

PL393W-A Single-phase Motor Driver with PWM speed control

Applications

· Automotive cooling fan

Features

- · Built-in high sensitivity hall sensor
- Single phase full wave driver
- Linear Soft switching output driver
- Speed controllable by Digital PWM or DC voltage two modes identified automatically
- Quick start
- FG/RD open drain output
- Protections
- Motor locked protection and automatic restart
- Over thermal protection
- Current limit protection
- Jump start overvoltage protection
- · Built-in zener diode
- High balance and low thermal drift magnetic sensing
- AEC Q100 qualified
- RoHS 2.0 compliance

Package:

SOP-10F (4.9x3.9x1.4mm)

Straight pin

DFN-10 (3x3x0.75mm)

Specifications

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Conditions	Rating	Units
Maximum supply voltage	VDDmax	3	32	V
Allewakie newendiesinetien	D4	SOP-10F	833	mW
Allowable power dissipation	Pd	DFN-10	1860	mW
Operating temperature range	Tj	162	-40~+150	$^{\circ}$
Storage temperature	Ts		-50~+150	$^{\circ}$ C
Max. O1/O2 output voltage	Vomax	177	32	V
Max. output current	I _{OMAX}	0.5sec	1200 ^{*1}	mA
Max. FG/RD output voltage	V _{FG} /RDMAX	- 0	32	V
Max. FG/RD output current	IFG/RDMAX		10	mA
Max. input voltage (PWM,VSEN)	VINMAX	V.	6	V
VREF driving capability	Ivref	71	5	mA

^{*1:} Should not exceed Pd

- ♦ All PROLIFIC products described or contained herein do not have specifications that can handle applications require extremely high levels of reliability, such as life-support systems, aircraft control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your PROLIFIC representative nearest you before using any PROLIFIC products described or contained herein in such applications.
- ◆ PROLIFIC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, the rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all PROLIFIC products described or contained herein.

PROLIFIC TECHNOLOGY INC.

7F, No.48, Sec.3, Nan Kang Rd., Nan Kang, Taipei, 115, Taiwan.

Electrical Characteristics (T_J=-40°C ~150°C, V_{DD}=24V)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Units
Supply Voltage	V _{DD}		4.5		30	V
Output High Voltage	V _{OH(ON)}	@I _{OUT} =200mA	V _{DD} -0.4	V _{DD} -0.3		V
Output Low Voltage	V _{OL(ON)}	@I _{OUT} =200mA		0.15	0.2	V
13-		@T _J =25°C,V _{DD} =24V		2.25		ohm
Output On Resistance	R _{DS(ON)}	@T _J =25°C,V _{DD} =12V		2.75		ohm
N. N.		@T _J =150°C,V _{DD} =24V		3	3/4_	ohm
Supply Current	I _{DD}	Output open		6	10	mA
FG/RD output voltage	V _{FG/RD}				30	V
FG/RD sink voltage	V _{DSFG/RD}	I _{FG} =3mA	WA	0.2	0.3	V
PWM input H level	V _{PWM(H)}		2.5		V_{REF}	V
PWM input L level	V _{PWM(L)}	V	GND		0.8	V
PWM input frequency	f _{РWМI}	1/ ~	0.1		100	KHz
PWM input current	I _{PWM}	V _{PWM} =0V	-20			uA
Built-in PWM frequency	f _{РWМ}		20	25	30	KHz
PWM ON Duty 1	D1	V _{PWM} =1V	20	25	30	%
PWM ON Duty 2	D2	V _{PWM} =2V	70	75	80	%
VREF Voltage	V_{REF}	I _{REF} =2mA	4.8	5	5.2	V
VSEN input Voltage	V _{SEN}		GND	K	V_{REF}	V
Current limit Voltage	VcL		130	160	190	mV
Shutdown Time	T _{SD}	1/3	4.2	5.6	7.0	S
Restart Time	T _{RS}	\ \mathrea{\gamma}{2}	0.3	0.4	0.5	S
Thermal Protection Temp.	T _{JTSD}	TJ		165		°C
Shutdown hysteresis	ΔΤ	24		25		°C
Magnetic Characteris	stics (T _J =	-40°C ~150°C , V _D	D=24V)	U	V 3	
Operate Point	Вор	K	5	10	25	G
Release Point	B _{RP}		-25	-10	-5	G
Hysteresis	Внуѕ		10	20	50	G

