

36V, 3.1A Monolithic Buck Converter with CC/CV Control

1 Features

- 3.1A continuous output current capability
- 6.5V to 36V wide operating input range with input Over Voltage Protection
- Integrated 36V, 76mΩ high side and 36V, 52mΩ low side power MOSFET switches
- Up to 95% efficiency
- CV/CC Mode control (Constant voltage and constant current). Cycle-by-Cycle Current Limiting
- Configurable Line Drop Compensation with resistor
- Configurable Charging Current Limit with resistor
- Internal Soft-Start limits the inrush current at turn-on
- Internal compensation to save external components
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 100KHz Switching Frequency
- Input Under-Voltage Lockout. Output Over-Voltage Protection
- Over-Temperature Protection
- Soft start time is programmable using external capacitor
- 33V input voltage protection to protect power MOSFETs from working at high current ,high input voltage condition
- Pulse skip mode at light load to improve light load efficiency
- Thermally Enhanced ESOP-8 Package

2 Applications

- Car charger
- Portable charging device
- General purpose USB charger
- General purpose DC-DC conversion

3 Description

PL8322 integrates a high efficiency synchronous step-down switching regulator, which includes a 36V, $76m\Omega$ high side and a 36V, $52m\Omega$ low side MOSFETs to provide 3.1A continuous load current over 6.5V to 36V wide operating input voltage with 33V input over voltage protection. Peak current mode control provides fast transient responses and cycle-by-cycle current limiting. PL8322 has configurable line drop compensation, configurable charging current limit. CC/CV mode control provides a smooth transition between constant current charging and constant voltage charging stages. Built-in soft-start prevents inrush current at power-up.

4 Typical Application Schematic & Efficiency

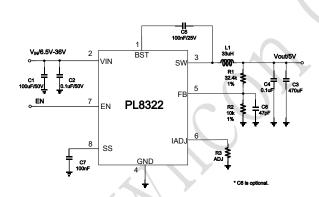


Fig. 1 Schematic

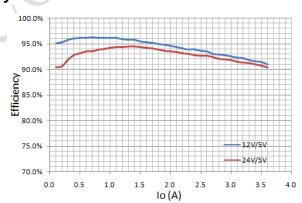
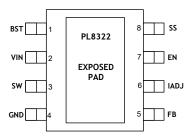



Fig. 2 Efficiency curve

5 Pin Configuration and Functions

ESOP-8 Package (Top View)

Pin-Functions

Pin		Description		
Number	Name	Description		
1	BST	Boot-Strap pin. Connect a 0.1µF or greater capacitor between SW and BST to power the high side gate driver.		
2	VIN	Power Input. Vin supplies the power to the IC. Supply Vin with a 6.5V to 36V power source. Bypass Vin to GND with a large capacitor and at least another 0.1uF ceramic capacitor to eliminate noise on the input to the IC. Put the capacitors close to Vin and GND pins.		
3	SW	Power Switching pin. Connect this pin to the switching node of inductor.		
4	GND	Ground.		
5	FB	Feedback Input. FB senses the output voltage. Connect FB with a resistor divider connected between the output and ground. FB is a sensitive node. Keep FB away from SW and BST pin. It is better to connect a 47pF ceramic capacitor between FB pin and GND pin.		
6	IADJ	Connect a resistor between IADJ and GND to configure load current limit and line drop compensation.		
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator; low to turn it off. EN pin is pulled to VIN internally by a larger resistor.		
8	SS	This pin is used to program soft-start time, connect a cap to program soft-start time.		
9	EPAD	Power ground and EPAD, for full load operation EPAD must been connected to PCB gnd.		

