PHN210T

Dual N-channel TrenchMOS intermediate level FET

Rev. 02 — 15 December 2010

Product data sheet

1. Product profile

1.1 General description

Dual intermediate level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Suitable for high frequency applications due to fast switching characteristics
- Suitable for logic level gate drive sources
- Suitable for low gate drive sources

1.3 Applications

- DC-to-DC converters
- Logic level translators

Motor and relay drivers

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25$ °C; $T_j \le 150$ °C; Repetitive peak drain-source voltage		-	-	30	V
I_D	drain current	T _{sp} = 25 °C; Single device	<u>[1]</u>	-	-	3.4	Α
P _{tot}	total power dissipation	$T_{sp} = 25 ^{\circ}\text{C}$	[2]	-	-	2	W
Static chara	acteristics						
R _{DSon}	drain-source on-state	$V_{GS} = 4.5 \text{ V}; I_D = 1 \text{ A};$ $T_j = 25 \text{ °C}$		-	120	200	mΩ
	resistance	$V_{GS} = 10 \text{ V; } I_D = 2.2 \text{ A;}$ $T_j = 25 \text{ °C}$		-	80	100	mΩ
Dynamic characteristics							
Q_{GD}	gate-drain charge	$V_{GS} = 10 \text{ V; } I_D = 2.3 \text{ A;}$ $V_{DS} = 15 \text{ V; } T_j = 25 \text{ °C}$		-	0.7	-	nC

^[1] Surface mounted on FR4 board, t ≤ 10 sec.

^[2] Surface mounted on FR4, t ≤ 10 sec.

Dual N-channel TrenchMOS intermediate level FET

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S1	source1		D. D. D. D. D.
2	G1	gate1	8 <u>月 月 月</u> 5	D1 D1 D2 D2
3	S2	source2		
4	G2	gate2		
5	D	drain2	1	
6	D	drain2	SOT96-1 (SO8)	S1 G1 S2 G2
7	D	drain1		mbk725
8	D	drain1		

3. Ordering information

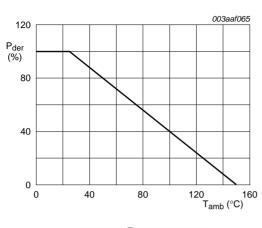
Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PHN210T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