Ver 1.37a -2- Date: Oct-2021

Truth Table

Doromotor	Test	01	02	Rotatio	n Mode	Lock	Mode
Parameter	Condition	O1	02	FG	RD	FG	RD
North Pole	B <brp< td=""><td>Н</td><td>L</td><td>Н</td><td>)—L</td><td>Н</td><td>Н</td></brp<>	Н	L	Н) —L	Н	Н
South Pole	B>Bop	L	Н	L	L	Н	Н



General Specifications

The PL393W-A is a variable speed DC fan motor driver IC with built-in Hall sensor. The built-in dynamic offset cancellation of pre-amplifier stage achieves optimal symmetrical magnetic sensing. The output driver provides a linear drive to eliminate switching noise. Furth, the linear driving of PL393W-A will benefit EMI performance. PL393W-A is also featuring with jump start protection according to ISO16750-2. This IC is an optimal solution with PWM speed control for Automotive DC brushless fan motor application.

Lock Protection

In order to protect the motor, the driver IC will be shutdown to drive the coil when the motor is locked for over 0.4 seconds and the RD output signal will turn high level, It then restarts to drive the motor after 5.6 seconds, If the Hall signal exchange is detected in lock protection cycle, the lock protection will be released after the end of protection cycle and RD output signal turns low level again. Figure 1 shows the timing diagram between the hall input signal and the driver's output state.

Ver 1.37a -3- Date: Oct-2021

PWM Speed Control

This Driver IC has built-in pulse width modulation to control motor speed. The output duty cycle of PWM is controlled by the direct voltage level of V_{PWM}. The V_{PWM} input voltage determines the output PWM duty cycle and control the speed of fan motor as Fig 2a. The V_{PWM} Voltage is compared with an internal 0.8V-2.5V saw waveform V_{SAW} and output PWM duty control signal. The output PWM ON duty cycle is controlled by 0.8V~2.5V DC V_{PWM} voltage from 15% to 100%. The formula of ON duty is Duty=50(V_{PWM}-0.5)%. The digital PWM input signal also can be converted to DC voltage level via an internal integrator to do variable speed control. The transfer function of PWM IN and OUT duty cycle is shown in Fig 2b.

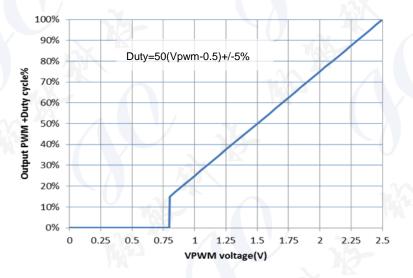


Fig. 2a Output PWM duty cycle vs. V_{PWM} voltage

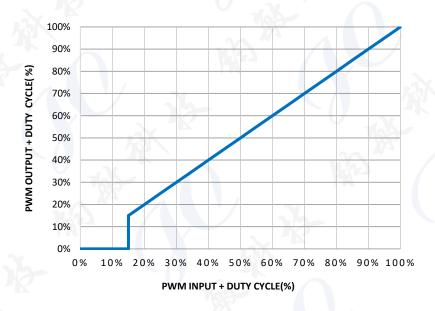


Fig. 2b PWM Output duty cycle vs. PWM IN duty cycle

Ver 1.37a -4- Date: Oct-2021

Quick Start

Motor's speed is controlled by PWM input signal. When PWM pin is open or tied to High voltage (> 2.5V), the motor will be full speed rotation. This PWM speed control make the lock protection off and stop the motor when the PWM input voltage keeps low level (<0.8V) for more than 25mS(typ.). The motor will be started directly without the lock protection time delay when the PWM voltage is above 0.8V as Fig3.

