

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

Customer	ELATEC
Model Type	_LCD Module_
Sample Code	PG12864LRS-JNN-B-SA
Mass Production Code :	
Edit	A

Customer Sign	Sales Sign	Approved By	Prepared By
		期 <u>發</u> 89. 5. 31 魏潔怡	BRINDA 5 31 00

CONTENTS

1.SPECEFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3.RELIABILITY

3.1 Content of Reliability Test

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- . 1/64 Duty, 1/9 bias
- STN LCD, positive
- Transflective LCD, gray
- 6 o'clock viewing angle
- 8 bits parallel data input
- · LED Backlight

1.2 Mechanical Specifications

• Outline dimension : 75.0mm(L)*52.7mm(W)*8.4mm (H)

Viewing area : 60.0mm *32.6mm
 Active area : 55.01mm *27.49mm
 Dot size : 0.39mm * 0.39mm
 Dot pitch : 0.43mm * 0.43mm

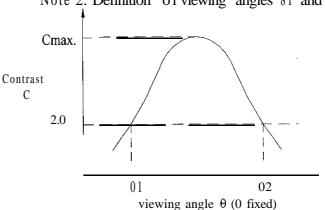
1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vcc	_	0	6.7	V
LCD drive Supply voltage	VCC-VLC	ŀ	0	8.15	V
Input voltage	Vin	-	0	Vcc+0.3	V
Operating temperature	Topr	-	0	+50	°C
Storage temperature	TSTG	-	-20	+70	°C
Humidity*1	HD	-	-	90	%RH

1.4 DC Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	Vcc	-	4.5	5	5.5	V
"H" input voltage	Vih	_	0.7Vcc	-	Vcc	V
"L" input voltage	VIL	_	0		0.3Vcc	V
Supply current	IDD	Vcc=5V	-	1.32	0.33	mA
LCD driving voltage	Vop	VCC-VLC	8.14	-	9.20	

1.5 Optical Characteristics

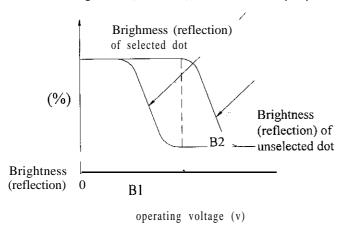

1/64 duty, 1/9 bias, Vopr=8.15V, Ta=25°C

Item	Symbol	Conditions	Min.	Тур.	Max	Reference
		C≥2.0,Ø=0°C			X-2002	Notes 1 & 2
Viewing angle	H A	C <u>2</u> 2.0,\(\D=0^{\circ}\)	30-	-	-	Notes I & 2
Contrast	С	θ=5°, Ø=0°	2	3	-	Note 3
Response time(rise)	tr	θ=5°, Ø=0°	_	130ms	200ms	Note 4
Response time(fall)	tf	θ=5°, Ø=0°	-	300ms	500ms	Note 4

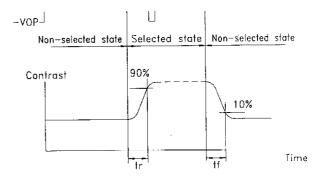
Note 1: Definition of angles θ and 0

Light (when reflected) $z(\theta=0^{\circ})$ Sensor $Y'(\varnothing=180^{\circ})$ LCD panel X' Z'Light (when transmitted) $Y(\varnothing=0^{\circ})$ $(\theta=90^{\circ})$

Note 2: Definition of viewing angles 81 and 82


Note: Optimum viewing angle with the naked eye and viewing angle θ at

Cmax. Above are not always the same.


Note 3: Definition of contrast C

Brighmess (reflection) of unselected dot (B2)

Brightness (reflection) of selected dot (B1)

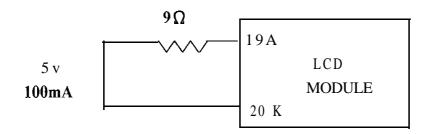
Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm'

Vopr : Operating voltgae tr : Response time (rise) fFRM: Frame frequency tf: Response time(fall)

1.6 Backlight Characteristic

The LCD Module is backlight using a LED panel


.Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	-	25	mA
Reverse voltage	VR	TA=25°C	-	8	V
Power dissipation	РО	TA=25°C	-	1.5	W
Operating Temperature	TOPR		-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