Dual N-channel TrenchMOS intermediate level FET

4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

$ \begin{array}{ c c c c } \hline \textbf{Symbol} & \textbf{Parameter} & \textbf{Conditions} & \textbf{Min} & \textbf{Max} & \textbf{Unit} \\ \hline \textbf{V}_{DS} & \text{drain-source voltage} & \textbf{Continuous} & - & 30 & V \\ \hline \textbf{T}_{j} \geq 25 \text{ °C; T}_{j} \leq 150 \text{ °C; Repetitive peak} & - & 30 & V \\ \hline \textbf{V}_{DGR} & \text{drain-gate voltage} & \textbf{R}_{GS} = 20 \text{ k}\Omega & - & 30 & V \\ \hline \textbf{V}_{DS} & \text{gate-source voltage} & -20 & 20 & V \\ \hline \textbf{I}_{D} & \text{drain current} & \textbf{T}_{sp} = 70 \text{ °C; Dual device} & 11 & - & 1.9 & A \\ \hline \textbf{T}_{sp} = 70 \text{ °C; Single device} & 11 & - & 2.8 & A \\ \hline \textbf{T}_{sp} = 25 \text{ °C; Dual device} & 11 & - & 2.4 & A \\ \hline \textbf{T}_{sp} = 25 \text{ °C; Dual device} & 11 & - & 3.4 & A \\ \hline \textbf{I}_{DM} & \text{peak drain current} & \textbf{T}_{sp} = 25 \text{ °C; pulsed} & - & 14 & A \\ \hline \textbf{P}_{tot} & \text{total power dissipation} & \textbf{T}_{sp} = 25 \text{ °C; pulsed} & - & 14 & A \\ \hline \textbf{P}_{tot} & \text{total power dissipation} & \textbf{T}_{sp} = 25 \text{ °C} & 12 & - & 2 & W \\ \hline \textbf{T}_{stg} & \text{storage temperature} & -65 & 150 & \text{°C} \\ \hline \textbf{Source-drain diode} & \textbf{I}_{sm} & \text{peak source current} & \textbf{T}_{sp} = 25 \text{ °C} & 12 & - & 2.2 & A \\ \hline \textbf{I}_{SM} & \text{peak source current} & \textbf{T}_{sp} = 25 \text{ °C} & \text{pulsed} & - & 14 & A \\ \hline \textbf{Avalanche rugedeness} & \textbf{T}_{sp} = 25 \text{ °C} & \text{pulsed} & - & 14 & A \\ \hline \textbf{Avalanche rugedeness} & \textbf{I}_{SM} & \text{peak source drain-source} & \textbf{V}_{OS} = 10 \text{ V; T}_{j(init)} = 25 \text{ °C; I}_{D} = 3.4 \text{ A;} \\ \textbf{V}_{OD} \leq 15 \text{ V; unclamped; R}_{GS} = 50 \Omega; _{c} = 0.2 \text{ ms} \\ \hline \textbf{I}_{AD} & \text{non-repetitive drain-source} & \textbf{V}_{Sup} \leq 15 \text{ V; V}_{CS} = 10 \text{ V; T}_{j(init)} = 25 \text{ °C; I}_{D} = 3.4 \text{ A;} \\ \textbf{V}_{OD} \leq 15 \text{ V; unclamped; R}_{GS} = 50 \Omega; _{c} = 0.2 \text{ ms} \\ \hline \textbf{I}_{AD} & \text{non-repetitive avalanche} & \textbf{V}_{Sup} \leq 15 \text{ V; V}_{CS} = 10 \text{ V; T}_{j(init)} = 25 \text{ °C; I}_{D} = 3.4 \text{ A;} \\ \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} \\ \hline \textbf{A}_{CUT} & \textbf{A}_{CUT} \\ \hline \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} & \textbf{A}_{CUT} \\ \hline \textbf{A}_{CUT} & A$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Conditions		Min	Max	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{DS}	drain-source voltage	Continuous		-	30	V
$V_{GS} \qquad \text{gate-source voltage} \qquad \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		-	30	V
$I_{D} \ \ \frac{T_{sp} = 70 \text{ °C; Dual device}}{T_{sp} = 70 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 1.9 A \ \ \frac{T_{sp} = 70 \text{ °C; Single device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 2.8 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 2.4 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 3.4 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 3.4 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 3.4 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ 3.4 A \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{11}{11} \ \ - \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{sp} = 25 \text{ °C; Dual device}} \ \ \frac{T_{sp} = 25 \text{ °C; Dual device}}{T_{s$	V_{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	30	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{GS}	gate-source voltage			-20	20	V
$ T_{sp} = 25 ^{\circ}\text{C}; \text{Dual device} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _D	drain current	T _{sp} = 70 °C; Dual device	<u>[1]</u>	-	1.9	Α
$T_{sp} = 25 ^{\circ}\text{C}; \text{Single device} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			T _{sp} = 70 °C; Single device	<u>[1]</u>	-	2.8	Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _{sp} = 25 °C; Dual device	<u>[1]</u>	-	2.4	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T _{sp} = 25 °C; Single device	<u>[1]</u>	-	3.4	Α
$T_{stg} \qquad \text{storage temperature} \qquad \qquad -65 \qquad 150 ^{\circ}\text{C}$ $T_{j} \qquad \text{junction temperature} \qquad \qquad -65 \qquad 150 ^{\circ}\text{C}$ $\textbf{Source-drain diode}$ $I_{S} \qquad \text{source current} \qquad T_{sp} = 25 ^{\circ}\text{C} \qquad \qquad - \qquad 2.2 \text{A}$ $I_{SM} \qquad \text{peak source current} \qquad T_{sp} = 25 ^{\circ}\text{C}; \text{pulsed} \qquad \qquad - \qquad 14 \text{A}$ $\textbf{Avalanche ruggedness}$ $E_{DS(AL)S} \qquad \text{non-repetitive drain-source} \qquad V_{GS} = 10 \text{V}; T_{j(init)} = 25 ^{\circ}\text{C}; I_{D} = 3.4 \text{A}; \\ \text{avalanche energy} \qquad V_{DD} \leq 15 \text{V}; \text{unclamped}; R_{GS} = 50 \Omega; \\ t_{p} = 0.2 \text{ms}$ $I_{AS} \qquad \text{non-repetitive avalanche} \qquad V_{sup} \leq 15 \text{V}; V_{GS} = 10 \text{V}; T_{j(init)} = 25 ^{\circ}\text{C}; \qquad - \qquad 3.4 \text{A}$	I _{DM}	peak drain current	T_{sp} = 25 °C; pulsed		-	14	Α
$T_{j} \qquad \text{junction temperature} \qquad \qquad -65 \qquad 150 ^{\circ}\text{C}$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P _{tot}	total power dissipation	T _{sp} = 25 °C	[2]	-	2	W
	T _{stg}	storage temperature			-65	150	°C
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tj	junction temperature			-65	150	°C
$\begin{split} & I_{SM} & \text{peak source current} & T_{sp} = 25 \text{ °C; pulsed} & - & 14 & A \\ & \textbf{Avalanche ruggedness} \\ & E_{DS(AL)S} & \text{non-repetitive drain-source} & V_{GS} = 10 \text{ V; } T_{j(init)} = 25 \text{ °C; } I_D = 3.4 \text{ A;} & - & 13 & \text{mJ} \\ & V_{DD} \leq 15 \text{ V; unclamped; } R_{GS} = 50 \text{ \Omega;} & & & & & \\ & I_{AS} & \text{non-repetitive avalanche} & V_{sup} \leq 15 \text{ V; } V_{GS} = 10 \text{ V; } T_{j(init)} = 25 \text{ °C;} & - & 3.4 & A \end{split}$	Source-drain	diode					
$\label{eq:local_problem} \begin{array}{cccccccccccccccccccccccccccccccccccc$	Is	source current	T _{sp} = 25 °C		-	2.2	Α
$ \begin{array}{c} {\sf E}_{\sf DS(AL)S} & \text{non-repetitive drain-source} \\ \text{avalanche energy} & {\sf V}_{\sf GS} = 10 \; {\sf V}; \; {\sf T}_{j(\text{init})} = 25 \; {\sf ^{\circ}C}; \; {\sf I}_{\sf D} = 3.4 \; {\sf A}; \\ {\sf V}_{\sf DD} \leq 15 \; {\sf V}; \; {\sf unclamped}; \; {\sf R}_{\sf GS} = 50 \; \Omega; \\ {\sf t}_{\sf p} = 0.2 \; {\sf ms} \\ \\ \\ {\sf I}_{\sf AS} & {\sf non-repetitive avalanche} & {\sf V}_{\sf sup} \leq 15 \; {\sf V}; \; {\sf V}_{\sf GS} = 10 \; {\sf V}; \; {\sf T}_{j(\text{init})} = 25 \; {\sf ^{\circ}C}; \\ - 3.4 {\sf A} \end{array} $	I _{SM}	peak source current	T _{sp} = 25 °C; pulsed		-	14	Α
avalanche energy $V_{DD} \le 15 \text{ V; unclamped; } R_{GS} = 50 \Omega;$ $t_p = 0.2 \text{ ms}$ $I_{AS} \qquad \text{non-repetitive avalanche} \qquad V_{sup} \le 15 \text{ V; } V_{GS} = 10 \text{ V; } T_{j(init)} = 25 \text{ °C;} \qquad - \qquad 3.4 \qquad A$	Avalanche ru	ggedness					
	E _{DS(AL)S}	•	$V_{DD} \le 15 \text{ V}$; unclamped; $R_{GS} = 50 \Omega$;		-	13	mJ
	I _{AS}	•			-	3.4	Α