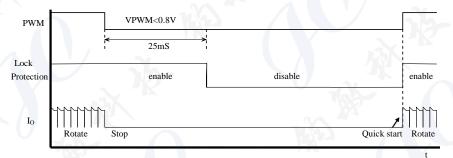


Fig 3. PWM input and Lock Protection

Current limit

This diver IC has built-in current limit function to protect Fan motor. The current limit is detected by internal comparator to limit output current. The output current limit is activated when the current sensing voltage detected from RNF resistor exceeds 160mV (typical). The value of current limit is got by the formula 160mV/RNF. Example, the maximum output current is limited at 0.8A when the current detecting resistor RNF is 0.2ohm. The value of current limit is adjustable to meet different need by RNF changing. If the RNF=0.5ohm, the value of current limit is 320mA.

Current Limit (A) =
$$0.16(V) / RNF(\Omega)$$

Hall Sensor

This Hall effect sensor IC integrates the sensor, pre-amplifier with dynamic offset cancellation and the hysteresis comparator in single chip. The hysteresis characteristic is illustrated in Fig. 4 and the threshold of the magnetic flux density is +/-10 Gauss.

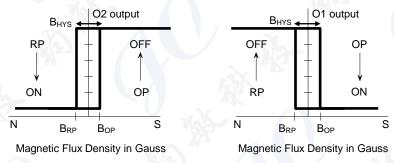


Fig 4. Magnetic Hysteresis Characteristics

Ver 1.37a -5- Date: Oct-2021

Jump start protection

During the jump-start overvoltage test (ISO16750-2), an overvoltage will be applied to supply voltage of fan motor for 60 seconds. In that case, output current will be increased substantially and generate extra heat. PL393W-A will activate jump-start protection to shut down the output to avoid such kind of circumstance. The trigger voltage of jump-start protection could be adjusted by external resistor connected to VSEN pin as below formula.

$$V_{JS} = \frac{1.28x(R_U + R_D)}{R_D}$$

V_{JS}: V_{DD} voltage value when jump-start protection is activated

If the external resistor R_D =2.7K ohm and R_U =33K ohm, jump-start protection will be activated while V_{JS} = 16.9V.

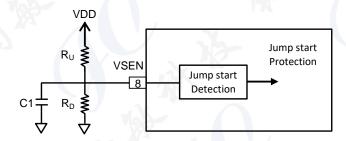


Fig 5. VSEN setting for Jump start protection

The Driver IC architecture block diagram is shown in Fig. 6.

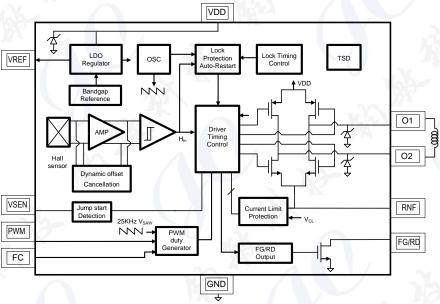


Fig.6. Fan Motor Driver IC Architecture

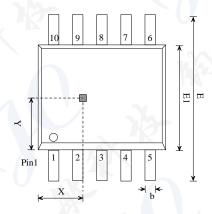
Ver 1.37a -6- Date: Oct-2021

Pin Description

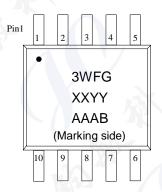
SOP-10F (straight pin)

	,	
NAME	Pin	Description
PWM	1	DC voltage/Digital PWM input pin
VREF	2	Reference Voltage Output
VDD	3	DC power supply
O2	4	Second output pin
RNF	5	Current Sensing resistor
GND	6	DC ground
01	7	First output pin
VSEN	8	JS Voltage setting input pin
FC	9	Filter capacitor
FG/RD	10	Frequency Generation/Rotation Detection

