t₽1LH	CK, RESET to Output	1000			
	t _{P1} HL		1000			
	t _{P2} LH		300			
	t _{P2} HL		200			
	ts∪	M1, M2, ENABLE, CW/CCW refer	50			200
	t _{HD}	to CK rising edge	50			115

PT2465A СК 50% t_{CK}(H) t_{CK}(L) M1,M2,CW/CCW ENABLE, RESET ts∪ t_{HD} H-Bridge Output t⊳HL ii Ii tf t⊳LH tr

Figure 22, timing relationship between the CK and other logic inputs and output.

Figure 27, TEST CIRCUIT 5: V_{FU}, V_{FL}

Figure 28, TEST CIRCUIT 6: L_{OH} , I_{OL}

PACKAGE INFORMATION

20-PIN, TSSOP, BODY WIDTH=173MIL, PITCH=0.65MM

O make al	Dimensions(mm)					
Symbol	Min.	Nom.	Max.			
A	-	-	1.20			
A1	0.05	-	0.15			
A2	0.80	1.00	1.05			
b	0.19	-	0.30			
С	0.09	-	0.20			
D	6.40	6.50	6.60			
е	0.65 BSC					
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
L	0.45	0.60	0.75			
L1	1.0 REF					
θ	0°	-	8°			

Notes: Refer to JEDEC MO-153 AC

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baoqiao Road, Xindian, Taipei 231208, Taiwan Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw