Freescale Semiconductor RDB Board Specification

Document Number: P1024RDB-PA Agile # UMS-26815 2.0,07/2011

P1024RDB-PA Specification QorIQ Integrated Communications Processor

The reference design board (RDB) is a system featuring the P1024E OorIO processor, which includes a built-in security accelerator. This low-cost, high-performance system solution consists of a printed circuit board (PCB) assembly and a software board support package (BSP). This BSP enables the fastest possible time-to-market for development or integration of applications including printer engines, broadband gateways, no-new-wires home adapters/access points, and home automation boxes.

This document describes the hardware features of the board including specifications, block diagram, connectors, interfaces, and hardware straps. It also describes the board settings and physical connections needed to boot the RDB. Finally, it considers the software shipped with the platform.

When you finish reading this document, you should be familiar with:

- The board layout and its interfaces ٠
- The board configuration options
- How to get started and boot the board

Contents

1	Introduction	2
2	P1024RDB Hardware	2
3	Memory Interface	7
4	SerDes Interfaces (PCIe/SGMII)	8
5	Enhanced Local Bus Controller (eLBC) Interface	9
6	Ethernet	12
7	eSPI	15
8	eSDHC Interface	16
9	GPIO	17
10	I ² C	17
11	USB Interface	19
12	Dual RS-232 Ports	20
13	Lattice PLD	22
14	POR Configuration	22
15	JTAG/COP	22
16	Interrupts	24
17	DMA	25
18	TDM	25
19	Connectors, Headers, Push Buttons and LEDs	26
20	Power Related	28
21	1588	30
22	Clocking	30
23	Reset	30
24	Switch Settings	30
25	Getting Started	36
26	Revision History	38

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2011. All rights reserved.

1 Introduction

This document is applicable for PCBA Rev2.0 and above, PLD Rev2.2. The revision information is shown in the log file of board booting.

1.1 Acronyms and Abbreviations

Table 1 lists commonly used acronyms and abbreviations.

Table 1. Acronyms and Abbreviations

СОР	Debug Port in Powerpc	РНҮ	Physical Layer Interface Device
DDR	Double Data Rate DRAM	PLL	Phase Lock Loop
LYNX	High Speed Serial Interface	SERDES	Serializer/Deserializer
PCIe	PCI Express®	USB	Universal Serial Bus
SLIC	Subscriber Line Interface Circuit	TDM	Time Division Multiplex

1.2 Reference Documents

The following documents are available on Freescale's intranet library.

- P1024E QorIQ Integrated Processor Family Reference Manual
- P1024E QorIQ Integrated Processor Hardware Specification

2 P1024RDB Hardware

This section covers the features, block diagram, specifications, and mechanical data of the RDB.

2.1 P1024E Features

The board features are as follows:

- P1024E running at 533 MHz, platform 266 MHz, DDR3 667 MHz
- Memory subsystem:
 - 1Gbyte unbuffered DDR3 SDRAM discrete devices (32-bit bus)
 - 16 Mbyte flash single-chip memory
 - 32 Mbyte NAND flash memory
 - 256 Kbit M24256 I2C EEPROM
 - 16 Mbyte SPI memory
 - SD connector to interface with the SD memory card
- Interfaces:
 - PCIe
 - x1 PCIe slot
 - x1 mini-PCIe slot

- 10/100/1000 BaseT Ethernet ports:
 - eTSEC1, RGMII: one 10/100/1000 port AtherosTM AR8021
 - eTSEC2, SGMII: one 10/100/1000 port using Vitesse^R VSC8221
 - eTSEC3, RGMII: one 10/100/1000 port AtherosTM AR8021
- USB 2.0 port:
 - ULPI PHY interface: SMSC USB3300 USB PHY and Genesys Logic's GL850A USB2.0 HUB Controller with 4 downstream ports
 - Two USB 2.0 Type A receptacles
 - One USB 2.0 signal to Mini PCIe slot
- Dual RJ45 UART ports:
 - DUART interface: Supports two UARTs up to 115200 bps for console display
- TDM ports
 - Four FXS ports
 - One FXO port
- Board connectors:
 - Open frame power supply connector
 - JTAG/COP for debugging
- IEEE Std. 1588TM signals for test and measurement
- Real-time clock on I²C bus
- PCB
 - 6-layer routing (4-layer signals, 2-layer power and ground)

P1024RDB Hardware

Figure 1 shows the P1024RDB block diagram.

Figure 1. Block Diagram

P1024RDB-PA Specification, 2.0

2.2 Specifications

Table 2 lists the specifications of the P1024RDB.

Table 2. RDB Specifications

Characteristics	Specifications
Chassis Power requirements	Typical Maximum 40W 90~264VAC input open frame power supply
Communication processor	P1024E cores running at 533 MHz
Operating temperature	0° C to 70° C (room temperature)
Storage temperature	-25°C to 85°C
Relative humidity	5% to 90% (noncondensing)
PCB dimensions: Length Width Thickness	8860 mil 8270 mil 62 mil

P1024RDB Hardware

2.3 Mechanical Data

Figure 2 shows the P1024RDB-PA dimensions. The board measures 225 mm \times 210 mm (8860 mil \times 8270 mil)

Figure 2. Dimensions of the RDB

P1024RDB-PA Specification, 2.0

3 Memory Interface

3.1 Description

The memory interface on the RDB is configured as DDR3 and is implemented as a single bank discrete chips(x8). ECC is not supported on the design. The memory size supported on the board is shown in Table 3.