DFN-10 (Exposed pad)

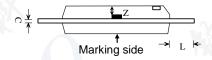

NAME	Pin	Description
PWM	1	DC voltage/Digital PWM input pin
VREF	2	Reference Voltage Output
VDD	3	DC power supply
O2	4	Second output pin
RNF	5	Current Sensing resistor
GND	6	DC ground
O1	7	First output pin
VSEN	8	JS Voltage setting input pin
FC	9	Filter capacitor
FG/RD	10	Frequency Generation/Rotation Detection

Ver 1.37a -7- Date: Oct-2021



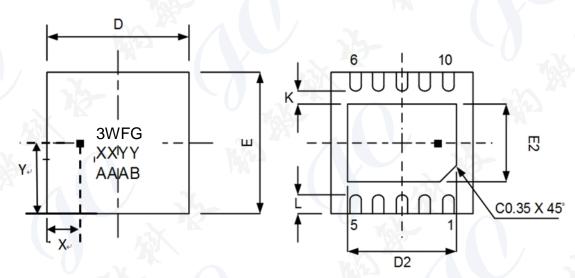
Package Information

SOP-10F (straight pin)



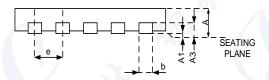
Part Number: 3WFG or 3WRD Date Code: XX(Year) YY(week)

Lot number: AAAB



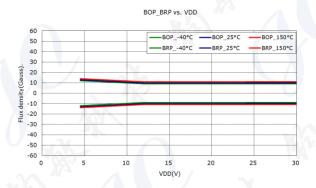
SYMBOLS	DIMENSION	IS IN MILLIM	ETERS(mm)			
STIVIBULS	MIN	NOM	MAX			
Α	1.25		1.50			
b	0.30		0.45			
С	0.10	171	0.25			
D	/ ~	4.90				
E	5.95		6.05			
E1	A K	3.90				
е	-	1.00	- 04			
	1.00	-	1.10			
	SENSOR LOCATION					
X	1.80	2.00	2.20			
Υ	1.65	1.85	2.05			
Z	0.31	0.35	0.39			

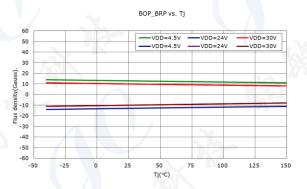
Ver 1.37a -8- Date: Oct-2021

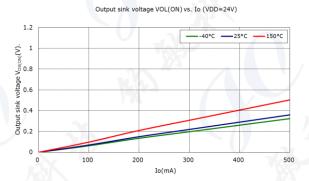


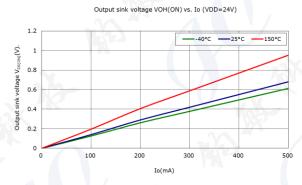
DFN-10 (Exposed pad)

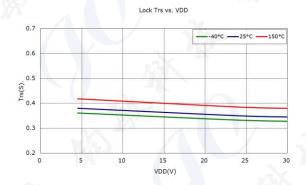
Part Number : 3WFG or 3WRD Date Code : XX(Year) YY (Week) Lot Number : AAAB

