

PMW3310DH-AWQT

Low Power LED Gaming Mouse Sensor

Data Sheet

Description

PMW3310DH-AWQT low power gaming sensor is a new addition to PixArt Imaging's gaming sensor family. The tracking system comprises of navigation IC, HSDL-4261 IR LED and lens. It provides enhanced features such as variable frame rate, programmable resolution, angle tunability, X-Y axis independent resolution, programmable angle snap plus configurable sleep and wake up time to suit various gamers' preferences.

This gaming sensor is in a 20-pin staggered dual in- line package (DIP). It is designed to be used with ADNS-2120-001 trim lens to achieve optimum performance featured in this document.

Theory of Operation

The sensor measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. It contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a four wire serial port. The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values. An external microcontroller reads the Δx and Δy information from the sensor serial port. The microcontroller then translates the data into PS2, USB, or RF signals before sending them to the host PC or game console.

Features

- 20-pin DIP package
- Operating Voltage: 2.7V 3.3V
- VDDIO range: 1.65V 3.3V
- 16-bits motion data registers
- High speed motion detection of 130ips and acceleration up to 30g
- Variable Frame Rate for optimum power performance
- Motion detect pin output
- Internal oscillator no external clock input needed
- Enhanced Programmability
 - Frame rate up to 6,500fps
 - Resolution up to 5000cpi with step of ~50cpi
 - X and Y axis independent resolution setting
 - Programmable Rest Modes
 - Programmable Angle Snap
 - Angle Tunabilty

Applications

- Corded and cordless gaming mice
- Motion input devices

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.**

E-mail: <u>fae_service@pixart.com.tw</u>

Device Pinout

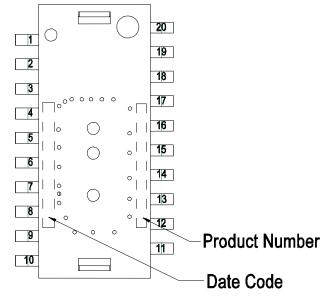


Figure 1. Device Pinout of PMW3310DH-AWQT

Product Number: PMW3310DH-AWQT

Date Code: $CYW_kW_kW_fW_fR$ (C = CM Code, Y = Year Code, W_kW_k = Week Code, W_fW_f = Wafer Code, R = Remark (mark E for engineering lot))

Pin No	Pin Name	Input / Output/ Power	Description
1 – 2	NC	-	-
3	NCS	IN	Chip Select (Active Low Input)
4	SCLK	IN	Serial Clock Input
5	MOSI	IN	Serial Data Input (Master
			Out/Slave In)
6	MOTION	OUT	Motion Detect (Active Low Output)
7	VDDIO	PWR	IO Voltage
8	XYLED	OUT	LED Illumination Control
9	GND	PWR	Ground
10 – 11	VDD	PWR	3V Supply
12	NC	-	-
13	REF	PWR	Internal regulator output pin (To
			connect to external bypass cap)
14	GND	PWR	Ground
15	NC	-	-
16	MISO	OUT	Serial Data Output (Master
			In/Slave Out)
17 – 18	NC	-	-
19	GND	PWR	Ground
20	NC	-	-

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

PixArt Imaging Inc.

201

2

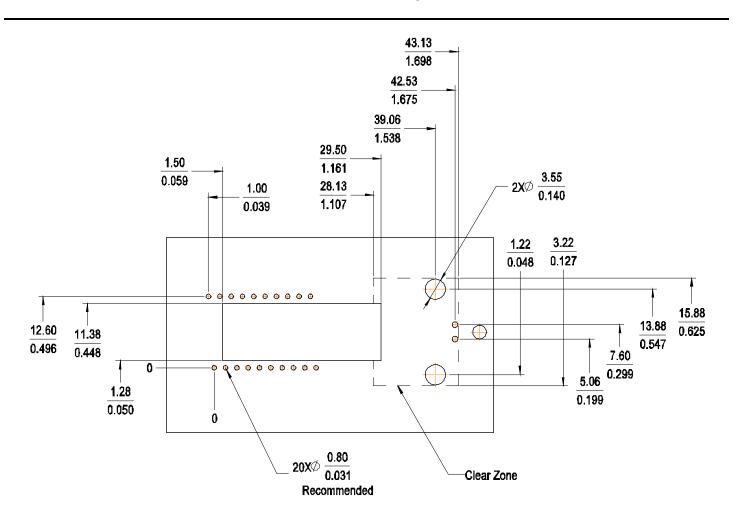


Figure 2. Package Outline Drawing

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Low Power LED Gaming Mouse Sensor

Notes: Dimensions in millimeters / inches

Figure 3. Recommended PCB Mechanical Cutouts and Spacing (Top View)

Low Power LED Gaming Mouse Sensor

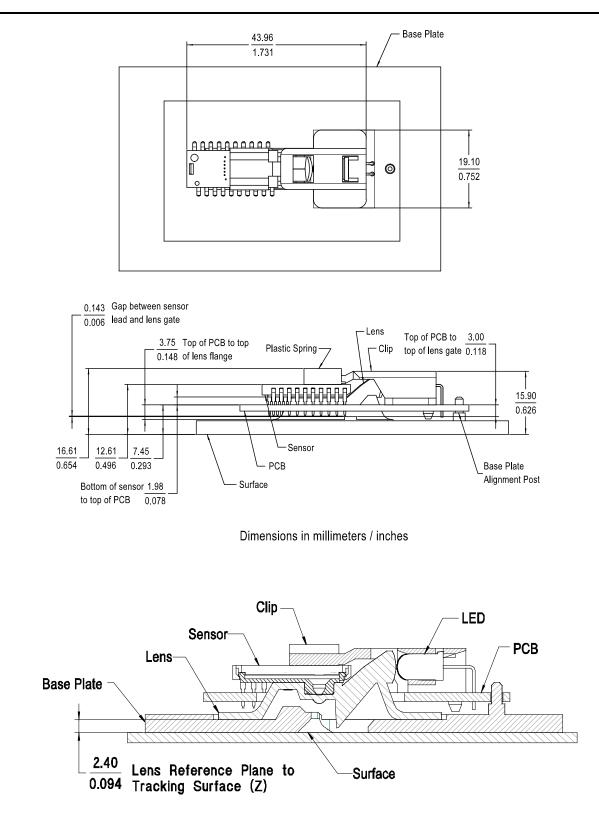


Figure 4. Cross Section Top and Side View

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission **PixArt Imaging Inc.**

E-mail: fae service@pixart.com.tw

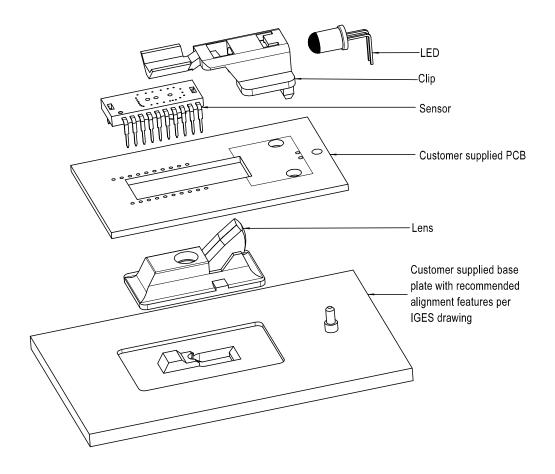


Figure 5. Exploded View of Assembly

201

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission **PixArt Imaging Inc. E-mail:** <u>fae_service@pixart.com.tw</u> $hU \circ hU \ddagger) = \ddagger j u \circ R3.0 1$

PCB Assembly Considerations

- 1. Insert the sensor and all other electrical components into PCB.
- Insert the LED into the assembly clip and bend the leads 90 degrees.
- 3. Insert the LED clip assembly into PCB.
- 4. Wave-solder the entire assembly in a no-wash solder process utilizing solder-fixture. The solder-fixture is needed to protect the sensor from flux spray during the solder process. It also sets the correct sensor-to-PCB distance as the lead shoulders do not normally rest on the PCB surface. The fixture should be designed to expose only the sensor leads to solder while shielding the optical aperture from direct solder contact.
- 5. Place the lens onto the base plate.
- Remove the protective kapton tape from optical aperture of the sensor. Care must be taken to keep contaminants from entering the aperture. Do not place the PCB with the sensor facing up during the entire mouse assembly process. Hold the PCB vertically when removing kapton tape.
- 7. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly.
- 8. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.

9. Install mouse top case. There must be a feature in the top case to press down onto the PCB assembly to ensure all components are interlocked to the correct vertical height.