6 Device Marking Information

Part Number	Order Information	Package	Package Qty	Top Marking
PL8322	PL8322IES08	ESOP-8	4000	8322 RAABB

PL8322: Part Number

RAABB: Lot Number. R: Year; AABB: Manufacturing Code

7 Specifications

7.1 Absolute Maximum Ratings^(Note1)

	PARAMETER	MIN	MAX	Unit
	V _{IN} to GND	-0.3	36	
Input Voltages	V _{SS} to GND	-0.3	6	V
Input Voltages	V _{EN} to GND	-0.3	6	
	V _{FB} to GND	-0.3	6	
	V _{IADJ} to GND	-0.3	6	
Output Voltages	V _{BST} to V _{SW}	-0.3	6	V
	V _{SW} to GND	-1	V _{IN} + 0.3	

7.2 Handling Ratings

PARAMETER	DEFINITION	MIN	MAX	UNIT
T _{ST}	Storage Temperature Range		150	°C
TJ	Junction Temperature		+150	°C
TL	T _L Lead Temperature		+260	°C
.,	HBM Human body model		2	kV
V _{ESD}	MM Charger device model		500	V

7.3 Recommended Operating Conditions (Note 2)

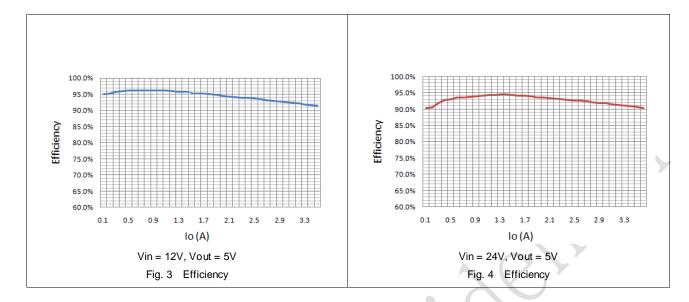
	PARAMETER	MIN	MAX	Unit
	V _{IN} to GND	6.5	36	V
Input Voltages	FB	-0.3	6	V
	EN	-0.3	6	
Output Voltages	V _{OUT}	0.5	$V_{IN}^*D_{max}$	V
Output Current	I _{OUT}	0	3.1	Α
Temperature	Operating junction temperature range, T _J	-40	+125	°C

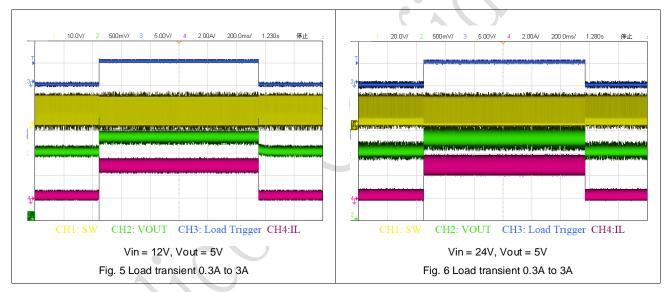
7.4 Thermal Information (Note 3)

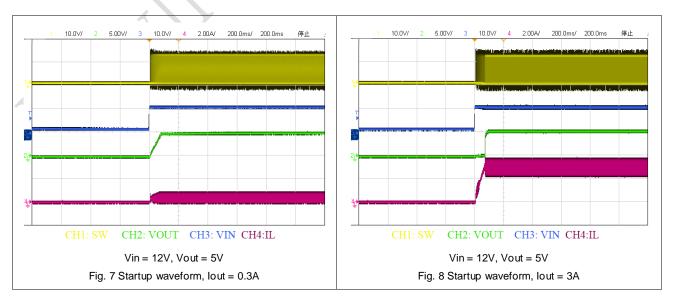
Symbol	Description	ESOP-8	Unit
θ_{JA}	Junction to ambient thermal resistance	56	°C/W
θυς	Junction to case thermal resistance	45	C/VV

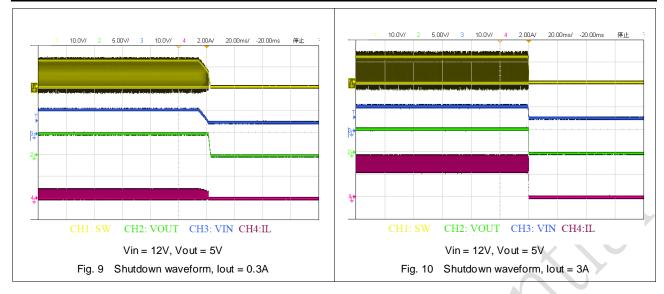
- 1) Exceeding these ratings may damage the device.
- 2) The device function is not guaranteed outside of the recommended operating conditions.3) Measured on approximately 1" square of 1 oz copper.