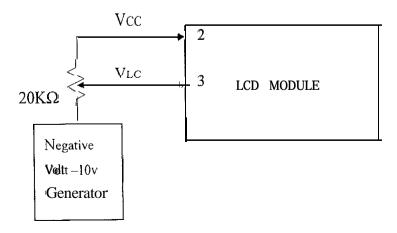
Electrical Ratings

Item	Symbol	Condition	Min.	Тур.	Max.	Unit					
Forward voltage	VF	IF=100mA	-	4.1	4.4	V					
Reverse current	IR	VR=8V	-	-	0.2	mA					
Luminous intensity	Iv	IF=100mA	-	- 20	-	cd/m ²					
Wavelength	Hue	IF=100mA	571	-	576	nm					
Color		Yellow Green									

• Light LED Backlight

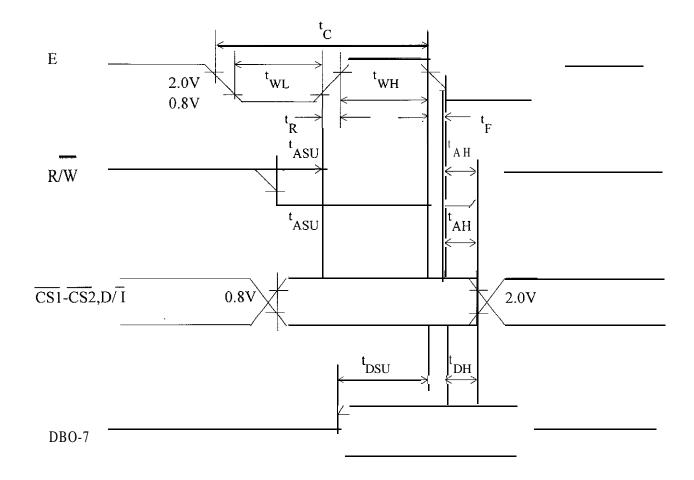
2. MODULE STRUCTURE

2.1 Counter Drawing

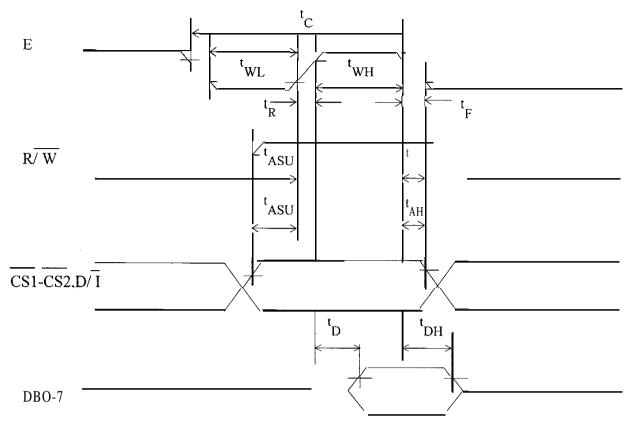

*See Appendix

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	Vdd	Power supply for logic (+5V)
2	Vss	Signal ground (GND)
3	VLC	Operating voltage for LCD (variable)
4 -7	DB0~ DB3	Four low order bi-directional three-state data bus lines. Use for data transfer between the MPU and the LCD module. These four are not used during 4-bit operation.
8 -11	DB4~ DB7	For high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
12	/CS1	Chip enable for D2 (segment 1 to segment 64)
13	/CS2	Chip enable for D3 (segment 65 to segment 128)
14	RST	Reset signal
15	R/W	R/W signal input is used to select the read/write mode High =Read mode, Low =Write mode
16	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
17	Е	Start enable signal to read or write the data
18	Vss	Ground
19	A	LED Backlight(+)
20	K	LED Backlight(-)