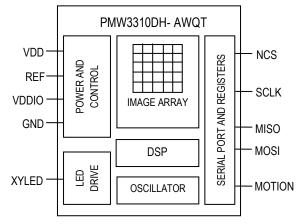
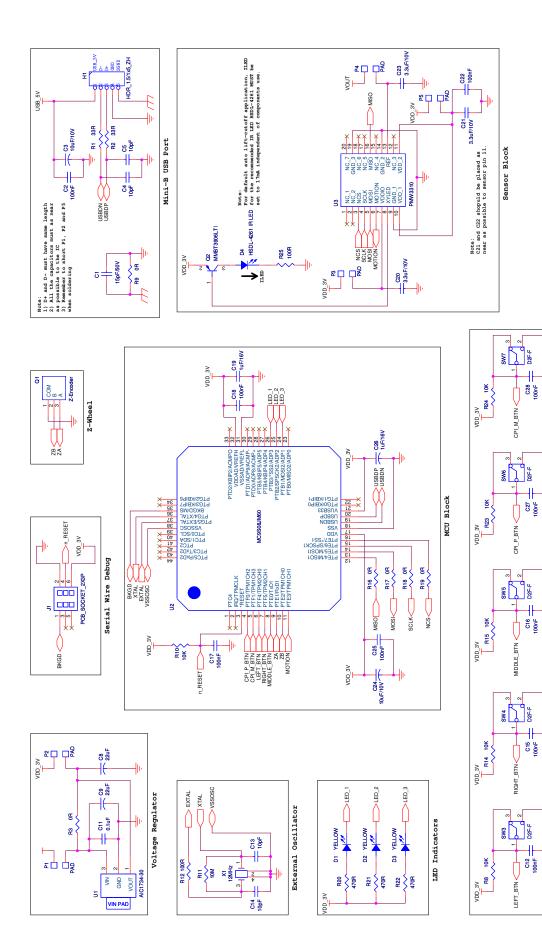


Figure 6. Block diagram of PMW3310DH-AWQT

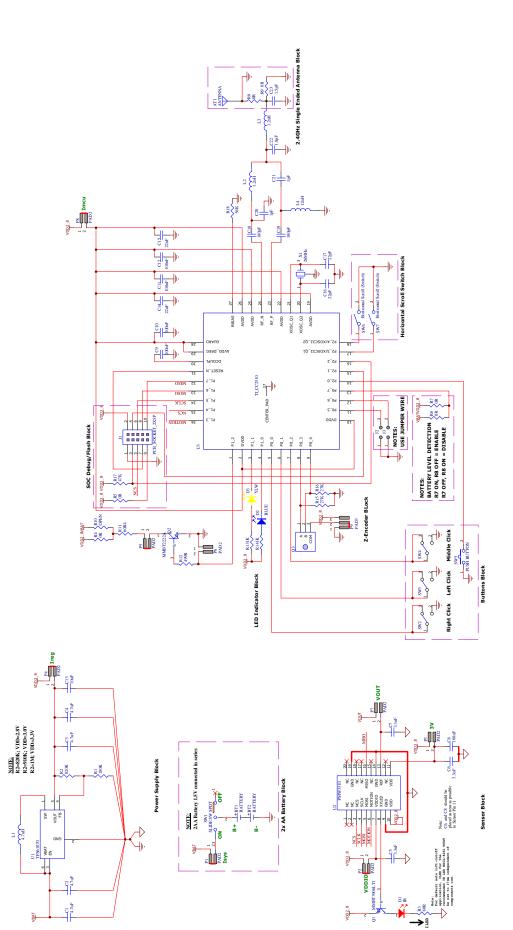

All data and information is provided to and as a reference in the application of PixArt Imaging's product, but the responsibility for proper design of printed circuit SMT process design still lies with the SMT assembly company. PixArt Imaging has no liability for customer's design.

Regulatory Requirements

- Passes FCC B and worldwide analogous emission limits when assembled into a mouse with shielded cable and following PixArt recommendations.
- Passes IEC-1000-4-3 radiated susceptibility level when assembled into a mouse with shielded cable and following PixArt recommendations.
- Passes EN-61000-4-4/IEC-801-4 EFT tests when assembled into a mouse with shielded cable and following PixArt recommendations. Passes IEC-6100-4-2 Electrostatic Discharge Immunity (ESD) and provides sufficient ESD creepage/clearance distance to withstand discharge up to 15kV when assembled into a mouse according to usage instructions above.

Application Circuits

- 1. The supply and ground paths should be laid out using a star methodology.
- 2. Level shifting is required to interface a 5V micro-controller to PMW3310DH-AWQT.
- 3. All caps MUST be as close as possible to VDD, VDDIO & REF sensor pins with trace length less than 5mm.
- 4. Ceramic non-polarity caps and tantalum polarity caps are recommended.
- 5. Caps should have less than 5nH of self inductance and less than 0.2Ω ESR.


ŀ

Buttons

÷

ŀ

-

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	Ts	-40	85	C°	
Lead-Free Solder Temp			260	C°	
Supply Voltage	V _{DD}	-0.5	3.4	V	
	V _{DD_LED}	-0.5	3.4	V	
	VDDIO	-0.5	3.4	V	
ESD (Human body model)			2	kV	All Pins
Input Voltage	VIN	-0.5	3.4	V	All I/O Pins

Comments:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are the stress ratings only and functional operation of the device at these or any other condition beyond those indicated for extended period of time may affect device reliability.
- 2. The inherent design of this component causes it to be sensitive to electrostatic discharge. The ESD threshold is listed above. To prevent ESDinduced damage, take adequate ESD precautions when handling this product.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Operating Temperature	TA	0		40	С°	
	V_{DD}	2.7	2.8	3.3	Volts	Including noise.
Power supply voltage	VDD-LED	2.7	2.8	3.3	Volts	Including noise.
	V _{DDIO}	1.65		3.3	Volts	Including noise.
Power supply rise time	V _{RT3}	1		100	ms	0 to 2.8V
Supply noise (Sinusoidal)	V _{NA}			100	mV_{p-p}	10kHz-50MHz
Serial Port Clock Frequency	f sclk			2	MHz	Active drive, 50% duty cycle
Distance from lens reference plane to surface (Z)	Z	2.2	2.4	2.6	mm	Results in +/- 0.2 mm minimum DOF.
Speed	S		130		ips	
Lift Cutoff	L		3		mm	
Acceleration	А		30		g	
Load Capacitance	Cout			100	pF	MOTION, MISO

Recommended Operating Conditions

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

PixArt Imaging Inc.

E-mail: fae service@pixart.com.tw

AC Electrical Specifications

Electrical Characteristics over recommended operating conditions. (Typical values at 25 °C, VDD = 2.8V)

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Motion delay after reset	tmot-rst	30			ms	From SW_RESET register write to valid motion, assuming motion is present
Shutdown	t stdwn			500	μs	From Shutdown mode active to low current
Wake Up from Shutdown	twakeup	30			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown and Forced Rest", also note t _{MOT-RST}
Forced Rest enable	trest-en			1	S	From RESTEN bits set to low current
Wake Up from Forced Rest	tREST-DIS			1	S	From RESTEN bits cleared to valid motion
MISO rise time	t _{r-MISO}		50	200	ns	C _L = 100pF
MISO fall time	t _{f-MISO}		50	200	ns	C _L = 100pF
MISO delay after SCLK	tdly-miso			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO hold time	thold-MISO	200			ns	Data held until next falling SCLK edge
MOSI hold time	t _{hold-MOSI}	200			ns	Amount of time data is valid after SCLK rising edge
MOSI setup time	tsetup-MOSI	120			ns	From data valid to SCLK rising edge
SPI time between write commands	tsww	120			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI time between write and read commands	tswr	120			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI time between read and subsequent commands	tsrw tsrr	20			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI read address-data delay	tsrad	150			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.
NCS inactive after motion burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS to SCLK active	tncs-sclk	120			ns	From last NCS falling edge to first SCLK rising edge
SCLK to NCS inactive (for read operation)	tsclk-ncs	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK to NCS inactive (for write operation)	tsclk-ncs	20			us	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS to MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state
MOTION rise time	tr-MOTION		50	200	ns	C _L = 100pF
MOTION fall time	t _{f-MOTION}		50	200	ns	C _L = 100pF
Transient Supply Current	Iddt			65	mA	Max supply current during a V_{DD} ramp from 0 to 2.8V

DC Electrical Specifications

Electrical Characteristics over recommended operating conditions. (Typical values at 25 °C, VDD = 2.8 V, VDDIO = 2.8V)

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes		
	I _{DD_RUN1}		11		mA	Average current, inclusive of LED current. No load on		
	IDD_RUN2	18			mA	MISO, MOTION.		
DC Supply Current	IDD_RUN3		27		mA	 RUN1 = Run mode at less		
	IDD_REST1		0.30		than 6 ips – RUN2 = Run mode at between			
	IDD_REST2		0.15		mA	6 ips and 25 ips		
	IDD_REST3		0.05		mA	RUN3 = Run mode at more than 25 ips		
Peak Supply Current	IDDPP			65	mA			
Shutdown Supply Current	IDDSTDWN		65		μA	NCS, SCLK, MOSI = VDDIO MISO = GND		
Input Low Voltage	VIL			0.3 * VDDIO	V	SCLK, MOSI, NCS		
Input High Voltage	VIH	0.7 * VDDIO			V	SCLK, MOSI, NCS		
Input Hysteresis	VI_HYS		100		mV	SCLK, MOSI, NCS		
Input Leakage Current	lleak		±1	±10	μΑ	Vin = 0.7*VDDIO , SCLK, MOSI, NCS		
Output Low Voltage, MISO, MOTION	Vol			0.3 * V _{DDIO}	V	lout = 1mA, MISO, MOTION		
Output High Voltage, MISO, MOTION	V _{OH}	0.7 * V _{DDIO}			V	lout = -1mA, MISO, MOTION		
Input Capacitance	Cin			10	pF	MOSI, NCS, SCLK		

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

PixArt Imaging Inc.