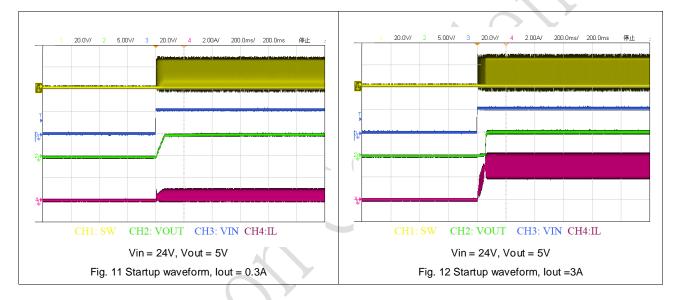
$\textbf{7.5 Electrical Characteristics} \; (\text{Typical at Vin} = 12\text{V}, \; T_J = 25^{\circ}\text{C}, \; \text{unless otherwise noted.})$

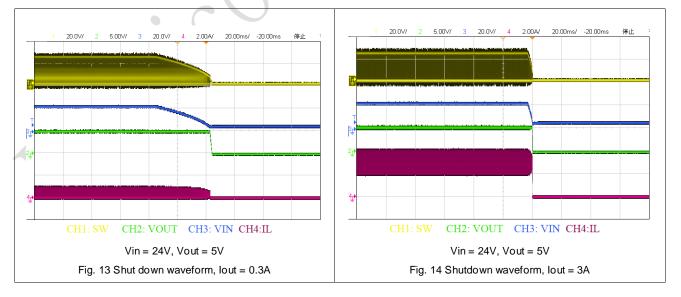

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT		
BUCK COM	BUCK CONVERTER							
MOSFET								
R _{DS(ON)_H}	High-Side Switch On-Resistance	I _{OUT} = 1A, V _{OUT} = 3.3V		76		mΩ		
R _{DS(ON)_L}	Low-Side Switch On-Resistance	I _{OUT} = 1A, V _{OUT} = 3.3V		52		mΩ		
SUPPLY V	OLTAGE (VIN)							
V _{UVLO_up}	Minimum input voltage for startup				6.5	V		
V_{UVLO_down}				6.0		V		
$V_{\text{UVLO_hys}}$				0.5		V		
I _{Q-NONSW}	Operating quiescent current	V _{FB} =1.2V		1		mA		
CONTROL	LOOP							
F _{oscb}	Buck oscillator frequency			100 🔪		kHz		
V_{FB}	Feedback Voltage			1.2		V		
V_{FB_OVP}	Feedback Over-voltage Threshold		1	.1* V _{FB}		V		
D _{max}	Maximum Duty Cycle ^(Note 4)			95		%		
T _{on}	Minimum On Time ^(Note 4)			200	7	ns		
PROTECTI	ON		XX					
I _{ocl_hs}	Upper Switch Current Limit	Minimum Duty Cycle		5.5		Α		
I _{ocl_Is}	Lower Switch Current Limit	From Drain to Source		4.5		Α		
V _{inovp}	Input Over voltage protection			33		V		
Th _{sd}	Thermal Shutdown ^(Note 4)		*	155		°C		
Th _{sdhys}	Thermal Shutdown Hysteresis ^(Note 4)			15		°C		
D _{hiccup}	Hiccup duty cycle (Note 4)	A () Y		10		%		

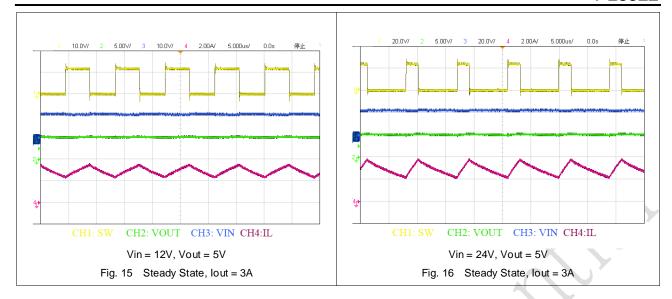

Note:

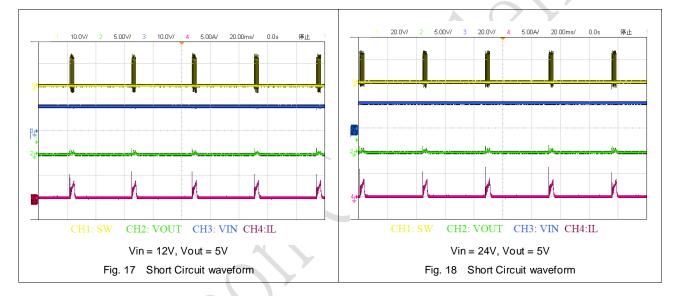

⁴⁾ Guaranteed by design, not tested in production.


8 Typical Characteristics









9 Detailed Description

9.1 Overview

PL8322 is an easy to use synchronous step-down DC-DC converter that operates from 6.5V to 36V supply voltage. It is capable of delivering up to 3.1A continuous load current with high efficiency and thermal performance in a very small solution size.

PL8322 employs fixed frequency peak current mode control to regulate the output voltage. The device is internally compensated, which reduces design time, and requires fewer external components. The switching frequency is fixed at 100 kHz to minimize inductor size and improve EMI performance.

9.2 Functional Block Diagram

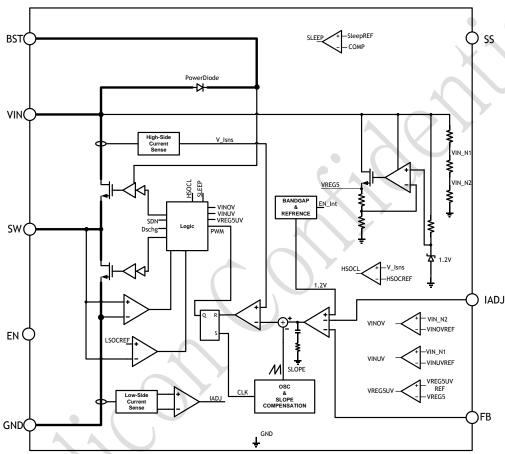


Fig.19 PL8322 Diagram

9.3 Peak Current Mode Control

PL8322 employs a fixed 100 kHz frequency peak current mode control. The output voltage is sensed by an external feedback resistor string on FB pin and fed to an internal error amplifier. The output of error amplifier will compare with high side current sense signal by an internal PWM comparator. When the second signal is higher than the first one, the PWM comparator will generate a turn-off signal to turn off high side switch. The output voltage of error amplifier will increase or decrease proportionally with the output load current. PL8322 has a cycle-by-cycle peak current limit feature inside to help maintain load current in a safe region.

9.4 CC/CV control mode and average load current limiting

PL8322 has a CC/CV control mode. The load current is sensed and averaged. When average load current is high enough, constant-current loop will be dominant and limit the average load current to a value configured by resistor on IADJ pin. For decided average load current limit I_{load} , the resistor R_3 can be calculated as equation (1):

$$R_3 = \frac{1.5}{\frac{|_{\text{load}}}{23.6} - 0.016} \qquad k\Omega \tag{1}$$

 R_3 is the programming resistor on IADJ pin. The typical range is 10k-50k.

9.5 Line drop compensation

When USB charging cable line is long and resistance is high, there will be some significant voltage drop on the cable. Portable device will see much lower input voltage. If the voltage across the load input terminals is too low, it will affect the charge time for the load. It is recommended to adjust the output voltage of charger to compensate this voltage drop. PL8322 has an excellent configurable line drop compensation feature. The line drop compensation value can be programmed by the top feedback resistor R₁ in Fig 1. The value can be roughly calculated as equation (2):

$$V_{lineDrop} = \frac{I_{load} * G_{ls} * R_3 * R_1}{100k}$$
 (2)

 I_{load} is the load current. G_{ls} is the load current sense gain from load current to sourcing current on IADJ pin. R_3 is the programming resistor on IADJ pin. R_1 is the top output sensing resistor. For 5V/3.1A application, the values can be set as: R_3 =10k; R_2 =10k; R_1 =31.6k. Fig. 20 shows line drop compensation with different R1/R2 combinations.

