

PESD5V0U2BT

Ultra low capacitance bidirectional double ESD protection diode

Rev. 01 — 27 March 2007

Product data sheet

Product profile 1.

1.1 General description

Ultra low capacitance bidirectional double ElectroStatic Discharge (ESD) protection diode in a SOT23 (TO-236AB) small Surface-Mounted Device (SMD) plastic package designed to protect two data lines from the damage caused by ESD.

1.2 Features

- Bidirectional ESD protection of two lines Ultra low leakage current: I_{RM} = 5 nA

Subscriber Identity Module (SIM) card

Ultra low diode capacitance: C_d = 2.9 pF E ESD protection of up to 10 kV

Communication systems

Portable electronics

High-speed data lines

protection

FireWire

IEC 61000-4-2; level 4 (ESD)

1.3 Applications

- Computers and peripherals
- Audio and video equipment
- Cellular handsets and accessories
- 10/100/1000 Ethernet
- Local Area Network (LAN) equipment

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per diode						
V _{RWM}	reverse standoff voltage		-	-	5	V
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0 \text{ V}$	-	2.9	3.5	pF

2. Pinning information

Table 2.	Pinning		
Pin	Description	Simplified outline	Symbol
1	cathode 1		
2	cathode 2		
3	common cathode		
			2 006aaa155

3. Ordering information

Table 3. Order	ing information	on	
Type number	Package		
	Name	Description	Version
PESD5V0U2BT	-	plastic surface-mounted package; 3 leads	SOT23

4. Marking

Table 4.	Marking codes	
Type num	nber	Marking code ^[1]
PESD5V0	U2BT	1U*

[1] * = -: made in Hong Kong

- * = p: made in Hong Kong
- * = t: made in Malaysia
- * = W: made in China

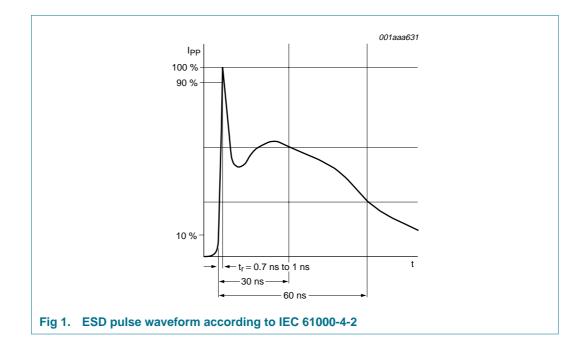
5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

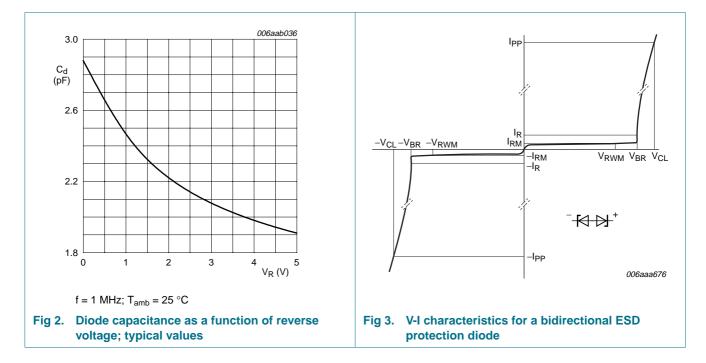
Symbol	Parameter	Conditions	Min	Max	Unit
Per device					
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T _{stg}	storage temperature		-65	+150	°C

Table 6.ESD maximum ratings


Symbol	Parameter	Conditions	Min	Max	Unit
Per diode					
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2 (contact discharge)	<u>[1][2]</u> _	10	kV
		MIL-STD-883 (human body model)	-	8	kV

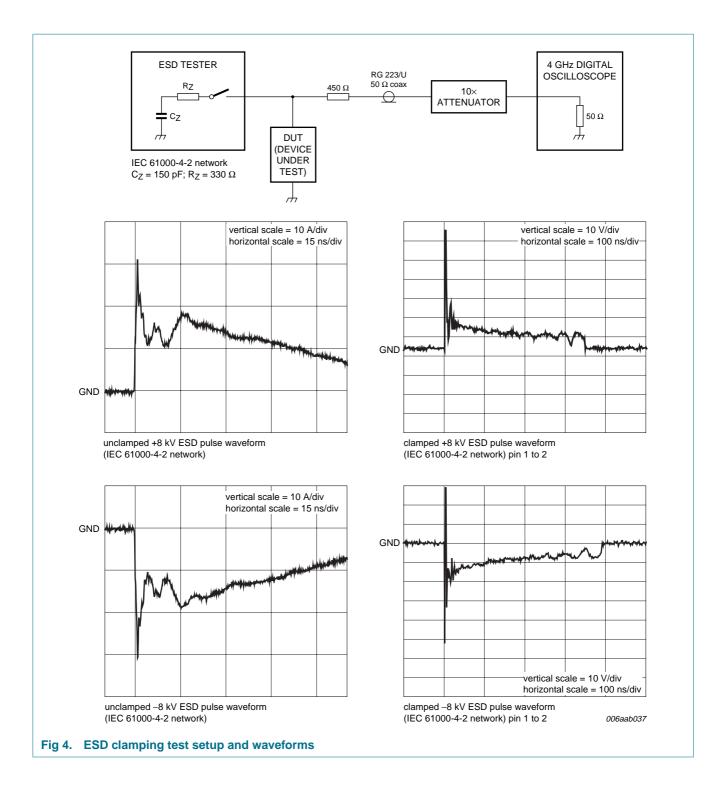
[1] Device stressed with ten non-repetitive ESD pulses.