Contrast Adjust

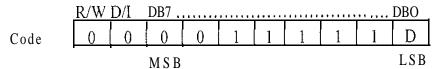
 $\mathcal{G}_{\mathcal{Y}}$



2.3 Timing Characteristics

MPU Write timing

MPU Read timing


Characteristic	Symbol	Min.	Тур	Max	Unit
E Cycle	tC	1000	-	_	ns
E High Level Width	tWH	450	-	-	ns
E Low Level Width	tWL	450	-	-	ns
E Rise Time	tR	-	-	25	ns
E Fall Time	tF		_	25	ns
Address Set-Up time	tASU	140	-	-	ns
Address Hold Time	tAH	10	_	-	ns
Data Set-Up Time	tsu	200		_	ns
Data Delay Time	tD	_	_	320	ns
Data Hold Time (Write)	tDHW	10	_	-	ns
Data Hold Time (Read)	tDHR	20	-	-	ns

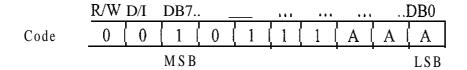
2.4 Display command

					С	ode						1
Instructions	R/W		DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0	Functions	
Display on/off	0		0	0	1	1	1	1	1	1/0	Controls display on/off internal status are not a (0:OFF,1:ON)	
Display start line	0	_	1	1	Disp	olay s	tart l	ine (0	- 63)	. <u> </u>	Specifies the RAM line the top of the screen.	e displayed at
Set Page (x address)	0		1	0	1	1	1	Page	: (0-7)	Sets the page (X address) the page (X address)	
Set Y address	0		0	1	Y ac	ddress	(0-6	53)			Sets the Y address in the counter.	ne Y address
Status read	1		Busy	0	ON/ Off	Reset	0	0			Reads the status. Reset 1: Reset 0: Norma ON/OFF 1: Displa 0: Displa Busy 1: Intern 0: Ready	y off y on al operation
Write display data	0		Writ	te dat	ta						Writes data DBO (LSB) to DB7 (MSB) on the data bus into display RAM.	Has access to the address of the display RAN specified in
Read display data	1		Read	d data	a						Reads data DBO (LSB) to DB7 (MSB) from the display RAM to the data bus.	advance. After the access, Y address is increased by 1.

Detailed Explanation

Display On/Off

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

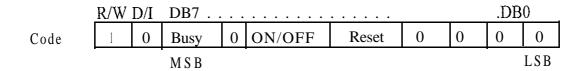


Display Start Line

	R/W	D/l	DB7						D	BO
Code	0	0	1	1	A	A	A	A	A	Α
			MSB			_		-	•	LSB

Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1132, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed. See figure 1.

Set page (X address)


X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See **figure 2.**

Set Y Address

Y address AAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

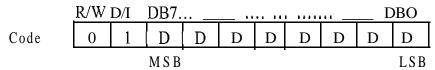
Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

ON/OFF

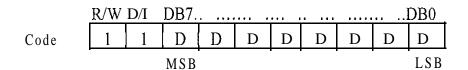
Shows the liquid crystal display conditions: on condition or off condition

When on/off is 1, the display is in off condition.


When on/off is 0, the display is in on condition.

RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.


RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data

Write S-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out S-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