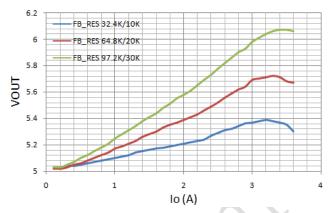


Fig. 20 line drop compensation

9.6 Sleep Operation for light load efficiency

PL8322 has an internal feature to help improving light load efficiency. When output current is low, PL8322 will go into pulse skip mode to save power.

9.7 Setting Output Voltage

The output voltage is set with a resistor divider from the output node to the FB pin. The 1% resistance accuracy of this resistor divider is preferred. The output voltage value is set as equation (3) below. It is recommended to make R2/R1=3.16:

$$V_{\text{out}} = V_{\text{ref}} \times \frac{R_1 + R_2}{R_2} \tag{3}$$

V_{ref} is the internal reference voltage of PL8322, which is 1.2V.

9.8 Error Amplifier

The error amplifier compares the FB voltage against the internal reference (V_{ref}) and outputs a current proportional to the difference between these two signals. This output current charges or discharges the internal compensation network to generate the error amplifier output voltage, which is used to control the power MOSFET current. The optimized internal compensation network minimizes the external component counts and simplifies the control-loop design.

9.9 Slope Compensation

In order to avoid sub-harmonic oscillation at high duty cycle, PL8322 adds a slope compensation ramp to the sensed signal of current flowing through high side switch.

9.10 Bootstrap Voltage provided by internal LDO

PL8322 has an internal LDO to provide energy consumed by high side switch. At BST pin, PL8322 needs a small ceramic capacitor like 100nF between BST and SW pin to provide gate-drive voltage for high side switch. The bootstrap capacitor is charged when high side is off. In Continuous-Current-Mode, the bootstrap capacitor will be charged when low side is on. The bootstrap capacitor voltage will be maintained at about 5.3V. When IC works under sleep mode, what value the bootstrap capacitor is charged depends on the difference of Vin and output voltage. However, when the voltage on the bootstrap capacitor is below bootstrap voltage refresh threshold, PL8322 will force low side on to charge bootstrap capacitor. Connecting an external diode from the output of regulator to the BST pin will also work and increase the efficiency of the regulator when output is high enough.

9 11 Soft-Start

Connect a capacitor on SS pin to program soft-start time. PL8322 has a soft-start function to control the ramp up speed of output voltage and limit the input current surge during IC start-up. .

9.12 Over-Current Protection and Hiccup

PL8322 has cycle-by-cycle peak current limit for both high side and low side switch. When high side switch current is higher than high side current limit, high side switch will be turned off. PL8322 will not turn on high side switch again until low side switch current is lower than low side switch current limit. PL8322 has a CC/CV control structure. When load current is smaller than load current limit programmed by resistor on IADJ pin, CV (constant voltage) loop is dominant. FB voltage will be regulated to internal reference point. When load current is close to load current limit point, CC (constant current) loop will be dominant and regulate load current to be constant by lower down output voltage. If IADJ is connected to GND and output is shorted to GND, PL8322 will go into hiccup mode to limit average load current. PL8322 will exit hiccup mode once the over current condition is removed.

9.13 Thermal Shutdown

The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds 155°C typically. When the junction temperature drops below 140°C, IC will start to work again.

9.14 Enable

PL8322 can be enabled by EN pin. EN pin internal threshold is set at 1V. Customer can adjust the startup voltage at input pin by this EN pin through resistor divider.

10 Application and Implementation

10.1 Inductor selection

An inductor is required to supply constant current to the load while being driven by the switched input voltage. A larger value inductor will result in less current ripple and lower output voltage ripple. However, the larger value inductor will have larger physical size, higher DC resistance, and/or lower saturation current. A good rule to calculate the inductance is to allow the peak-to-peak ripple current in the inductor to be approximately 25% of the maximum load current. At the same time, it is needed to make sure that the peak inductor current is below the inductor saturation current.