^[1] Surface mounted on FR4 board, t ≤ 10 sec.

^[2] Surface mounted on FR4, t ≤ 10 sec.

Dual N-channel TrenchMOS intermediate level FET

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 1. Normalized total power dissipation as a function of ambient temperature

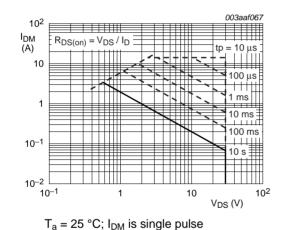
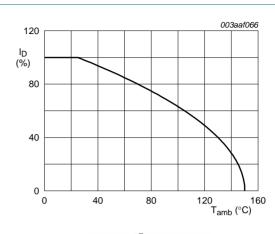



Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}\text{C})}} \times 100\%$$

Fig 2. Normalized continuous drain current as a function of ambient temperature

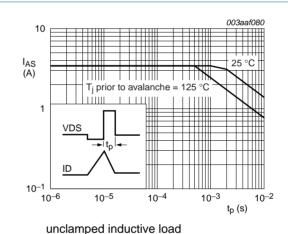


Fig 4. Single-shot avalanche rating; avalanche current as a function of avalanche period

Dual N-channel TrenchMOS intermediate level FET

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance	Surface mounted; FR4 board	-	150	-	K/W
	from junction to ambient	Surface mounted; FR4 board; t ≤ 10 sec	-	-	62.5	K/W

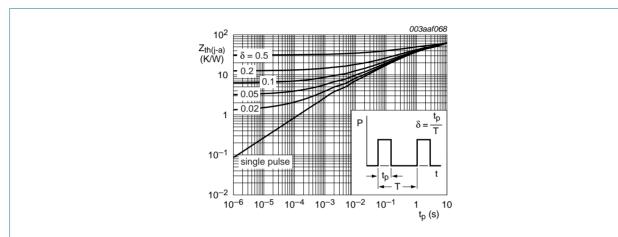


Fig 5. Transient thermal impedance from junction to ambient as a function of pulse duration

