
DISCRETE SEMICONDUCTORS

DATA SHEET

PBSS5240V 40 V low V_{CEsat} PNP transistor

Product specification

2003 Jan 30

40 V low V_{CEsat} PNP transistor

PBSS5240V

FEATURES

- Low collector-emitter saturation voltage V_{CEsat}
- \bullet High collector current capability I_{C} and I_{CM}
- High collector current gain (hFE) at high IC
- · High efficiency leading to reduced heat generation
- Reduced printed-circuit board area requirements.

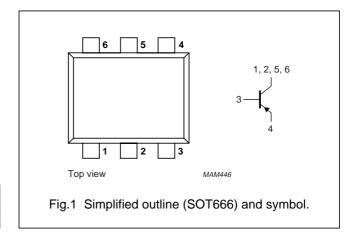
APPLICATIONS

- Power management:
 - DC-DC converter
 - Supply line switching
 - Battery charger
 - LCD back lighting.
- · Peripheral driver:
 - Driver in low supply voltage applications (e.g. lamps, LEDs)
 - Inductive load drivers (e.g. relay, buzzers and motors).

DESCRIPTION

PNP transistor providing low V_{CEsat} and high current capability in a SOT666 plastic package. NPN complement: PBSS4240V.

MARKING


TYPE NUMBER	MARKING CODE
PBSS5240V	52

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	-40	V
I _C	collector current (DC)	-1.8	Α
I _{CRP}	peak collector current	-2	Α
R _{CEsat}	equivalent on-resistance	<250	mΩ

PINNING

PIN	DESCRIPTION	
1	collector	
2	collector	
3	base	
4	emitter	
5	collector	
6	collector	

40 V low V_{CEsat} PNP transistor

PBSS5240V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-40	V
V _{CEO}	collector-emitter voltage	open base	_	-40	V
V _{EBO}	emitter-base voltage	open collector	_	- 5	V
I _C	collector current (DC)	note 1	_	-1.8	Α
I _{CRP}	peak repetitive collector current	note 2	_	-2	А
I _{CM}	peak collector current		_	-3	А
I _B	base current (DC)		_	-300	mA
I _{BM}	peak base current		_	-1	А
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 3	_	300	mW
		T _{amb} ≤ 25 °C; note 4	_	500	mW
		T _{amb} ≤ 25 °C; note 1	_	900	mW
		T _{amb} ≤ 25 °C; notes 2 and 3	_	1.2	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Notes

- 1. Device mounted on a ceramic circuit board, Al₂O₃, standard footprint.
- 2. Operated under pulsed conditions: duty cycle $\delta \leq$ 20%, pulse width $t_p \leq$ 30 ms.
- 3. Device mounted on a printed-circuit board, single-sided copper, tinplated, standard footprint.
- 4. Device mounted on a printed-circuit board, single-sided copper, tinplated, mounting pad for collector 1 cm².

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to	note 1	410	K/W
	ambient	note 2	215	K/W
		note 3	140	K/W
		notes 1 and 4	110	K/W

Notes

- 1. Device mounted on a printed-circuit board, single-sided copper, tinplated, standard footprint.
- 2. Device mounted on a printed-circuit board, single-sided copper, tinplated, mounting pad for collector 1 cm².
- 3. Device mounted on a ceramic circuit board, Al₂O₃, standard footprint.
- 4. Operated under pulsed conditions: duty cycle $\delta \leq$ 20%, pulse width $t_p \leq$ 30 ms.

Soldering

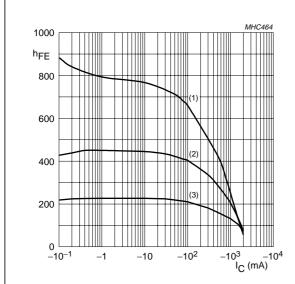
The only recommended soldering method is reflow soldering.