E-mail: <u>fae_service@pixart.com.tw</u>

Sensor's Typical Performance Characteristics

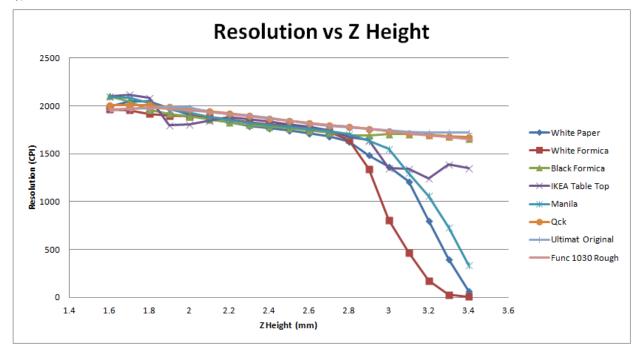


Figure 9. Mean Resolution vs. Z Height at Resolution of 1800cpi

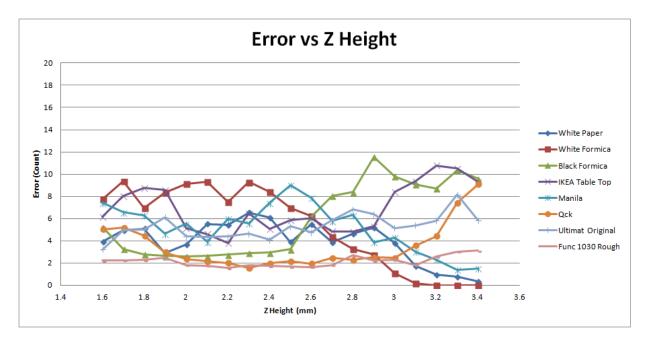


Figure 10. Error Count vs. Z Height at Resolution of 1800cpi

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission **PixArt Imaging Inc.**

E-mail: <u>fae_service@pixart.com.tw</u>

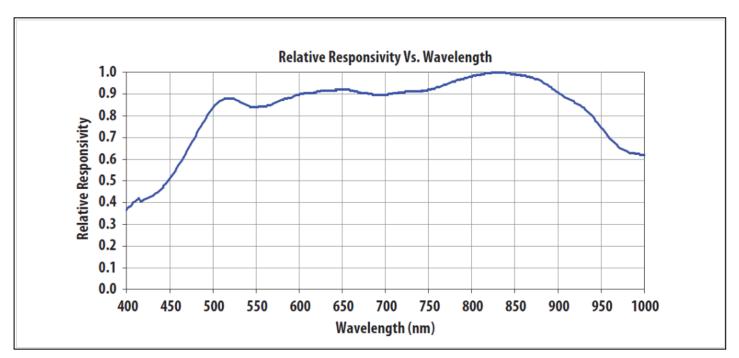


Figure 11. Wavelength Responsivity

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Synchronous Serial Port

The synchronous serial port is used to set and read parameters in PMW3310DH-AWQT sensor, and to read out the motion information. The serial port is also used to load SROM data into PMW3310DH-AWQT sensor.

The port is a four wire port. The host micro-controller always initiates communication; PMW3310DH-AWQT sensor never initiates data transfers. SCLK, MOSI, and NCS may be driven directly by a micro-controller. The port pins may be shared with other SPI slave devices. When the NCS pin is high, the inputs are ignored and the output is tristated.

The lines that comprise the SPI port are:

- SCLK: Clock input, generated by the master (microcontroller).
- MOSI: Input data. (Master Out/Slave In)
- MISO: Output data. (Master In/Slave Out)
- NCS: Chip select input (active low). NCS needs to be low to activate the serial port; otherwise, MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.

Motion Pin Timing

The motion pin is an active low output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is data in the

Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers. Clearing the motion bit (by reading Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers, or writing to the Motion register) will put the motion pin high.

Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. This is true for all transactions including SROM download. After a transaction is aborted, the normal address-to-data or transaction-totransaction delay is still required before beginning the next transaction. To improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because ESD and EFT/B events could be interpreted as serial communication and put the chip into an unknown state. In addition, NCS must be raised after each burst-mode transaction is complete to terminate burst-mode. The port is not available for further use until burst-mode is terminated.

Write Operation

Write operation, defined as data going from the micro-controller to PMW3310DH-AWQT sensor, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. PMW3310DH-AWQT sensor reads MOSI on rising edges of SCLK.

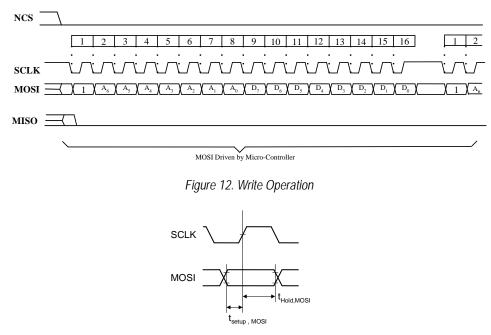


Figure 13. MOSI Setup and Hold Time

PixArt Imaging Inc.

Read Operation

A read operation, defined as data going from PMW3310DH-AWQT sensor to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by PMW3310DH-AWQT sensor over MISO. The sensor outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.

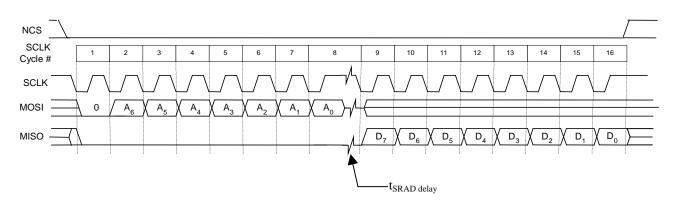


Figure 14. Read Operation

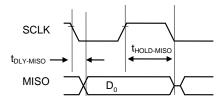


Figure 15. MISO Delay and Hold Time

Note: The minimum high state of SCLK is also the minimum MISO data hold time of PMW3310DH-AWQT sensor. Since the falling edge of SCLK is actually the start of the next read or write command, PMW3310DH-AWQT sensor will hold the state of data on MISO until the falling edge of SCLK.

Required timing between Read and Write Commands (tsxx)

There are minimum timing requirements between read and write commands on the serial port.

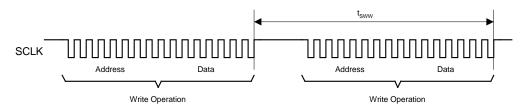


Figure 16. Timing between two write commands

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

If the rising edge of the SCLK for the last data bit of the second write command occurs before the tsww delay, then the first write command may not complete correctly.

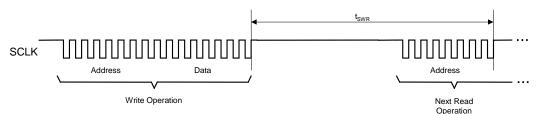


Figure 17. Timing between write and read commands

If the rising edge of SCLK for the last address bit of the read command occurs before the t_{swr} required delay, the write command may not complete correctly.

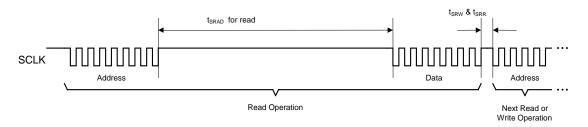
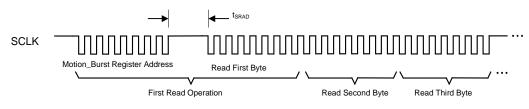


Figure 18. Timing between read and either write or subsequent read commands

During a read operation SCLK should be delayed at least $t_{\mbox{\scriptsize SRAD}}$ after the last address data bit to ensure that the Sensor has time to prepare the requested data.


The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that PMW3310DH-AWQT sensor has time to prepare the requested data.

Burst Mode Operation

Burst mode is a special serial port operation mode which may be used to reduce the serial transaction time for three predefined operations: motion read and SROM download and frame capture. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.

