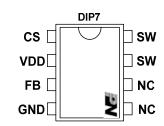


非隔离准谐振内置高压启动的LED恒流驱动芯片

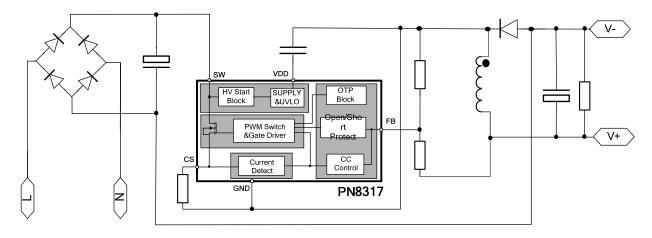
概述

PN8317包括高精度的准谐振恒流控制器及功率MOSFET,专用于高可靠、高效率、单电感、极精简外围元器件的 非隔离中小功率LED照明。PN8317采用BUCK电路架构,工作在临界导通模式;采用了快速DMOS自供电的专利技术可 节省高压启动电阻。该芯片提供了极为全面的自恢复保护功能,包含逐周期过流保护、开环保护、过温保护、CS电阻 开短路保护和LED开短路保护等。内置高压启动电路和极低的芯片功耗有助于较高的工作效率。在恒流模式下,电流和 输出功率可通过CS脚的Rs电阻进行调节。


特征

- 内置530V高雪崩能力的功率MOSFET
- 内置高压启动电路可节省外部启动电阻
- 快速自供电专利技术无需外加供电回路
- ±3% LED恒流精度
- 恒流输出值可调
- 1% 线电压补偿精度
- 优异全面的保护功能
 - 过温保护 (OTP)
 - 逐周期过流保护 (OCP)
 - LED开/短路保护
 - 安全自动恢复模式
 - CS电阻开/短路保护

应用领域


- LED日光灯
- LED平板灯

封装/订购信息

PN8317NSC-T1	DIP7	40W
订购代码	到袋	180-264V _{AC}
计贴件箱	封装	典型功率

典型应用

RevA 1404

管脚定义

表 1. 管脚定义

管脚标号	管脚名	管脚功能描述		
1	CS	电流检测引脚地		
2	VDD	工作电压输入引脚		
3	FB	反馈引脚,辅助绕制电压通过电阻反馈稳定输出。		
4	GND	地		
5	NC	空脚		
6	NC NC	工 <i>I</i> AI		
7	SW	高压MOSFET引脚,跟变压器初级相连		
8	3 W	同止WOSFE1 刊牌,政文压备例级相压		

典型功率

表 2. 典型功率

产品型号	输入电压	开放式条件 ⁽¹⁾
PN8317 DIP7	$180\text{-}264~\mathrm{V_{AC}}$	40W

极限工作范围

VDD 最大耐受电压	40V
SW 脚最高工作电压	500V
FB 脚工作电压范围	-0.35V
结工作温度范围	-40°C to 140°C
封装热阻 (DIP-7)	40°C/W
存储温度范围	-65~150°C
管脚焊接温度 (10 秒)	260℃
ESD 能力(HBM)	2.0kV
最大漏极脉冲电流	3.0A

电气特性

表 3. 功率部分 $(T_J=25^{\circ}C, V_{CC}=15 \text{ V}; 特殊情况另行说明)$

符号	参数	测试条件	最小	典型	最大	单位
VBVDSS	功率管耐压	Isw = 250uA, Vcs = 1V, $T_J = 125$ °C		530		V
${ m I}_{ m OFF}$	关态漏电流	$V_{SW} = 500 \text{ V}, V_{CS} = 1 \text{ V}$			100	uA
$R_{\mathrm{DS(on)}}$	功率管导通电阻	ISW = 1.0A,TJ = 25°C		2		Ω