40 V low V_{CEsat} PNP transistor

PBSS5240V

CHARACTERISTICS

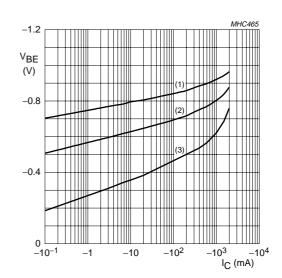
 T_{amb} = 25 °C unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector-base cut-off current	V _{CB} = -40 V; I _E = 0	_	_	-100	nA
		V _{CB} = -40 V; I _E = 0; T _{amb} = 150 °C	_	_	-50	μΑ
I _{CEO}	collector-emitter cut-off current	$V_{CE} = -30 \text{ V; } I_{B} = 0$	_	_	-100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0$	_	_	-100	nA
h _{FE}	DC current gain	$V_{CE} = -5 \text{ V}; I_{C} = -1 \text{ mA}$	300	_	_	
		$V_{CE} = -5 \text{ V}; I_{C} = -100 \text{ mA}$	300	_	800	
		$V_{CE} = -5 \text{ V}; I_{C} = -500 \text{ mA}$	250	_	_	
		$V_{CE} = -5 \text{ V}; I_{C} = -1 \text{ A}$	160	_	_	
		$V_{CE} = -5 \text{ V}; I_{C} = -2 \text{ A}; \text{ note 1}$	50	-	_	
V _{CEsat}	collector-emitter saturation voltage	$I_C = -100 \text{ mA}; I_B = -1 \text{ mA}$	_	-80	-120	mV
		$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	-	-100	-145	mV
		$I_C = -1 \text{ A}; I_B = -100 \text{ mA}; \text{ note 1}$	_	-180	-250	mV
		$I_C = -2 \text{ A}; I_B = -200 \text{ mA}$	_	-370	-530	mV
R _{CEsat}	equivalent on-resistance	$I_C = -1 \text{ A}$; $I_B = -100 \text{ mA}$; note 1	-	180	<250	mΩ
V _{BEsat}	base-emitter saturation voltage	$I_C = -1 \text{ A}; I_B = -100 \text{ mA}$	_	-	-1.1	V
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = -5 \text{ V}; I_{C} = -1 \text{ A}$	_	_	-1	V
f _T	transition frequency	$I_C = -50 \text{ mA}; V_{CE} = -10 \text{ V};$ f = 100 MHz	150	_	-	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = I_e = 0; f = 1 \text{ MHz}$	_	_	12	pF

Note

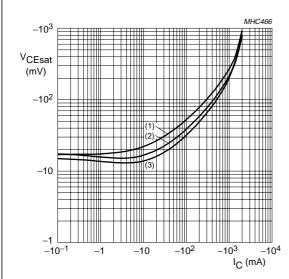
1. Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$

40 V low V_{CEsat} PNP transistor


PBSS5240V

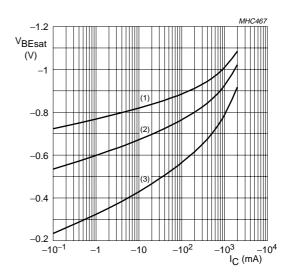
 $V_{CE} = -5 \text{ V}.$

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) $T_{amb} = -55 \, ^{\circ}C$.


Fig.2 DC current gain as a function of collector current; typical values.

 $V_{CE} = -5 \text{ V}.$

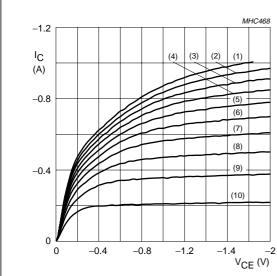
- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) $T_{amb} = 150 \, ^{\circ}C$.


Fig.3 Base-emitter voltage as a function of collector current; typical values.

 $I_{\rm C}/I_{\rm B} = 20.$

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.4 Collector-emitter saturation voltage as a function of collector current; typical values.


 $I_{\rm C}/I_{\rm B}=20$.

- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 150 \, ^{\circ}C$.

Fig.5 Base-emitter saturation voltage as a function of collector current; typical values.

40 V low V_{CEsat} PNP transistor

PBSS5240V

 $T_{amb} = 25 \, ^{\circ}C.$

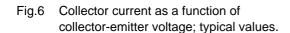
(1) $I_B = -7 \text{ mA}$.