Motion Read

Reading the Motion_Burst register activates this mode. PMW3310DH-AWQT sensor will respond with the contents of the Motion, Observation, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, Pixel Statistic and Shutter registers in that order. After sending the register address, the micro-controller must wait one frame, and then begin reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the micro-controller must raise the NCS line for at least transmission.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

PixArt Imaging Inc.

E-mail: fae_service@pixart.com.tw

 $hUo hU^{\ddagger}$) = $^{\circ}^{\ddagger}ju$) o R3.0 1 201

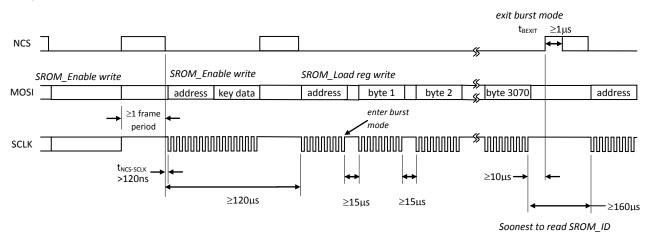
Procedure to start motion burst,

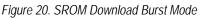
- 1. Lower NCS
- 2. Send 0x50 to Motion_Burst register.
- 3. Wait for one frame. (This is applicable in Run mode for wake up but not require for rest mode)
- 4. Start reading SPI Data continuously up to 14bytes. Motion burst may be terminated by pulling NCS high for at least tBEXIT.
- 5. To read new motion burst data, repeating from step 1.

Information detail for motion burst report:

BYTE[00] = Motion	BYTE[06] = SQUAL
BYTE[01] = Observation	BYTE[07] = Pixel_Sum
BYTE[02] = Delta_X_L	BYTE[08] = Maximum_Pixel
BYTE[03] = Delta_X_H	BYTE[09] = Minimum_Pixel
BYTE[04] = Delta_Y_L	BYTE[10] = Shutter_Upper
BYTE[05] = Delta_Y_H	BYTE[11] = Shutter_Lower

Note: In rest mode, motion burst data is always available or in other words, motion burst data can be read from Motion_Burst register even in rest modes.


SROM Download


This function is used to load the PixArt supplied firmware file contents into PMW3310DH-AWQT after sensor power up sequence. The firmware file is an ASCII text file. In the current version of PMW3310DH-AWQT sensor, 3K bytes of SROM will be used.

SROM download procedure:

- 1. Write 0x1d to SROM_Enable register for initializing
- 2. Wait for one frame
- 3. Write 0x18 to SROM_Enable register again to start SROM Download
- 4. Write SROM file into SROM_Load_Burst register, 1st data must start with SROM_Load_Burst address. All the SROM data must be downloaded before SROM start running.

The SROM download success may be verified in two ways. Once execution from SROM space begins, the SROM_ID register will report the firmware version. At any time, a self-test may be executed which performs a CRC on the SROM contents and reports the results in a register. The test is initiated by writing 0x15 to the SROM_Enable register; the result is placed in the Data_Out_Lower and Data_Out_Upper registers. See those register description for more details.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Frame Capture

This is a fast way to download a full array of pixel values from a single frame. This mode disables navigation and overwrites any downloaded firmware. A hardware reset is required to restore navigation, and the firmware must be reloaded.

To trigger the capture, write to the Frame_Capture register. The next available complete 1 frame image will be stored to memory. The data are retrieved by reading the Pixel_Burst register once using the normal read method, after which the remaining bytes are clocked out by driving SCLK at the normal rate. If the Pixel_Burst register is read before the data is ready, it will return all zeros.

Procedure of Frame Capture:

- 1. Reset the chip by writing 0x5a to Power_Up_Reset register (address 0x3a).
- 2. Write 0x93 to Frame_Capture register.
- 3. Write 0xc5 to Frame_Capture register.
- 4. Wait for two frames.
- 5. Check for first pixel by reading bit zero of Motion register. If =1, first pixel is available.
- 6. Continue read from Pixel_Burst register until all 900 pixels are transferred. Refer to Pixel Map in Figure 22.
- 7. Continue step 1~5 to capture another frame.

Note: Manual reset and SROM download are needed after frame capture to restore navigation.

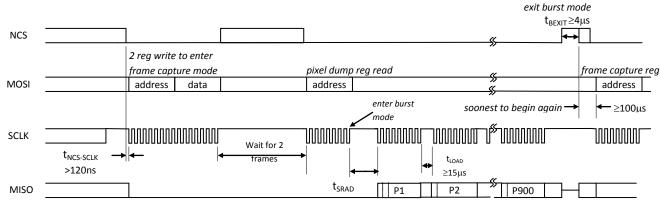
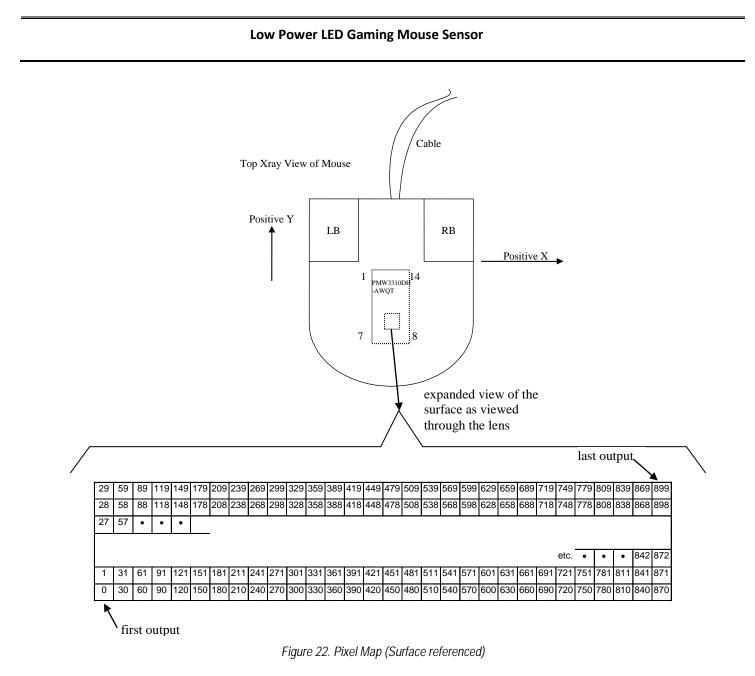



Figure 21. Frame Capture Burst Mode

PixArt Imaging Inc.

Power Up

PMW3310DH-AWQT sensor does not perform an internal power up self-reset; the Power_Up_Reset register must be written every time power is applied. The appropriate sequence is as follows:

- 1. Apply power to VDD and VDDIO in any order.
- 2. Drive NCS high, and then low to reset the SPI port.
- 3. Write 0x5a to Power_Up_Reset register (address 0x3a).
- 4. Wait for at least 50ms.
- 5. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 (or read these same 5 bytes from burst motion register) one time regardless of the motion pin state.
- 6. SROM download.

During power-up there will be a period of time after the power supply is high but before normal operation. The table below shows the state of the various pins during power-up and reset.

		State of Signal Pins After	VDD is Valid	
Pin	On Power-Up	NCS High before Reset	NCS Low before Reset	After Reset
NCS	Functional	Hi	Low	Functional
MISO	Undefined	Undefined	Functional	Depends on NCS
SCLK	Ignored	Ignored	Functional	Depends on NCS
MOSI	Ignored	Ignored	Functional	Depends on NCS
MOTION	Undefined	Undefined	Undefined	Functional

Shutdown

PMW3310DH-AWQT can be set in Shutdown mode by writing 0xb6 to register 0x3b. The SPI port should not be accessed when Shutdown mode is asserted, except the power-up command (writing 0x5a to register 0x3a). Other ICs on the same SPI bus can be accessed, as long as the sensor's NCS pin is not asserted. The SROM download is required when wake up from Shutdown mode. To de-assert Shutdown mode:

- 1. Maintain VDD and VDDIO supplies to the sensor.
- 2. Drive NCS high, then low to reset the SPI port.
- 3. Write 0x5a to Power_Up_Reset register (address 0x3a).
- 4. Wait for at least 50ms.
- 5. Clear observation register.
- 6. Wait at least one frame and check observation register, Bit[5:0] must be set.
- 7. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 (or read these same 5 bytes from burst motion register) one time regardless of the motion pin state.
- 8. SROM download.
- 9. Any register setting must then be reloaded.

The table below shows the state of various pins during shutdown.

Pin	Status when Shutdown Mode
NCS	Functional *1
MISO	Undefined *2
SCLK	Ignore if NCS = 1 *3
MOSI	Ignore if NCS = 1 *4
MOTION	Undefined *2

- *1. NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Power Down unless powering up the Sensor. It must be held to 0 (low) if the sensor is to be re-powered up from shutdown (writing 0x5a to register 0x3a).
- *2. Depends on last state. MISO should be configured to drive LOW during shutdown to meet the low current consumption as specified

in the datasheet. This can be achieved by reading Inverse_Product_ID register (address 0x3f) since the return value (0xc0) on MISO line ends in a 0 (low state).