表 4. 控制部分 $(T_J = 25^{\circ}\text{C}, V_{CC} = 15 \text{ V}; 特殊情况另行说明)$

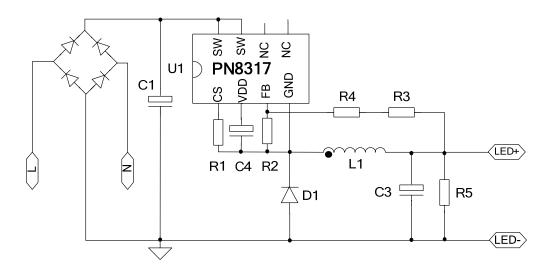

符号	参数	测试条件	最小	典型	最大	单位
工作电压部分						
V _{SW_START}	漏源启动电压		30			V
I _{DD_CH}	启动管充电电流	$V_{SW} = 120 \text{ V}, V_{CS} = 1\text{V},$ $V_{DD} = 4 \text{ V}$		-3		mA
$V_{ m DD}$	工作电压范围	After turn-on	11		15	V
V_{DDon}	VDD启动阈值电压	Vow - 120 V Voc - 1V	11.5	13	14.5	V
$V_{ m DDoff}$	VDD欠压保护阈值电压	Vsw = 120 V, Vcs = 1V	7	8	9	V
V _{ddchon}	自供电关断电压		11.5	13	14.5	V
$V_{ddchoff}$	自供电开启电压		9.5	11	12.5	V
$ m V_{DDclamp}$	VDD过压钳位保护电压		27	30	33	V
工作电流部分						
I_{DD0}	静态工作时芯片电流	Vcs= 1 V, Vdd = 10 V		0.15		mA
I_{DD1}	开关工作时芯片电流	$V_{CS} = 0.6 \text{ V}, V_{DD} = 15 \text{ V}$		0.25		mA

表5. 控制部分($T_J = 25$ °C, $V_{CC} = 15$ V; 特殊情况另行说明)

符号	参数	最小	典型	最大	单位	
电流检测部分						
T_{LEB}	前沿消隐时间			450		nS
V_{TH_OC}	过流检测阈值电压		535	550	565	mV
T_{ON_MAX}	最大开启时间		19	24	29	uS
FB部分						
FB_{OVP}	FB 过压保护			3.3		V
FB_{SHORT}	FB 欠压保护			0.3		V
T _{OFF-MIN}	最小关断时间			3.8		uS
$T_{OFF\text{-}MAX}$	最大关断时间			75		uS
过温保护部分						
TSD	过温保护温度		140	160		°C
THYST	过温保护回差			20		°C

典型电路

图 1. LED 照明应用

功能描述

1. 高压电源

在启动阶段,内部高压电流源为内部偏置电路供电并给外部VDD电容充电。当VDD电压达到13V,芯片开始工作的同时高压启动电路关断;当VDD电压低于11V,启动电路重新启动,为VDD充电。芯片无需额外增加辅助线圈提供电源。

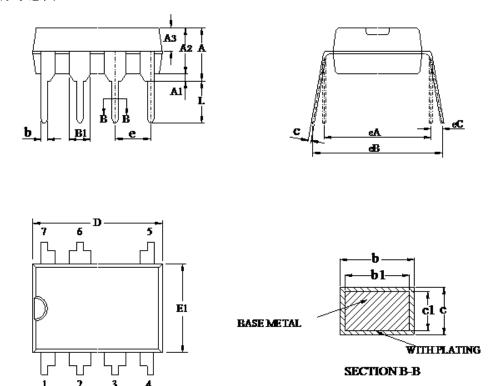
2. CC工作模式

在CC工作状态,PN8317采样FB引脚的信号(由辅助绕组信号通过电阻分压),辅助绕组信号脉宽决定振荡频率。当消磁结束后,芯片立刻重新开启,以实现ZCS开启降低开关损耗。输出电压越高,脉宽越小,同时振荡频率越高,这样可获得恒定的输出电流。

3. 电流检测和前沿消隐

PN8317提供逐周期检测功能。功率管电流通过CS引脚的电阻检测,CC模式设置点和最大输出功率都通过外部调整CS引脚上的电阻实现。功率管开通瞬间会产生尖峰电压,内部前沿消隐电路可防止误触发而不需要额外的RC滤波电路。

4. 保护控制


PN8317拥有全面的保护功能,包含LED开路保护、LED短路保护、过温报告、CS电阻短路保护、VDD 欠压锁定保护功能,且所有的保护当VDD低于欠压保护点后均可自恢复。

封装尺寸

表 6. DIP-7 封装尺寸

尺寸符号	最小	中间值	最大	尺寸 符号	最小	中间值	最大
A	3.60	3.80	4.00	c1	0.24	0.25	0.26
A1	0.51	-	-	D	9.05	9.25	9.45
A2	3.00	3.30	3.40	E1	6.15	6.35	6.55
A3	1.55	1.60	1.65	e	2.54BSC		
b	0.44	-	0.53	eA	7.62BSC		
b1	0.43	0.46	0.48	eB	7.62	-	9.30
B1		1.52BSC		eC	0 - 0.8		
С	0.25	-	0.31	L	3.00	-	-

图 2. 外形示意图

表层丝印	封装
PN8317	DID7
YWWXXXXX	DIP7

备注: Y: 年份代码; W: 周代码; XXXXX: 内部代码