5 of 13

Dual N-channel TrenchMOS intermediate level FET

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
_	racteristics			7 F		
V _{(BR)DSS}	drain-source	$I_D = 10 \mu A; V_{GS} = 0 V; T_i = 25 °C$	30	-	-	V
(2.1)200	breakdown voltage	$I_D = 10 \mu A; V_{GS} = 0 V; T_i = -55 °C$	27	-	-	V
V _{GS(th)}	gate-source threshold	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_i = -55 \text{ °C}$	-	-	3.2	V
	voltage	I _D = 1 mA; V _{DS} = V _{GS} ; T _i = 150 °C	0.4	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_i = 25 \text{ °C}$	1	2	2.8	V
I _{DSS}	drain leakage current	$V_{DS} = 24 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
		$V_{DS} = 24 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	0.6	10	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nΑ
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nΑ
R _{DSon}	drain-source on-state	$V_{GS} = 4.5 \text{ V}; I_D = 1 \text{ A}; T_j = 25 ^{\circ}\text{C}$	-	120	200	mΩ
	resistance	$V_{GS} = 10 \text{ V}; I_D = 2.2 \text{ A}; T_j = 150 \text{ °C}$	-	-	170	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 2.2 \text{ A}; T_j = 25 \text{ °C}$	-	80	100	mΩ
I _{DSon}	on-state drain current	V _{DS} = 1 V; V _{GS} = 10 V	3.5	-	-	Α
		$V_{DS} = 5 \text{ V}; V_{GS} = 4.5 \text{ V}$	2	-	-	Α
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 2.3 \text{ A}; V_{DS} = 15 \text{ V}; V_{GS} = 10 \text{ V};$	-	6	-	nC
Q_{GS}	gate-source charge	T _j = 25 °C	-	0.7	-	nC
Q_{GD}	gate-drain charge		-	0.7	-	nC
C _{iss}	input capacitance	$V_{DS} = 20 V; V_{GS} = 0 V; f = 1 MHz;$	-	250	-	pF
Coss	output capacitance	T _j = 25 °C	-	88	-	pF
C _{rss}	reverse transfer capacitance		-	54	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 20 \text{ V}; R_L = 18 \Omega; V_{GS} = 10 \text{ V};$	-	6	-	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega; T_j = 25 °C$	-	8	-	ns
t _{d(off)}	turn-off delay time		-	21	-	ns
t _f	fall time		-	15	-	ns
9fs	transfer conductance	$V_{DS} = 20 \text{ V}; I_D = 2.2 \text{ A}; T_j = 25 ^{\circ}\text{C}$	2	4.5	-	S
L _D	internal drain inductance	measured from drain lead to centre of die; $T_j = 25$ °C	-	2.5	-	nΗ
L _S	internal source inductance	measured from source lead to source bond pad; $T_j = 25$ °C	-	5	-	nΗ
Source-di	rain diode					
V_{SD}	source-drain voltage	$I_S = 1.25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.82	1.2	V
t _{rr}	reverse recovery time	$I_S = 1.25 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$	-	69	-	ns
Qr	recovered charge	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$	_	55	_	nC

Dual N-channel TrenchMOS intermediate level FET

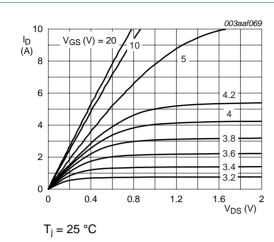


Fig 6. Output characteristics: drain current as a function of drain-source voltage; typical values

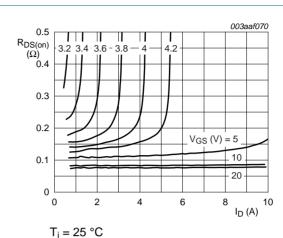


Fig 7. Drain-source on-state resistance as a function of drain current; typical values

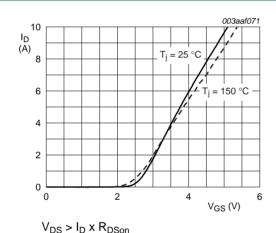


Fig 8. Transfer characteristics: drain current as a function of gate-source voltage; typical values