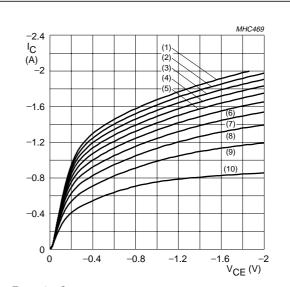
(5) $I_B = -4.2 \text{ mA}.$

(9) $I_B = -1.4 \text{ mA}.$

(2) $I_B = -6.3 \text{ mA}.$

(6) $I_B = -3.5 \text{ mA}.$


(10) $I_B = -0.7 \text{ mA}.$


(3) $I_B = -5.6 \text{ mA}.$

(7) $I_B = -2.8 \text{ mA}.$

(4) $I_B = -4.9 \text{ mA}.$

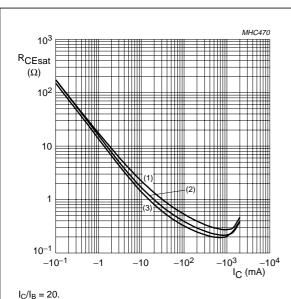
(8) $I_B = -2.1 \text{ mA}.$

 T_{amb} = 25 °C.

(1) $I_B = -50 \text{ mA}.$

(5) $I_B = -30 \text{ mA}.$

(9) $I_B = -10 \text{ mA}.$


(2) $I_B = -45 \text{ mA}.$

(6) $I_B = -25 \text{ mA}.$

(10) $I_B = -5 \text{ mA}.$

(3) $I_B = -40 \text{ mA}$. (4) $I_B = -35 \text{ mA}$. (7) $I_B = -20 \text{ mA}.$ (8) $I_B = -15 \text{ mA}.$

Fig.7 Collector current as a function of collector-emitter voltage; typical values.

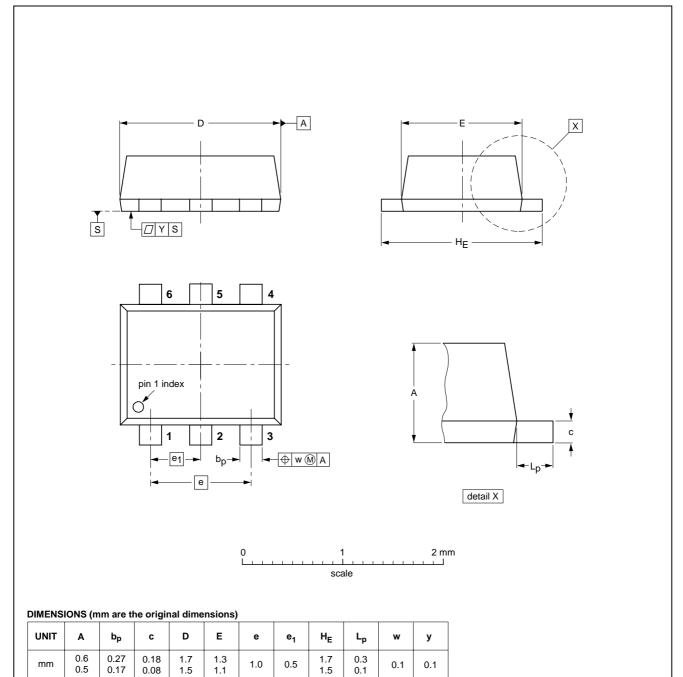
IC/IB = 20.

(1) $T_{amb} = 150 \,^{\circ}C$.

(2) $T_{amb} = 25 \, ^{\circ}C$.

(3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.8 Collector-emitter equivalent on-resistance as a function of collector current; typical values.


40 V low V_{CEsat} PNP transistor

PBSS5240V

PACKAGE OUTLINE

Plastic surface mounted package; 6 leads

SOT666

OUTLINE	REFERENCES			EUROPEAN	ICCUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION ISSUE DA	
SOT666						-01-01-04 01-08-27

40 V low V_{CFsat} PNP transistor

PBSS5240V

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

40 V low V_{CEsat} PNP transistor

PBSS5240V

NOTES

40 V low V_{CEsat} PNP transistor

PBSS5240V

NOTES

40 V low V_{CEsat} PNP transistor

PBSS5240V

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613514/01/pp12

Date of release: 2003 Jan 30

Document order number: 9397 750 10781

Let's make things better.

Philips Semiconductors