- *3. SCLK is ignored if NCS is 1 (high). It is functional if NCS is 0 (low).
- *4. MOSI is ignored if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5a to register 0x3a).

Note:

- *i.* Do not turn off VDD and leave VDDIO on or vice-versa at anytime as it will introduce high leakage current path. As an alternative, both VDD and VDDIO can be turned off together in shutdown mode.
- *ii.* There is long wakeup time from shutdown and Forced Rest. These features should not be used for power management during normal operation.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission **PixArt Imaging Inc.** bll blic blic t

Registers

PMW3310DH-AWQT registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Address	Register	Read/Write	Default Value
0x00	Product_ID	R	0x3f
0x01	Revision_ID	R	0x01
0x02	Motion	R	0x20
0x03	Delta_X_L	R	0x00
0x04	Delta_X_H	R	0x00
0x05	Delta_Y_L	R	0x00
0x06	Delta_Y_H	R	0x00
0x07	SQUAL	R	0x00
0x08	Pixel_Sum	R	0x00
0x09	Maximum_Pixel	R	0x00
0x0a	Minimum_Pixel	R	0x00
0x0b	Shutter_Lower	R	0x7a
0x0c	Shutter_Upper	R	0x31
0x0d-0x0e	Reserved		
0x0f	Configuration_A	R/W	0x24
0x10	Configuration_B	R/W	0x00
0x11	Configuration_C	R/W	0x00
0x12	Frame_Capture	R/W	0x00
0x13	SROM_Enable	W	0x00
0x14	Run_Downshift	R/W	0x32
0x15	Rest1_Rate	R/W	0x01
0x16	Rest1_Downshift	R/W	0x1f
0x17	Rest2_Rate	R/W	0x09
0x18	Rest2_Downshift	R/W	0xbc
0x19	Rest3_Rate	R/W	0x31
0x1a	FrameDuration_MaxLimit_Lower	R/W	0x60
0x1b	FrameDuration_MaxLimit_Upper	R/W	0x6d
0x1c	FrameDuration_MinLimit_Lower	R/W	0x0c
0x1d	FrameDuration_MinLimit_Upper	R/W	0x1e
0x1e	Shutter_MaxLimit_Lower	R	0xb8
0x1f	Shutter_MaxLimit_Upper	R	0x0b
0x24	Observation	R/W	0x00
0x25	Data_Out_Lower	R	Undefined
0x26	Data_Out_Upper	R	Undefined
0x27-0x28	Reserved		
0x29	Pixel_Grab	R/W	0x00
0x2a	SROM_ID	R	0x00
0x2b-0x2e	Reserved		
0x2f	Configuration_D	R/W	0x00
0x30-0x38	Reserved		

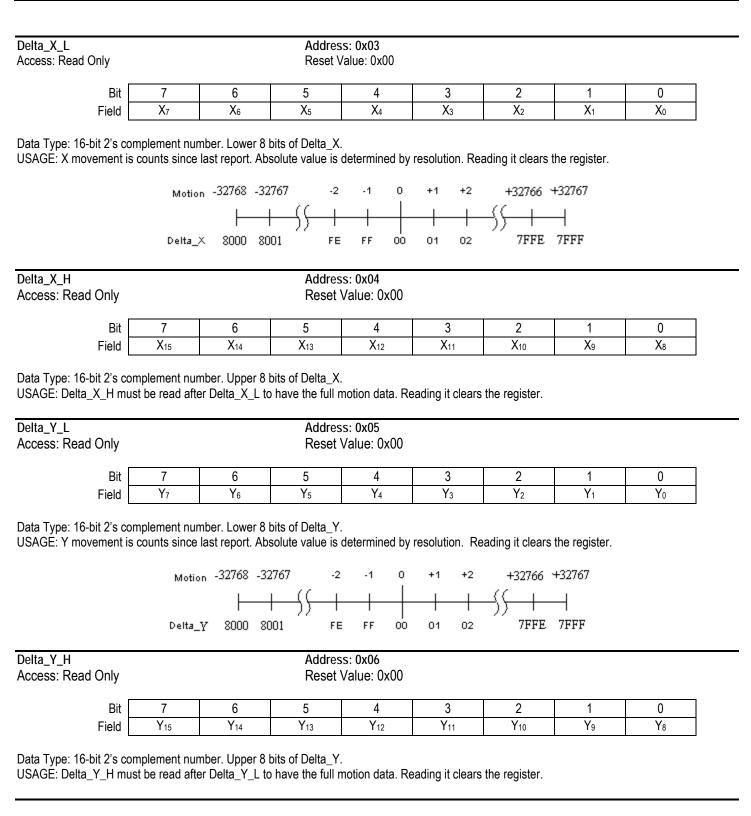
All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Address	Register	Read/Write	Default Value
0x39	Configuration_E	R/W	0x00
0x3a	Power_Up_Reset	W	NA
0x3b	Shutdown	W	NA
0x3c-0x3e	Reserved		
0x3f	Inverse_Product_ID	R	0xc0
0x40-0x41	Reserved		
0x42	Snap_Angle	R/W	0x06
0x43-0x46	Reserved		
0x47	Sensor_Mode	R/W	0x01
0x48-0x4f	Reserved		
0x50	Motion_Burst	R/W	0x00
0x51-0x61	Reserved		
0x62	SROM_Load_Burst	W	NA
0x63	Reserved		
0x64	Pixel_Burst	R	0x00

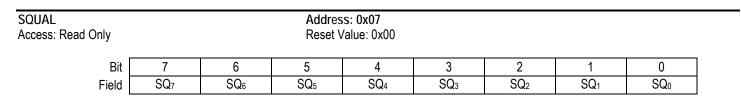
All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Product_ID Access: Read Only	Address: 0x00 Reset Value: 0x3f								
Bit	7	6	5	4	3	2	1	0	1
Field	PID ₇	PID ₆	PID₅	PID ₄	PID ₃	PID ₂	PID ₁	PID₀	1
USAGE: This value is a serial commun			ed to this mod	el only. The va	lue in this regis	ster does not c	hange; it can b	e used to verify	/ that the
Revision_ID				s: 0x01					
Access: Read Only			Reset \	/alue: 0x01					
Bit	7	6	5	4	3	2	1	0]
Field	RID ₇	RID ₆	RID₅	RID ₄	RID₃	RID ₂	RID ₁	RID₀	1

Data Type: 8-bit unsigned integer USAGE: This register contains the current IC revision, the revision of the permanent internal firmware. It is subject to change when new IC versions are released.


PMW3310DH-AWQT

Low Power LED Gaming Mouse Sensor


Motion			Address: 0x0	2			
Access: Read Only			Reset Value:	0x00			
Bit 7	6	5	4	3	2	1	0
Field MOT	Reserved	Lift_Off	Pix_First	Reserved	OP_Mode1	OP_Mode ₀	Frame_First
Delta_X_H, Dr reading the D Delta_Y_L and register is rea	elta_Y_L and Delt elta_X_L, Delta_> d Delta_Y_H regis	a_Y_H register (_H, Delta_Y_L ter values. If D time, the data i	s should be rea _ and Delta_Y_ elta_X_L, Delta_ n Delta_X_L, D	ad in sequence H registers as _X_H, Delta_Y_I elta_X_H, Delta	to get the accur reading this reg L and Delta_Y_I _Y_L and Delta	mulated motion. gister freezes th H registers are r _Y_H will be los	IOT bit is set, Delta_X_L Read this register befor the Delta_X_L, Delta_X_H not read before the motio st. Writing anything to this s not saved.
Field Name	Description						
MOT	0 = No moti			in Delta_X_L, D	elta X H, Delta	Y L and Delta	Y H registers
Lift_Off	Lift mode 0 = sensor i	not lifted and r	ormal operatio				
Pix_First	This bit is se read, initiatir 0 = Pixel_G		el_Grab (address to pixel 0,0. om pixel 0,0	s 0x29) register i	s written to or w	hen a complete	pixel array has been
OP_Mode[1:0]		ode of the sens					
Frame_First	This bit is se 0 = Frame_0		ot from pixel 0,		ster is written to,	, initiating an incr	rement to pixel 0,0.

hU o

hU‡

Note: PixArt RECOMMENDS that register 0x02, 0x03, 0x04, 0x05 and 0x06 to be read sequentially.

Data Type: Upper 8-bits of a 10-bit unsigned integer.

USAGE: The SQUAL (Surface quality) register is a measure of the number of valid features visible by the sensor in the current frame. Use the following formula to find the total number of valid features.