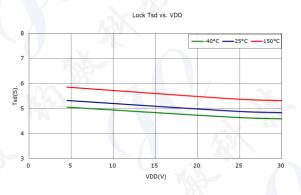


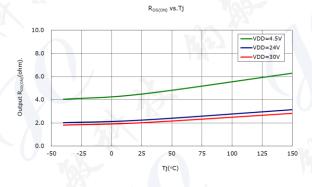


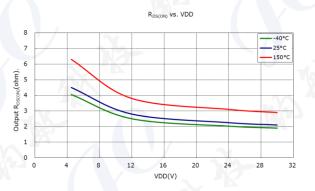

	MII	_LIMETERS(n	am)		
SYMBOLS	IVIIL	LIMETERS	11111)		
	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3	3.	0.203 REF			
b	0.18	0.25	0.30		
D		3.00 BSC			
/ V E	3.00 BSC				
e v	0.50 BSC				
K	0.20	-	-)		
NA WA	EXPOS	SED PAD			
D2	2.20	2.30	2.35		
E2	1.55	1.65	1.70		
L	0.30	0.40	0.50		
SENSOR LOCATION					
Х	0.55	0.65	0.75		
Y	1.40	1.50	1.60		
Z	0.35	0.38	0.41		

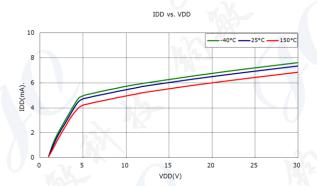

Ver 1.37a Date: Oct-2021 -9-


Performance curve

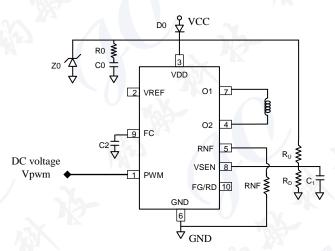








Ver 1.37a -10- Date: Oct-2021

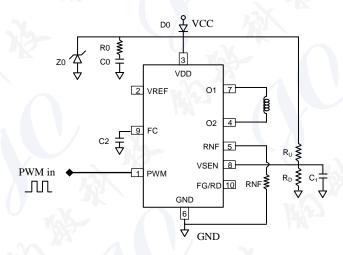


Ver 1.37a -11- Date: Oct-2021

Application circuits DC Voltage speed control

D0: Polarity protection diode

Z0: Transient-voltage-suppression diode (TVS), 30V V_{BR} C0: decoupling capacitor 1uF \sim 2.2uF


R0: Snubber circuit resistor 2.2ohm~4.7ohm

RNF: Current sensing resistor (ex. 0.2ohm for 0.8A current limit)

C1: filter capacitor 0.1uF C2: filter capacitor 0.1uF R_U, R_D: VSEN setting resistor

Note: A Transient-voltage-suppression diode (TVS) with 30V breakdown voltage VBR from VDD to GND is recommended for ISO7637-2 transient immunity test.

Digital PWM speed control

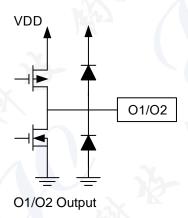
D0: Polarity protection diode

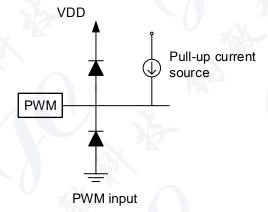
Z0: Transient-voltage-suppression diode (TVS), 30V VBR

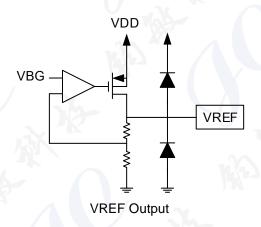
C0: decoupling capacitor 1uF ~ 2.2uF

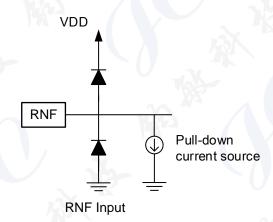
R0: Snubber circuit resistor 2.2ohm~4.7ohm

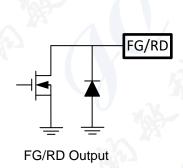
RNF: Current sensing resistor (ex. 0.20hm for 0.8A current limit)

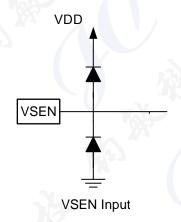

C1: filter capacitor 0.1uF C2: filter capacitor 0.1uF R_U, R_D: VSEN setting resistor


Note: A Transient-voltage-suppression diode (TVS) with 30V breakdown voltage VBR from VDD to GND is recommended for ISO7637-2 transient immunity test.