The inductance value can be calculated by:

$$L = \frac{V_{\text{OUT}}}{f_{\text{s}} \times \Delta I_{\text{l}}} \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right) \tag{4}$$

Where V_{OUT} is the output voltage, V_{IN} is the input voltage, f_S is the switching frequency, and ΔI_L is the peak-to-peak inductor ripple current.

Choose an inductor that will not saturate under the maximum peak current. The peak inductor current can be calculated by:

$$I_{L_P} = I_{load} + \frac{V_{OUT}}{2xf_s xL} \left(1 - \frac{V_{OUT}}{V_{lN}} \right)$$
 (5)

Where I_{load} is the load current.

The choice of inductor material mainly depends on the price vs. size requirements and EMI constraints.

10.2 Optional Schottky Diode

During the transition between the high-side switch and low-side switch, the body diode of the low-side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled with low side MOSFET to improve overall efficiency. Table 2 lists example Schottky diodes and their Manufacturers.

Table 2 - Diode Selection Guide

Part Number	Voltage/Current Rating	Vendor
SS25FA	50V/2A	Fairchild
B240A	40V/2A	Vishay

10.3 Input capacitors selection

The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the converter. It is recommend to use low ESR capacitors to optimize the performance. Ceramic capacitor is preferred, but tantalum or low-ESR electrolytic capacitors may also meet the requirements. It is better to choose X5R or X7R dielectrics when using ceramic capacitors.

Since the input capacitor (C_{IN}) absorbs the input switching current, a good ripple current rating is required for the capacitor The RMS current in the input capacitor can be estimated by:

$$I_{CIN} = I_{load} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
 (6)

The worst-case condition occurs at $V_{IN} = 2xV_{OUT}$, where:

$$I_{CIN} = \frac{I_{load}}{2} \tag{7}$$

For simplification, choose the input capacitor whose RMS current rating is greater than half of the maximum load current.

When electrolytic or tantalum capacitors are used, a small, high quality ceramic capacitor, i.e. $0.1\mu F$, should be placed as close to the IC as possible. When ceramic capacitors are used, make sure that they have enough capacitance to maintain voltage ripple at input. The input voltage ripple caused by capacitance can be estimated by:

$$\Delta V_{IN} = \frac{I_{Ioad}}{f_s \times C_{IN}} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
(8)

C_{IN} is the input capacitance.

10.4 Output capacitors selection

The output capacitor (C_{OUT}) is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended.

Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_s \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times f_s \times C_{OUT}}\right)$$
(9)

Where L is the inductor value, R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor and C_{OUT} is the output capacitance value. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly determined by the capacitance. For simplification, the output voltage ripple can be estimated by:

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_8^2 \times L \times C_{OUT}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
 (10)

In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{S} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}$$
(11)

The characteristics of the output capacitor also affect the stability of the regulator. PL8322is optimized for a wide range of capacitance and ESR values.

10.5 External bootstrap diode

It is recommended that an external bootstrap diode could be added when the system has a 5V fixed input or the power supply generates a 5V output. This helps improve the efficiency of the regulator. The bootstrap diode can be a low cost one such as IN4148 or BAT54.

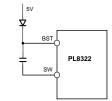


Fig. 21 External Bootstrap Diode

This diode is also recommended for high duty cycle operation (when $(V_{OUT}/V_{IN}) > 65\%$) and high output voltage $(V_{OUT}>12V)$ applications.

11.1 Guideline

PCB layout is a critical portion of good power supply design. The following guidelines will help users design a PCB with the best power conversion efficiency, thermal performance, and minimized EMI.