Internal Squal = SQUAL * 4

The maximum SQUAL register value is 169. Since small changes in the current frame can result in changes in SQUAL, variations in SQUAL when looking at a surface are expected. The graph below shows 800 sequentially acquired SQUAL values, while a sensor was moved slowly over white paper. SQUAL is nearly equal to zero if there is no surface below the sensor. SQUAL remains fairly high throughout the Z-height range which allows illumination of most pixels in the sensor.

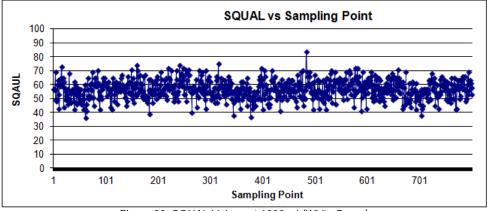


Figure 23. SQUAL Values at 1800cpi (White Paper)

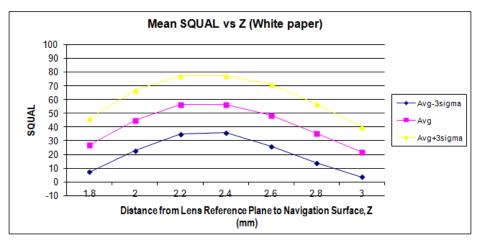


Figure 24. Mean SQUAL vs. Z (White Paper)

Pixel_Sum Access: Read Only				Address: 0x08 Reset Value: 0x00					
Bit	7	6	5	4	3	2	1	0	
Field	AP ₇	AP ₆	AP ₅	AP ₄	AP ₃	AP ₂	AP ₁	AP ₀	

Data Type: High 8-bits of an unsigned 17-bit integer.

USAGE: This register is used to find the average pixel value. It reports the upper byte of a 17-bit counter which sums all 900 pixels in the current frame. It may be described as the full sum divided by 512. To find the average pixel value follows the formula below.

Average Pixel = Register Value * 512 / 900 \cong Register Value / 1.76

The maximum register value is 223 (127 * 900 / 512 truncated to an integer). The minimum register value is 0. The pixel sum value can change every frame.

Maximum_Pixel Access: Read Only Address: 0x09 Reset Value: 0x00

Bit	7	6	5	4	3	2	1	0
Field	MP ₇	MP ₆	MP ₅	MP ₄	MP ₃	MP ₂	MP ₁	MP ₀

Data Type: 7-bit integer.

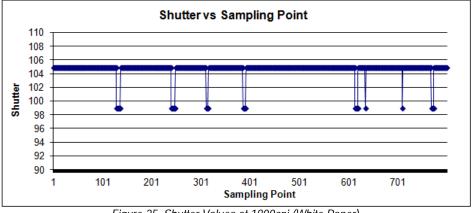
USAGE: Maximum Pixel value in current frame. Minimum value = 0, maximum value = 127. The maximum pixel value can be adjusted every frame.

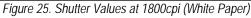
Minimum_Pixel	
Access: Read Only	1

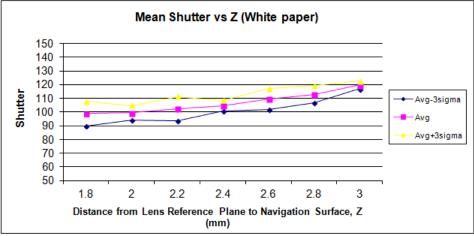
Address: 0x0A Reset Value: 0x00

-								
Bit	7	6	5	4	3	2	1	0
Field	MinP ₇	MinP ₆	MinP₅	MinP ₄	MinP₃	MinP ₂	MinP ₁	MinP₀

Data Type: 7-bit integer.


USAGÉ: Minimum Pixel value in current frame. Minimum value = 0, maximum value = 127. The maximum pixel value can be adjusted every frame.


Shutter_Lower Access: Read Only	Address: 0x0B Reset Value: 0x7a							
Bit	7	6	5	4	3	2	1	0
Field	S7	S ₆	S₅	S4	S3	S ₂	S ₁	S ₀
Shutter_Upper Access: Read Only				s: 0x0C /alue: 0x31				
Bit	7	6	5	4	3	2	1	0
Field	S ₁₅	S14	S ₁₃	S12	S11	S ₁₀	S9	S ₈


Data Type: 16-bit unsigned integer.

USAGE: Units are clock cycles of the internal oscillator (nominally 50MHz). Read Shutter_Upper first, then Shutter_Lower. They should be read consecutively. The shutter is adjusted to keep the average pixel values within normal operating ranges. The shutter value is checked and automatically adjusted to a new value if needed on every frame when operating in default mode. The shutter value can be set manually by disabling the AGC using the Configuration_B register and writing to the Shutter_Maximum_Bound registers. Because the automatic frame rate feature is related to shutter value it may also be appropriate to enable the fixed frame rate mode using the Configuration_B register. The maximum value of the shutter is dependent upon the setting in the Shutter_Maximum_Bound registers.

Shown below is a graph of 800 sequentially acquired shutter values, while the sensor was moved slowly over white paper.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission **PixArt Imaging Inc.**

29

onfiguration_A ccess: R/W				ss: 0x0F Value: 0x24				
Bit	7	6	5	4	3	2	1	0
Field	RES ₇	RES ₆	RES₅	RES ₄	RES₃	RES ₂	RES ₁	RES₀

5000cpi.

Resolution value (counts per inch, cpi) = RES [7:0] x 50

For example:

i or oxampio.		
Configuration_A Register Value	Approximate Resolution (cpi)	Description
0x01	50	Minimum
0x24	1800	Default
0x40	3200	
0x64	5000	Maximum

Note: Rpt_Mod bit in Configuration_B register is used to select CPI reporting mode either X and Y axis resolution setting in sync or independent setting for X-axis and Y-axis respectively. Refer to Configuration_D register for Y-axis resolution setting.

Configuration_B Access: R/W				Address: 0x10 Reset Value: 0x00					
Bit	7	6	5	4	3	2	1	0	
Field	F_Rest₁	F_Rest₀	Rest_En	NAGC	Fixed_FR	Rpt_Mod	0	0	

Data Type: Bit field

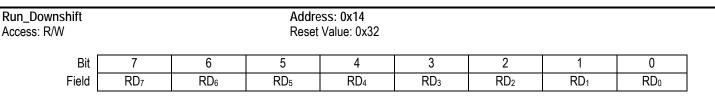
USAGE: This register is used to change configuration of sensor.

When the sensor is put into Force Rest function via F_Rest[1:0], the operation mode of sensor will change from current mode to the next desired Rest mode and stay at the desired Rest mode until the Force Rest mode is released. Once Force Rest mode is released, the sensor will resume to normal operation from the desired Rest mode and auto downshift to the next level of Rest modes if no motion or recover to Run mode if motion is detected.

For example:

or example.			
Current	Next desired	Force Rest	After Force Rest mode is released (F_Rest[1:0] = 00)
mode	mode	mode action	
Run	Rest1	Force Rest1	Resume to normal operation from REST1, auto downshift to Rest2, then Rest3
		F_Rest[1:0] = 01	in sequence if no motion or back to Run mode if motion detected.
Run	Rest2	Force Rest2	Resume to normal operation from REST2, auto downshift to Rest3 if no motion
		F_Rest[1:0] = 10	or back to Run mode if motion detected.
Run	Rest3	Force Rest3	Resume to normal operation from REST3, stay in Rest3 if no motion or back to
		F_Rest[1:0] = 11	Run mode if motion detected.
		$\Gamma_{KeSi[1:0]} = 11$	

Field Name	Description
F_Rest[1:0]	Puts chip into Rest mode
	00 = Normal operation
	01 = Force Rest1
	10 = Force Rest2
	11 = Force Rest3
Rest_En	Enable Rest mode
	0 = Normal operation without REST modes
	1 = REST modes enabled
NAGC	Disable AGC. Shutter value will be set to the value in the Shutter_Maximum_Bound registers.
	0 = no, AGC is active
	1 = yes, AGC is disabled
Fixed_FR	Fixed frame rate (disable automatic frame rate control). When this bit is set the frame rate will be set by the value in the
	FrameDuration_MaxLimit registers.
	0 = automatic frame rate
	1 = fixed frame rate
Rpt_Mod	Select CPI reporting mode.
	0 = XY axes CPI setting in sync
	1 = CPI setting independently for X-axis and Y-axis. Configuration_A register sets X-axis resolution, while Configuration_D register
	sets Y-axis resolution.
BIT[1:0]	Must be set to 00


All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

PixArt Imaging Inc.