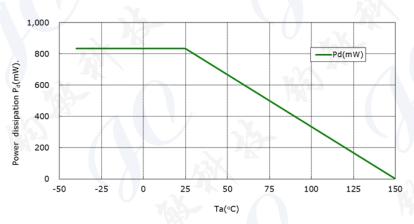

Ver 1.37a -12-Date: Oct-2021




I/O Equivalent circuits



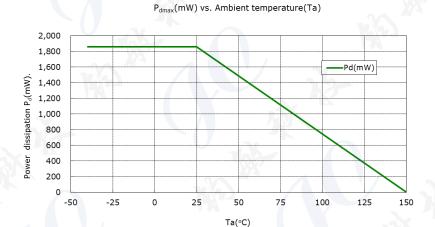
Ver 1.37a -13-Date: Oct-2021


Thermal resistance

SOP-10F

Parameter	Symbol	Conditions	Rating	Units
Allowable power dissipation	Pd	, K	833*1	mW
Junction to ambient thermal resistance	θ_{JA}		150	°C/W
Junction to case thermal resistance	θιс		50	°C/W
Maximum junction temperature	T _{Jmax}		150	$^{\circ}\!\mathbb{C}$

^{*1:} Reduced by 6.67mW for each increase in Ta of 1°C over 25°C When mounted on 50mm x 50mm x 1.6mm glass epoxy board

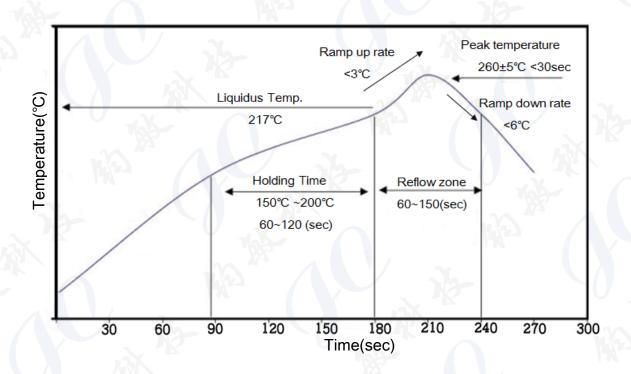


DFN-10

Parameter	Symbol	Conditions	Rating	Units
Allowable power dissipation	Pd	JK.	1860	mW
Junction to ambient thermal resistance	θја	2s0p PCB, still-air	67	°C/W
Junction to case thermal resistance	θις		10	°C/W
Maximum junction temperature	T _{Jmax}		150	$^{\circ}$ C

^{*1:} Reduced by 14.88mW for each increase in Ta of 1°C over 25°C When mounted on 50mm x 50mm x 1.6mm glass epoxy board