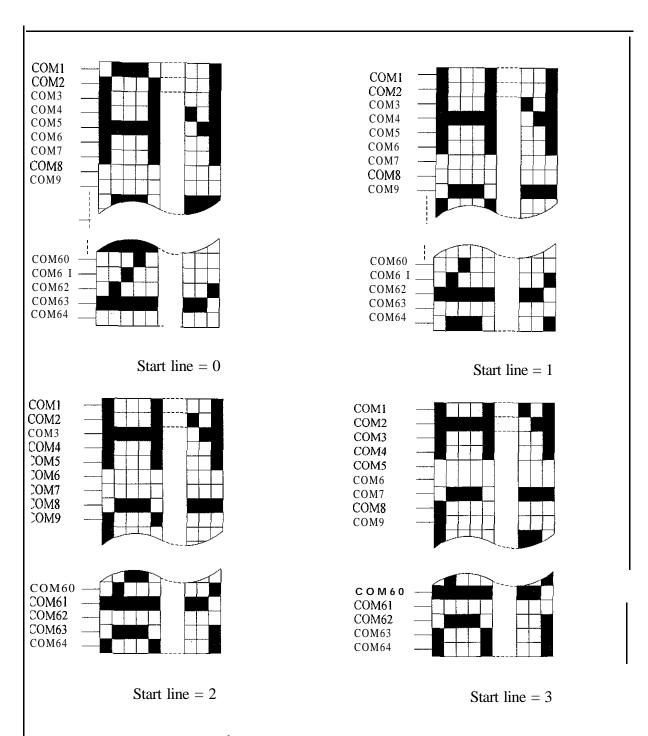


Figure I Relation between Start Line and Display

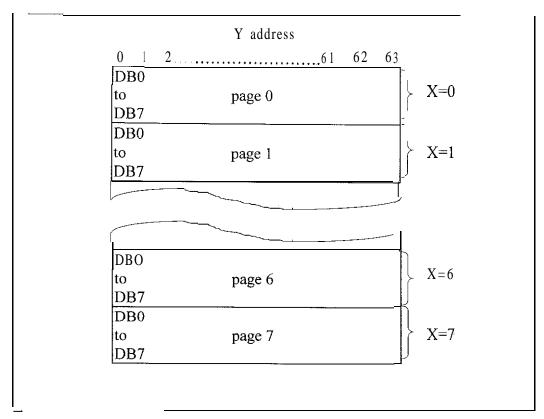
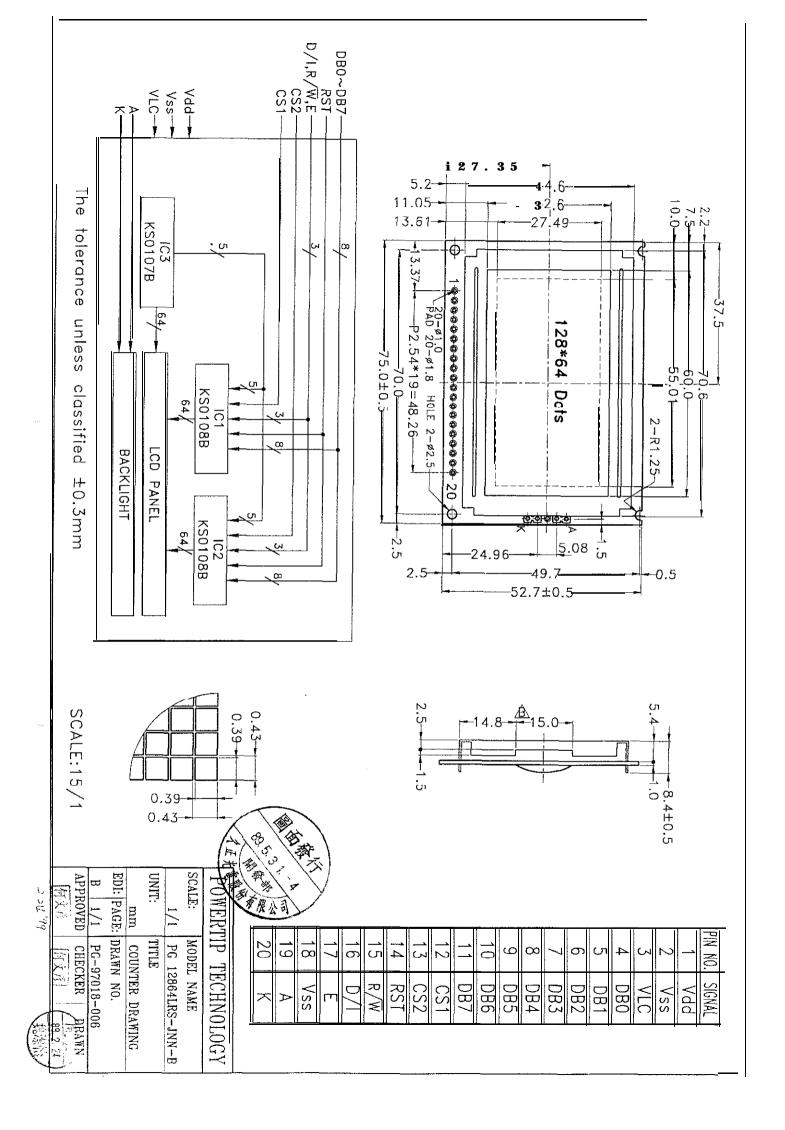