E-mail: fae service@pixart.com.tw

Configuration_C Access: R/W				ess: 0x11 Value: 0x00					
Bit	7	6	5	4	3	2	1	0	7
Field	A_Tune ₇	A_Tune ₆	A_Tune₅	A_Tune ₄	A_Tune₃	A_Tune ₂	A_Tune ₁	A_Tune₀	-
A_Tune[7:0]	ill be ignored	The motion dat							
Field Name ANGLE[4:0]	Angle 0xE2 0xF6 0x00 0x0F	ription = tune settings, e = -30° = -10° = 0° = +15° = +30°	example:						
Frame_Capture Access: R/W				ess: 0x12 Value: 0x00					
Bit	7	6	5	4	3	2	1	0]
Field	FC7	FC ₆	FC₅	FC ₄	FC ₃	FC ₂	FC1	FC ₀	
reading. Re	e overwritten a fer to Frame	available comp and stops navig Capture sectior y reading this re	ation. A hardw n for use detai egister 900 time Addre	are reset and S ls. The data p	SROM downloa	ad are required	to restore nor	mal operation f	for motion
	Bit 7	6	5	4	3	2	1	0	
F	ield SE		SE5	SE4	SE ₃	SE ₂	SE1	SE ₀	
SROM down	s register to C test can be nloaded. Navi	start either SRC performed to o gation is halted re is as below:	heck for the s	successful of S	ROM downloa	ading procedur	e. SROM CRO	C test is only v	valid after

- 1. Write 0x15 to SROM_Enable register to start SROM CRC test.
- 2. Wait for at least 10ms.
- 3. Read the CRC value from Data_Lower and Data_Upper registers.

Data Type: 8-bit integer

USAGE: This register sets the Run to Rest 1 downshift time. Default value is 500ms. Use the formula below for calculation.

Run Downshift time (ms) = $RD[7:0] \times 10$ Default = 50 x 10 = 500ms

All the above values are calculated based on system clock, which is expected to have 20% tolerance.

Rest1_Rate Access: R/W				ess: 0x15 Value: 0x01				
Bit	7	6	5	4	3	2	1	0
Field	R1R7	R1R6	R1R₅	R1R4	R1R₃	R1R ₂	R1R1	R1R₀

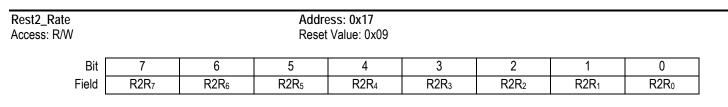
Data Type: 8-bit integer

USAGE: This register sets the Rest 1 frame rate duration. Default value is 20ms. Use the formula below for calculation.

Rest1 frame rate duration = $(R1R[7:0] + 1) \times 10ms$. Default = $(1 + 1) \times 10 = 20ms$

All the above values are calculated based on 100Hz Hibernate clock, which is expected to have 40% tolerance.

Rest1_Downshift	Address: 0x16
Access: R/W	Reset Value: 0x1f


Bit	7	6	5	4	3	2	1	0
Field	R1D7	R1D ₆	R1D₅	R1D ₄	R1D₃	R1D ₂	R1D₁	R1D ₀

Data Type: 8-bit integer

USAGE: This register sets the Rest 1 to Rest 2 downshift time. Default value is 9920ms. Use the formula below for calculation.

Rest1 Downshift time = R1D[7:0] x 16 x Rest1_Rate. Default = $31 \times 16 \times 20 = 9920$ ms

All the above values are calculated based on 100Hz Hibernate clock, which is expected to have 40% tolerance.

Data Type: 8-bit integer

USAGE: This register sets the Rest 2 frame rate duration. Default value is 100ms. Use the formula below for calculation.

Rest2 frame rate duration = $(R2R[7:0] + 1) \times 10ms$. Default = $(9 + 1) \times 10 = 100ms$

All the above values are calculated based on 100Hz Hibernate clock, which is expected to have 40% tolerance.

Rest2_Downshift Access: R/W				ess: 0x18 : Value: 0xbc				
Bit	7	6	5	4	3	2	1	0
Field	R2D7	R2D ₆	R2D₅	R2D4	R2D₃	R2D ₂	R2D ₁	R2D ₀

Data Type: 8-bit integer

USAGE: This register sets the Rest 2 to Rest 3 downshift time. Default value is 10mins. Use the formula below for calculation.

Rest2 Downshift time = $R2D[7:0] \times 32 \times Rest2_Rate$. Default = $188 \times 32 \times 100 = 601.6s = 10mins$

All the above values are calculated based on 100Hz Hibernate clock, which is expected to have 40% tolerance.

Rest3_Rate	Address: 0x19
Access: R/W	Reset Value: 0x31

Bit	7	6	5	4	3	2	1	0
Field	R3R7	R3R ₆	R3R₅	R3R4	R3R₃	R3R ₂	R3R₁	R3R₀

Data Type: 8-bit integer

USAGE: This register sets the Rest 3 frame rate duration. Default value is 500ms. Use the formula below for calculation.

Rest3 frame rate duration = $(R3R[7:0] + 1) \times 10ms$. Default = $(49 + 1) \times 10 = 500ms$

All the above values are calculated based on 100Hz Hibernate clock, which is expected to have 40% tolerance.

FrameDuration_MaxLimit_Lower Access: R/W			Address: 0x1A Reset Value: 0x60					
Bi	7	6	5	4	3	2	1	0
Field	FLM7	FLM ₆	FLM₅	FLM ₄	FLM ₃	FLM ₂	FLM ₁	FLM ₀

Bit	7	6	5	4	3	2	1	0
Field	FLM ₁₅	FLM ₁₄	FLM ₁₃	FLM ₁₂	FLM ₁₁	FLM ₁₀	FLM ₉	FLM ₈

Data Type: 16-bit unsigned integer

USAGE: This value sets the maximum frame duration in automatic frame rate control mode or actual frame duration in manual mode. To read back the registers value, read the Upper (0x1B) register first then follow by Lower (0x1A) register. To write into the registers, write Lower register first, then follow by Upper register. Units are in clock cycles of internal oscillator (nominally 50MHz). The formula is:

Frame Rate (fps) = Internal Oscillator Clock Frequency (MHz) / Register Value

To set the frame rate manually, disable automatic frame rate mode via the Configuration_B register and write the desired count value to these registers. Writing to the FrameDuration_MaxLimit_Upper and Lower registers also activate any new values in the following registers:

- FrameDuration_MinLimit_Upper and Lower
- Shutter_MaxLimit_Upper and Lower

Any data written to the other two sets of registers will be saved but will not take effect until the write to the FrameDuration_MaxLimit_Upper and Lower is completed. After writing to this register, two complete frame times are required to implement the new settings. Writing to any of the above registers before the implementation is completed may put the chip into an undefined state which requires reset.

The three limit registers must also follow this rule when set to non-default values. There is no protection against illegal register settings, which will impact the navigation.

$FrameDuration_MaxLimit \ge FrameDuration_MinLimit + Shutter_MaxLimit.$

The following table lists some Frame Duration example values with a 50MHz clock.

Frama Data	Frame [Duration	FrameDuration	Register Value
Frame Rate	Decimal	Hex	Upper	Lower
1,800	27,777	6c81	6c	81
2,000	25,000	61a8	61	a8
3,200	15,625	3d09	3d	09
5,000	10,000	2710	27	10
6,500	7692	1e0c	1e	0c

FrameDuration_MinLim Access: R/W	it_Lower		Address: 0x1C Reset Value: 0x0c					
Bit	7	6	5	4	3	2	1	0
Field	FLN ₇	FLN ₆	FLN ₅	FLN ₄	FLN ₃	FLN ₂	FLN ₁	FLN ₀
FrameDuration_MinLim Access: R/W	it_Upper			ess: 0x1D Value: 0x1e				
Bit	7	6	5	4	3	2	1	0

Data Type: 16-bit unsigned integer

Field

FLN₁₅

FLN₁₄

USAGE: This value sets the minimum frame duration in automatic frame rate control mode or actual frame duration in manual mode. To read back the registers value, read the Upper (0x1D) register first then follow by Lower (0x1C) register. To write into the registers, write Lower register first, then follow by Upper register, then write anything to the FrameDuration_MaxLimit Lower and Upper registers to activate the new settings, wait at least two frame times before writing to FrameDuration MinLimit Upper or Lower again. A good practice is to read the content of the FrameDuration MaxLimit registers and write it back, please refer to FrameDuration MaxLimit register USAGE for details. Units are in clock cycles of internal oscillator (nominally 50MHz). The formula is:

FLN₁₂

Frame Rate (fps) = Internal Oscillator Clock Frequency / Register Value

FLN₁₁

FLN₁₀

FLN₉

FLN₈

In addition, the three limit registers must also follow this rule when set to non-default values:

FLN₁₃

FrameDuration_MaxLimit ≥ FrameDuration_MinLimit + Shutter_MaxLimit.

