

PN3568

NPN General Purpose Amplifier

This device is designed for general purpose, medium power amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 12. SeeTN3019A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	60	V
V _{CBO}	Collector-Base Voltage	80	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	1.0	Α
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		PN3568	
P_D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/∘C
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Electrical Characteristics TA = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditions	Min	Max	Units		
OFF CHA	RACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 30 \text{ mA}, I_B = 0$	60		V		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	80		V		
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V		
I _{CBO}	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, I_{E} = 0$ $V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 75 \text{ °C}$		50 5.0	nA μA		
I _{EBO}	Emitter Cutoff Current	$V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 75 ^{\circ}\text{C}$ $V_{EB} = 4.0 \text{ V}, I_{C} = 0$		25	nA		
ON CHA	RACTERISTICS* DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 30 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}$	40 40	120			
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 150 mA, I _B = 15 mA		0.25	V		
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}$		1.1	V		
SMALL S	IGNAL CHARACTERISTICS						
C _{ob}	Output Capacitance	V _{CB} = 10 V, f = 1.0 MHz		20	pF		
C _{ib}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$		80	pF		
h _{fe}	Small-Signal Current Gain	$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 20 MHz	3.0	30			

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%