PN3568 ## **NPN General Purpose Amplifier** This device is designed for general purpose, medium power amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 12. SeeTN3019A for characteristics. ### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 60 | V | | V _{CBO} | Collector-Base Voltage | 80 | V | | V _{EBO} | Emitter-Base Voltage | 5.0 | V | | Ic | Collector Current - Continuous | 1.0 | Α | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ## **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |------------------|--|------------|-------------| | | | PN3568 | | | P_D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/∘C | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # NPN General Purpose Amplifier (continued) | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | |---|--------------------------------------|--|----------|-----------|----------|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | OFF CHA | RACTERISTICS | | | | | | | | V _{(BR)CEO} | Collector-Emitter Breakdown Voltage* | $I_C = 30 \text{ mA}, I_B = 0$ | 60 | | V | | | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 80 | | V | | | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | $I_E = 10 \mu A, I_C = 0$ | 5.0 | | V | | | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 40 \text{ V}, I_{E} = 0$
$V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 75 \text{ °C}$ | | 50
5.0 | nA
μA | | | | I _{EBO} | Emitter Cutoff Current | $V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 75 ^{\circ}\text{C}$
$V_{EB} = 4.0 \text{ V}, I_{C} = 0$ | | 25 | nA | | | | ON CHA | RACTERISTICS* DC Current Gain | $V_{CE} = 1.0 \text{ V}, I_{C} = 30 \text{ mA}$
$V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}$ | 40
40 | 120 | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | I _C = 150 mA, I _B = 15 mA | | 0.25 | V | | | | V _{BE(on)} | Base-Emitter On Voltage | $V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}$ | | 1.1 | V | | | | SMALL S | IGNAL CHARACTERISTICS | | | | | | | | C _{ob} | Output Capacitance | V _{CB} = 10 V, f = 1.0 MHz | | 20 | pF | | | | C _{ib} | Input Capacitance | $V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ | | 80 | pF | | | | h _{fe} | Small-Signal Current Gain | $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V},$
f = 20 MHz | 3.0 | 30 | | | | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%