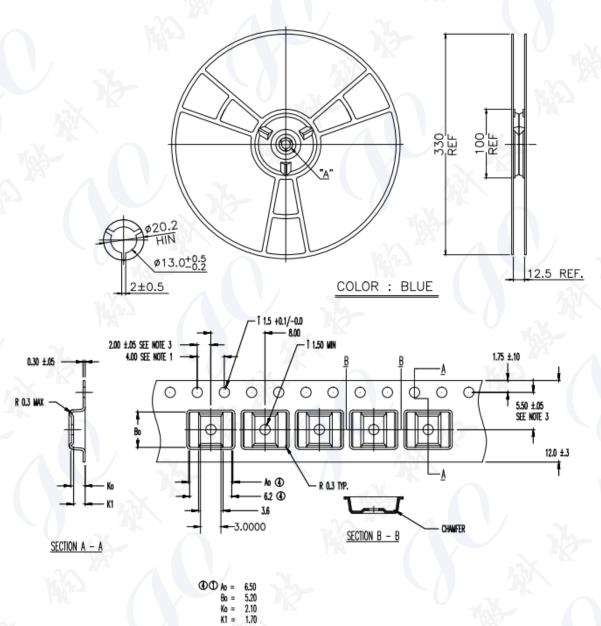
Ver 1.37a -14- Date: Oct-2021


Soldering recommendations

- 1. JEDEC J-STD-020
- 2. Iron Soldering

Temperature and Time: 350°C, 3S

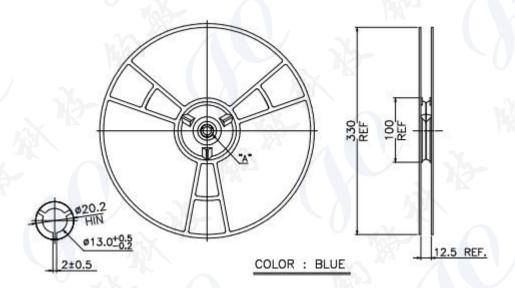
3. Reflow

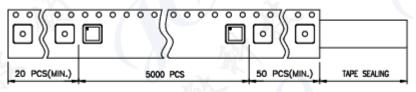

Temperature profile should conform to described in JEDEC-020 standard

Ver 1.37a -15- Date: Oct-2021

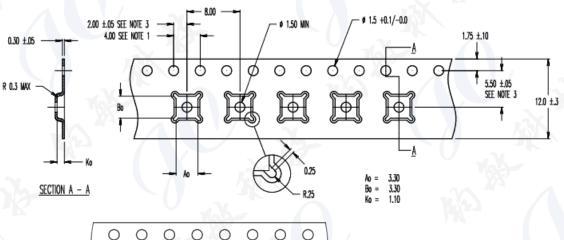
Carrier Tape & Reel specifications SOP-10F (Reverse)

Quantity: 2500 EA/PER REEL, 5 REEL/BOX




USER DIRECTION OF FEED

Ver 1.37a -16- Date: Oct-2021



DFN-10

USER DIRECTION OF FEED

WSON(DFN) 3X3

QUANTITY: 5000 EA/PER REEL, 5 REEL/BOX

Ver 1.37a -17- Date: Oct-2021

Ordering information

Product	Function Code	Temp. Code(Tj)	Package Code	MOQ
PL393W-A	FG	A(-40°C~+150°C)	PR(SOP-10F,Reverse)	12.5K EA/BOX
PL393W-A	RD	A(-40°C~+150°C)	PR(SOP-10F,Reverse)	12.5K EA/BOX
PL393W-A	FG	A(-40°C~+150°C)	HF(DFN-10)	25K EA/BOX
PL393W-A	RD	A(-40°C~+150°C)	HF(DFN-10)	25K EA/BOX

Please issue order P/N code. like: PL393W-AFGAPR

- Specifications of any and all PROLIFIC products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- PROLIFIC Technology Inc. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- ◆ In the event that any and all PROLIFIC products described or contained herein fall under strategic products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of Taiwan, such products must not be exported with our obtaining export license from the Ministry of international Trade and Industry in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of PROLIFIC Technology Inc.
- ♦ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the Delivery Specification for the PROLIFIC product that you intend to use.
- ◆ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. PROLIFIC believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Specifications and information herein are subject to change without notice.

Ver 1.37a -18- Date: Oct-2021

Revision history table

Revision Date	Description of Revision					
2019/11/05	Add RD output function.					
2010/01/25	Add Thermal protection description.					
2019/01/25	Add Output On Resistance description(RDSON).					
Na	Add revision history table list.					
2020/08/04	● Truth table add SOP-10F icon.					
2020/06/04	Add RD function description.					
100	Adjust Hall sensor and truth table relevance description.					
2021/09/29	Jump start protection: The example calculation formula Ru is corrected to					
	33ΚΩ.					

Ver 1.37a -19- Date: Oct-2021