- The feedback network, resistor R₁ and R₂, should be kept close to FB pin. V_{out} sense path should stay away from noisy nodes, such as SW and BST signals and preferably through a layer on the other side of shielding layer.
- 2. The input bypass capacitor C_1 and C_2 must be placed as close as possible to the V_{IN} pin and ground. Grounding for both the input and output capacitors should consist of localized top side planes that connect to the GND pin and PAD. It is a good practice to place a ceramic cap near the V_{IN} pin to reduce the high frequency injection current.
- 3. The inductor L should be placed close to the SW pin to reduce magnetic and electrostatic noise.
- 4. The output capacitor, C_{OUT} should be placed close to the junction of L and the diode D. The L, D, and C_{OUT} trace should be as short as possible to reduce conducted and radiated noise and increase overall efficiency.
- 5. The ground connection for C₁, C₂ and C₃, C₄ should be as small as possible and connect to system ground plane at only one spot (preferably at the C_{OUT} ground point) to minimize injecting noise into system ground plane.
- 6. Place current sense resister R3 as near as possible to the chip and stay away from noisy nodes such as SW, BST.

11.2 Example

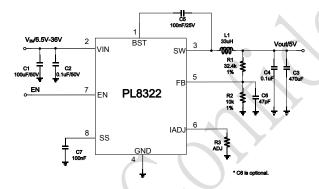


Fig. 22 Schematic

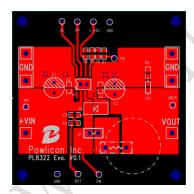


Fig. 23 Top layer layout

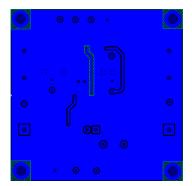


Fig. 24 Bottom layer layout

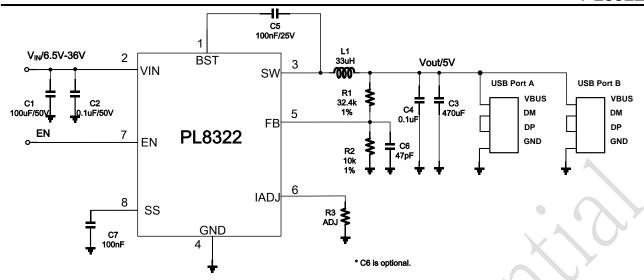


Fig. 25 Schematic for car charger

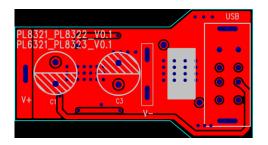
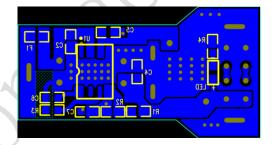
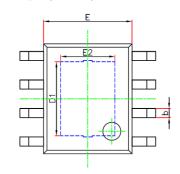
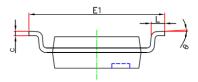
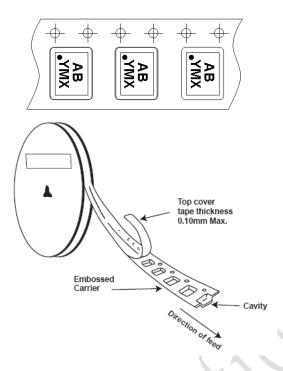


Fig. 26 Top layer layout for car charger


Fig. 27 Bottom layer layout for car charger

SOP8/PP(95×130) PACKAGE OUTLINE DIMENSIONS



Symbol	Dimensions In	Dimensions In Millimeters		s In Inches
Syllibol	Min.	Max.	Min.	Max.
Α	1.300	1.700	0.051	0.067
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	3.202	3.402	0.126	0.134
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.270((BSC) 0.050(BSC)		(BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

13 Taping Orientation

IMPORTANT NOTICE

Powlicon Inc. assumes no responsibility for any errors which may appear in this document. Powlicon Inc. reserves the right to change devices or specifications detailed herein at any time without notice. Powlicon Inc. does not assume any liability arising out of the application or use of any product described herein; neither it does it convey any license under its patent rights, nor the rights of others. Powlicon Inc. products are not authorized for use as critical components in life support devices or systems without written approval letter from the Chief Executive Officer of Powlicon Inc.. The use of products in such applications shall assume all risks of such use and will agree to not hold against Powlicon Inc. for all damages.