[2] Measured from pin 1 to pin 2.

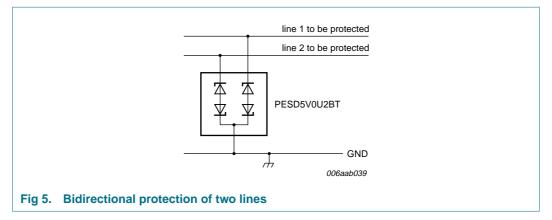

Table 7.ESD standards compliance

Standard	Conditions
Per diode	
IEC 61000-4-2; level 4 (ESD)	> 15 kV (air); > 8 kV (contact)
MIL-STD-883; class 3 (human body model)	> 4 kV

6. Characteristics


$\begin{tabular}{ c c c c c } \hline Symbol & Parameter & Conditions & Min & Typ & Mathematical Math$	C Unit
V_{RWM} reverse standoff voltage5 I_{RM} reverse leakage current $V_{RWM} = 5 V$ -5100 V_{BR} breakdown voltage $I_R = 5 mA$ 5.579.5 C_d diode capacitance $f = 1 MHz$	V
$ \begin{array}{cccc} I_{RM} & \mbox{reverse leakage current} & V_{RWM} = 5 \ V & - & 5 & 100 \\ V_{BR} & \mbox{breakdown voltage} & I_R = 5 \ mbox{mA} & 5.5 & 7 & 9.5 \\ C_d & \mbox{diode capacitance} & f = 1 \ \mbox{MHz} & \end{array} $	V
V_{BR} breakdown voltage $I_R = 5 \text{ mA}$ 5.579.5 C_d diode capacitance $f = 1 \text{ MHz}$	v
C_d diode capacitance $f = 1 \text{ MHz}$	nA
	V
$V_{R} = 0 V$ - 2.9 3.5	
	pF
V _R = 5 V - 1.9 -	pF
r_{dif} differential resistance $I_R = 1 \text{ mA}$ 100	Ω

NXP Semiconductors

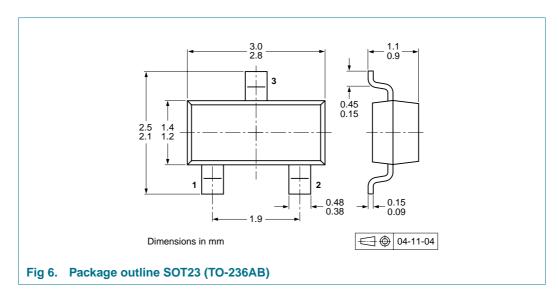

PESD5V0U2BT

Ultra low capacitance bidirectional double ESD protection diode

7. Application information

The PESD5V0U2BT is designed for the bidirectional protection of two signal lines from the damage caused by ESD pulses. The PESD5V0U2BT may be used on lines where the signal polarities are either positive or negative with respect to ground.

Circuit board layout and protection device placement


Circuit board layout is critical for the suppression of ESD, Electrical Fast Transient (EFT) and surge transients. The following guidelines are recommended:

- 1. Place the PESD5V0U2BT as close to the input terminal or connector as possible.
- 2. The path length between the PESD5V0U2BT and the protected line should be minimized.
- 3. Keep parallel signal paths to a minimum.
- 4. Avoid running protected conductors in parallel with unprotected conductors.
- 5. Minimize all Printed-Circuit Board (PCB) conductive loops including power and ground loops.
- 6. Minimize the length of the transient return path to ground.
- 7. Avoid using shared transient return paths to a common ground point.
- 8. Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

PESD5V0U2BT

Ultra low capacitance bidirectional double ESD protection diode

8. Package outline

9. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	Description	Packing	quantity
			3000	10000
PESD5V0U2BT	SOT23	4 mm pitch, 8 mm tape and reel	-215	-235

[1] For further information and the availability of packing methods, see <u>Section 13</u>.

PESD5V0U2BT

Ultra low capacitance bidirectional double ESD protection diode

10. Soldering

11. Revision history

Table 10. Revision history	у			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PESD5V0U2BT_1	20070327	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

PESD5V0U2BT

Ultra low capacitance bidirectional double ESD protection diode

14. Contents

Product profile 1
General description
Features
Applications 1
Quick reference data
Pinning information 2
Ordering information 2
Marking 2
Limiting values 3
Characteristics 4
Application information 6
Package outline 7
Packing information 7
Soldering 8
Revision history 9
Legal information 10
Data sheet status 10
Definitions 10
Disclaimers
Trademarks 10
Contact information 10
Contents 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 March 2007 Document identifier: PESD5V0U2BT_1