Figure 2 Address Configuration of Display Data RAM

-3. RELIABILITY

3.1 Content of Reliability Test


	Environmental Test								
NO	Test Item	Content of Test	Test Condition						
1	High temperature storage	Endurance test applying the high storage temperature for a long time.	70°C 100 hrs						
2	Low temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 100 hrs						
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 100 hrs						
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 100 hrs						
5	High temperature /Humidity Storage	Endurance test applying the high humidity storage for a long time.	70°C,90%RH 50 hrs						
6	High temperature /Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	70°C,90%RH 50 hrs						
7	Temperature Cycle	Endurance test applying the low and high temperature cycle. -25°C → 25°C → 75°C 30min ← 5min ← 30min	-25°C / 75°C 10 cycle						
		1 cycle							

5.Out Going Inspection Specification

- 1. Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level II
- 2. Defect Level: Major Defect AQL 0.65; Minor Defect AQL 1.0 ° 3. Equipment: Gauge . MIL-STD . Powertip Tester · Sample °
- 4. Specification:

ΝO	Item	Specification	Judge	Level
1	Part Number	Inconsistent with the P/N on the flow chart of production	N.G.	Major
2	Quantity	Inconsistent Q'TY with the flow chart of production	N.G.	Major
3	Electronic	Display short	N.G.	Major
	characteristics	Missing line	N.G.	Major
		Dot missing A > 1/2 Dot size	N.G.	Major
ļ	$A=(L+W)\div 2$	No function	N.G.	Major
		Out put data error	N.G.	Major
4	Appearance	Material difference with flow chart	N.G.	Major
		LCD Assembled in opposite direction	N.G.	Major
	$A=(L+W)\div 2$	Bezel assembled in opposite direction	N.G.	Major
		Shadow within LCD V./A + 1.0 mm	N.G.	Major
	Dirty particle	Dirty particle A > 0.4 mm	N.G.	Minor
	(include scratch \	Dirty particle length > 3.0mm	N.G.	Minor
	bubble)	And $0.01 \text{mm} < \text{Width} \leq 0.05 \text{mm} \text{ (Width} > 0.05 \text{mm)}$		
		Measure by area)		ļ <u></u>
		Without protective film	N.G.	Minor
		Conductive rubber over bezel	N.G.	Minor
5	PCB Appearance	Burned PCB	N.G.	Major
		Green paint stripped & visible circuit A > 1.0mm	N.G.	Minor
	$A=(L+W)\div 2$	(Finish coat not counted in)		
		A particle across the circuit	N.G	Minor
		Circuit split > 1/2 Circuit width	N.G	Minor
1		Any circuit risen	N.G	Minor
		0.2mm < Tin ball area A ≤ 0.4mm	N.G	Minor
Į.		And Q'TY'>4 Pieces		
		Tin ball area A > 0.4mm	N.G	Minor

NO	Item	Specification	Judge	Level
6	Molding annearance	Too soft: Shape by touch changed	N.G.	Major
	A=(L+W)+2	Insufficient epoxy: IC circuit or IC pad visible	N.G.	Minor
		Excessive epoxy: Diameter > 20mm Or	N.G.	Minor
	:	High> 2.5mm		
	ı	Pin hole through A > 0.2mm	N.G.	Minor
7	Bezel appearance	Angleightween frame and TAB > 45 +1()	N.G.	Minor
	A (=L + W) 2÷	Electroplate strip A > l.Omm (Top view only)	N.G.	Minor
		Rust (Top view only)	N.G.	Minor
		Crack	N.G.	Minor
8	Backlight electric	Error backlight color	N.G.	Major
	characteristics	(No function	N.G.	Majcr
		Any LED dot no function	N.G.	Major
	$A=(L+W)\div 2$	PIN soldering without tin A > 1/2 solder pad	N.G.	Minor
		Solder PIN high > 1.5mm	N.G.	Minor
9	LCD Appearance	Polarize rise over V/A	N.G.	Minor
	$A=(L+W)\div 2$			
10	Assembly parts	Components mark unclearly	N.G.	Minor
		Components' distance more than 0.7mm firm the PCB	N.G.	Minor
	$A=(L+\dot{W})\div 2$	Error position not in center D>1/4W	N.G.	Minor
		W D		
		D Pod		
		D Pad	ļ	
				-
		Non- solder area > Twice solder area	N.G.	Minor
		Flux area A > 1/4 solder area	N.G.	Minor
		Component broken	N.G.	Minor