Shutter_MaxLimit_Lower Access: Read Only			Address Reset Va	s: 0x1E alue: 0xb8				
Bit	7	6	5	4	3	2	1	0
Field	SB7	SB ₆	SB₅	SB4	SB₃	SB ₂	SB1	SB ₀
Shutter_MaxLimit_Upper Access: Read Only			Address Reset Va	s: 0x1F alue: 0x0b				
Bit	7	6	5	4	3	2	1	0
Field	SB ₁₅	SB14	SB13	SB ₁₂	SB11	SB ₁₀	SB9	SB8

Data Type: 16-bit unsigned integer

USAGE: This value sets the maximum allowable shutter value when operating in automatic mode. Units are clock cycles of internal oscillator (nominally 50MHz). Since the automatic frame rate function is based on shutter value, the value in these registers can limit the range of the frame rate control.

To read back the registers value, read the Upper (0x1F) register first then follow by Lower (0x1E) register. To write into the registers, write Lower register first, then follow by Upper register, then write anything to the FrameDuration_MaxLimit Lower and Upper registers to activate the new settings, wait at least two frame times before writing to FrameDuration_MinLimit_Upper or Lower again. A good practice is to read the content of the FrameDuration_MaxLimit registers and write it back, please refer to FrameDuration_MaxLimit register USAGE for details. To set the shutter manually, disable the AGC via the Configuration_B register and write the desired value to these registers.

In addition, the three limit registers must also follow this rule when set to non-default values:

FrameDuration_MaxLimit ≥ FrameDuration_MinLimit + Shutter_MaxLimit

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

bservation ccess: R/W				s: 0x24 /alue: 0x00				
I	Bit 7	6	5	4	3	2	1	0
Fie	ld OB7	OB ₆	OB ₅	OB ₄	OB ₃	OB ₂	OB1	OB ₀
	bit indicating		unctioning. Thi					
Field Name	Descri							
OB ₆			ng SROM code	;				
OB[5:0]		o is running SR tion flag. Set or						
	iturigu							
ata_Out_Lower ccess: Read Only				s: 0x25 /alue: Undefin	ed			
Bit	7	6	5	4	3	2	1	0
Field	DO7	DO ₆	DO ₅	DO ₄	DO ₃	DO ₂	DO ₁	DO ₀
ata_Out_Upper ccess: Read Only				s: 0x26 /alue: Undefine	ed			
Bit	7	6	5	4	3	2	1	0
Field	DO15	DO ₁₄	DO ₁₃	DO ₁₂	DO11	DO ₁₀	DO ₉	DO ₈
ata Type: 16-bit word SAGE: Data in these								
	CRC Res			ta_Out_Upper		er		
	SROM CF	RC test	BE		E	F		
ixel_Grab	est: Performs	s a CRC test or	the SROM co	s: 0x29	st is initiated by	y writing 0x15	to SROM_Ena	ble register.
ccess: R/W			Reset v	/alue: 0x00				
Bit	7	6	5	4	3	2	1	0
Field	Valid	Pix_D ₆	Pix_D ₅	Pix_D ₄	Pix_D ₃	Pix_D ₂	Pix_D ₁	Pix_D ₀
ata Type: 8-bit unsigno ISAGE: Write any valu register for the	e to this regis pixel data.		the pixel dump ke before do pi		-		l is ready, and	then read da

3) Write 1 to bit 5 to register 0x10 (Configuration_B) to enable rest mode again

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

SROM_IDAddress: 0x2AAccess: Read onlyReset Value: 0x00									
Bit	7	6	5	4	3	2	1	0	
Field	SR7	SR ₆	SR₅	SR4	SR₃	SR2	SR₁	SR₀	

Data Type: 8-bit unsigned integer

USAGE: Contains the revision of the downloaded SROM firmware. If the firmware has been successfully downloaded and the chip is operating out of SROM, this register will contain the SROM firmware revision; otherwise it will contain 0x00.

Configuration_D Access: R/W	Address: 0x2F Reset Value: 0x00									
Bit	7	6	5	4	3	2	1	0		
Field	ResY ₇	ResY ₆	ResY₅	ResY ₄	ResY₃	ResY ₂	ResY ₁	ResY ₀		

Data Type: Bit field

USAGE: This register allows the user to change the Y-axis resolution when the sensor is configured to have independent X-axis and Y-axis resolution reporting mode via Rpt_Mod = 1 (Configuration_B register, bit-2). The setting in this register will be inactive if Rpt_Mod = 0. The approximate resolution value for each register setting can be calculated using the following formula. Each bit change is~50cpi. The minimum write value is 0x01 and maximum is 0x64.

Resolution value (counts per inch, cpi) = RES [7:0] x 50

Configuration_E Access: R/W		Address: 0x39 Reset Value: 0x02									
Bit	7	6	5	4	3	2	1	0			
Field	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Res_Ang_Pr			
	r of resolution							s_Ang_Pr = 0, the ser			

register and vise versa for the setting Res_Ang_Pr = 1.

 Field Name
 Description

Res_Ang_Pr	= 0: Resolution Scaling first then Angle Tune Rotation.= 1: Angle Tune Rotation first then Resolution Scaling

Power_Up_Reset Access: Write Only		Address: 0x3A Reset Value: NA						
Bit	7	6	5	4	3	2	1	0
Field	PUR7	PUR 6	PUR₅	PUR 4	PUR 3	PUR 2	PUR 1	PUR₀

Data Type: 8-bit integer

USAGE: Write 0x5a to this register to reset the chip. All settings will revert to default values. Reset is required after recovering from shutdown mode and restore normal operation after Frame Capture.

Shutdown Access: Write Only				ss: 0x3B Value: Undef	ined				
В	it 7	6	5	4	3	2	1	0	
Fiel		SD ₆	SD5	SD4	SD 3	SD ₂	SD ₁	SD ₀	
Data Type: 8-bit integer USAGE: Write 0xb6 to s section for mor		to shutdown m	ode and use F	Power_Up_Res	et register to v	vake up the ch	ip from shutdo	wn. Refer to S	Shutdown
Inverse_Product_ID Access: R				ss: 0x3F Value: 0xc0					
Bit	7	6	5	4	3	2	1	0	1
Field	PID ₇	PID ₆	PID₅	PID ₄	PID ₃	PID ₂	PID ₁	PID₀	1
Snap_Angle Access: R/W				ss: 0x42 /alue: 0x06					
Bit	7	6	5	4	3	2	1	0]
Field	Snap_En	Reserve	Reserve	Reserve	Snap_Thr ₃	Snap_Thr ₂	Snap_Thr₁	Snap_Thr₀	
Data Type: Bit field USAGE: The snap angl ±5degrees fror X-axis, the mot	n X or Y-axis	s will be output	as either X or	Y-axis only m					
Field Name	Descri								
Snap_En	Angle \$ = 0 : D = 1 : Ei		on						
Snap_Thr[3:0]	Snap a Tan ⁻¹ (i For exa	ngle threshold, (Snap_Thr[3:0] ample: if set to (2/32) = 3.57de	– 1) / 32). 0x83	tion as below,					

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

hU o

Sensor_Mode Access: R/W								
Bit	7	6	5	4	3	2	1	0
Field	Reserved	VFR_ON						

Data Type: Bit field

USAGE: The register is used to enable or disable variable frame rate for power saving purpose.

Field Name	Descri	ption									
VFR_ON	Frame Rate = 0 : Fixed Frame Rate = 1 : Enable Variable Frame Rate										
Motion_Burst Access: R/W	Address: 0x50 Reset Value: 0x00										
Bit	7	6	5	4	3	2	1	0			
Field	MB ₇	MB ₆	MB ₅	MB ₄	MB ₃	MB ₂	MB ₁	MB ₀			

Data Type: 8-bit unsigned integer

USAGE: The Motion_Burst register is used for high-speed access to the Motion, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL, Pixel_Sum, Maximum_Pixel, Minimum_Pixel, Shutter_Upper and Shutter_Lower registers. See Burst Mode-Motion Read section for use details. Write any value to this register will clear all motion burst data.

SROM_Load_BurstAddress: 0x62Access: Write OnlyReset Value: Undefined								
Bit	7	6	5	4	3	2	1	0
Field	SL7	SL_6	SL₅	SL4	SL ₃	SL ₂	SL1	SL ₀

Data Type: Bit field

USAGE: The SROM_Load_Burst register is used for high-speed programming SROM from an external memory or micro-controller. See SROM Download section for use details.

Pixel_Burst Access: Read Only								
Bit	7	6	5	4	3	2	1	0
Field	PB7	PB ₆	PB₅	PB4	PB₃	PB ₂	PB ₁	PB ₀

Data Type: 8-bit unsigned integer

USAGE: The Pixel_Burst register is used for high-speed access to all the pixel values for one complete frame capture, without writing to the register address to obtain each pixel data. The data pointer is automatically incremented after each read so all 900 pixel values may be obtained by reading this register 900 times. See Frame Capture section for use details.