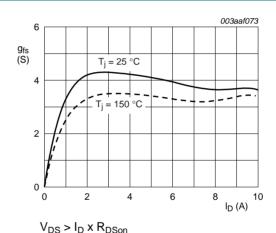
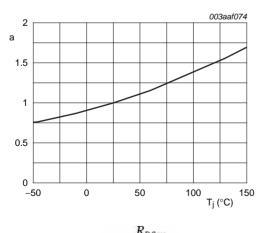



Fig 9. Forward transconductance as a function of drain current; typical values

 $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$

Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

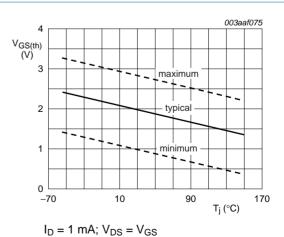


Fig 11. Gate-source threshold voltage as a function of junction temperature

Dual N-channel TrenchMOS intermediate level FET

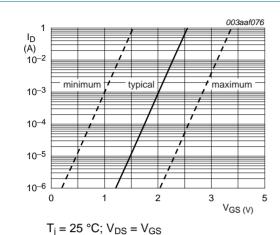
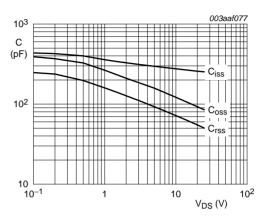



Fig 12. Sub-threshold drain current as a function of gate-source voltage

 $V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}$

Fig 13. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

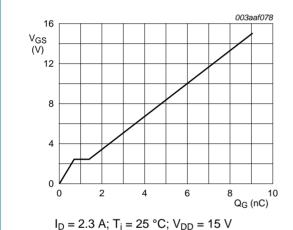
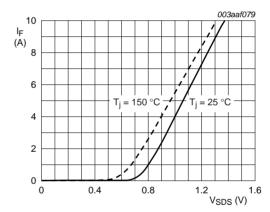
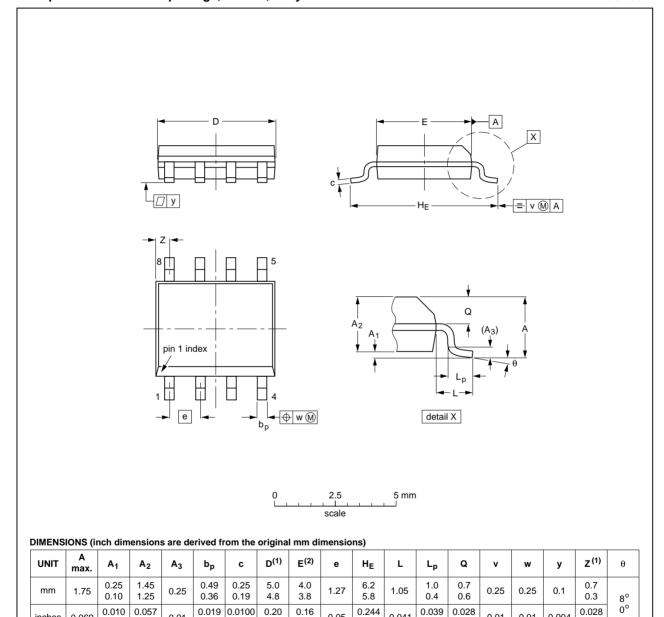



Fig 14. Gate-source voltage as a function of gate charge; typical values

 $V_{GS} = 0 V$

Fig 15. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values


PHN210T **NXP Semiconductors**

Dual N-channel TrenchMOS intermediate level FET

Package outline

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

inches

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.019 0.0100

0.014 0.0075

0.20

0.16

0.15

2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT96-1	076E03	MS-012			99-12-27 03-02-18

0.05

0.244

0.228

0.041

0.039

0.016

0.028

0.024

0.01

0.01

0.004

Fig 16. Package outline SOT96-1 (SO8)

0.010

0.004

0.069

0.057

0.049

0.01

Dual N-channel TrenchMOS intermediate level FET

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHN210T v.2	20101215	Product data sheet	-	PHN210T v.1
Modifications:		nat of this data sheet has been redesigned to comply with the new identity guideline Semiconductors.		
	 Legal texts have 	ve been adapted to the new	company name where	appropriate.
PHN210T v.1	19990301	Product specification	-	-

Dual N-channel TrenchMOS intermediate level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective

PHN210T

PHN210T **NXP Semiconductors**

Dual N-channel TrenchMOS intermediate level FET

agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 **Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I2C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual N-channel TrenchMOS intermediate level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits
1.3	Applications
1.4	Quick reference data
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics
6	Characteristics
7	Package outline
8	Revision history10
9	Legal information11
9.1	Data sheet status
9.2	Definitions1
9.3	Disclaimers
9.4	Trademarks12
10	Contact information 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.