Table 3. Memory Size

P1024RDB-PA (32-bit)
1GB (4 chips * 2Gbit chips)/8bits

The PCB design is capable of running up to a clock rate of up to 333 MHz (667 MHz data rate). The actual and final speed of the memory design is determined by the final supported DDR3 frequency of the processor.

The DDR3 interface uses the SSTL driver/receiver and 1.5 V power. A Vref 1.5 V/2 is needed for all SSTL receivers in the DDR3 interface. For details on DDR3 timing design and termination, refer to the Freescale application note entitled *Hardware and Layout Design Considerations for DDR Memory Interfaces* (AN2582)

Signal integrity test results show this design does not require terminating resistors (series resistor (R_S) and termination resistor (R_T)) for the discrete DDR3 devices used. DDR3 supports on-die termination; the DDR3 chips and P1024E are connected directly.

The interface is 1.5 V and is provided by an on-board voltage regulator. VREF, which is half the interface voltage, or 0.75 V, is supplied by the same voltage regulator.

SerDes Interfaces (PCIe/SGMII)

Figure 3 shows the DDR3 SDRAM controller connection.

Figure 3. DDR3 SDRAM Connection

3.2 Termination

The DDR3 address, control, and command signals are terminated to the VTT rail via a 47 Ohm resistor.

4 SerDes Interfaces (PCIe/SGMII)

P1024E supports the SGMII and PCI Express high-speed I/O interface standards.

Table 4 details the SerDes connections.

SerDes Lane	Mode	Connected to	Comment
Lane 0	PCI Express 1	Mini-PCIe slot	Used for WLAN type cards
Lane 1	PCI Express 2	Standard x1 PCIe slot	PCIe Slot is only intended for cards that are 10W or less
Lane 2	SGMII	Vitesse SGMII PHY	
Lane 3	not used	not used	

Table 4. SerDes Connectivity

4.1 PCIe

On the RDB, lanes 0 and 1 are configured as two independent x1 PCI Express Interfaces. These interfaces are compliant with the PCI Express Base Specification Revision 1.0a. The physical layer of the PCI Express interface operates at a transmission rate of 2.5 Gbaud (data rate of 2.0 Gbps) per lane. The theoretical unidirectional peak bandwidth is 2 Gbps per lane. Receive and transmit ports operate independently, resulting in an aggregate theoretical bandwidth of 4 Gps per lane.

4.2 SGMII

Lane 2 is used in SGMII mode. The serial gigabit media independent interface (SGMII) is a high-speed interface linking the Ethernet controller with an Ethernet PHY. SGMII uses differential signalling for electrical robustness. Only four signals are required: receive data and its inverse, and send data and its inverse.

Lane 3 of the SerDes Interface is not used on the card.

4.3 SerDes Clocking

The clocking for the SerDes interface is 100MHz provided by the PI6C557-05 clock chip.

5 Enhanced Local Bus Controller (eLBC) Interface

The eLBC port connects to a wide variety of external memories, DSPs, and ASICs.

Three state-machines, the GPCM, UPM, and FCM, share the same external pins and can be programmed separately to access different types of devices.

- GPCM, or general-purpose chip select machine, controls access to asynchronous devices using a simple handshake protocol.
- UPM, or user-programmable machine, can be programmed to interface with synchronous devices or custom ASIC interfaces.
- FCM, or NAND Flash control machine, further extends interface options.

Every chip select signal can be configured so that the associated chip interface is controlled by the GPCM, UPM, or FCM state-machine. All state-machines can reside in the same system.

To interface with the standard memory device, an address latch is needed on the upper address bits since they are multiplexed with the data bus. The LALE is used as the latching signal. The following modules are connected to the local bus:

- 16 Mbyte NOR flash memory
- 32 Mbyte NAND flash memory
- PLD (Lattice LCMXO1200C)

Enhanced Local Bus Controller (eLBC) Interface

5.1 NOR Flash Memory

Through the general-purpose chip-select machine (GPCM), the P1024RDB provides 16Mbyte of flash memory. The flash memory used is configured in a 16-bit port size. Figure 4 shows the hardware connections for the flash memory.

*NOTE: $\overline{\text{NOR}_{CS}}$ can be either $\overline{\text{CS0}}$ or $\overline{\text{CS1}}$ depending on boot location. See switch settings.

Figure 4. NOR Flash Connection

The NOR flash can be split into two logical halves by setting the FBANK_SEL signal. The FBANK_SEL signal is controlled by setting SW4[8]. See Table 5 for how the addresses are changed using FBANK_SEL.

Table 5. Logical NOR Banks

Setting	NOR BANK used
SW4[8]=0	upper bank used for booting starting at address 0xEFF80000
SW4[8]=1	lower bank used for booting starting at address 0xEF780000

5.2 NAND Flash Memory

The P1024E has native support for NAND Flash memory through its NAND Flash control machine (FCM). The P1024RDB implements an 8-bit NAND Flash with 32 Mbyte in size. Figure 5 shows the NAND Flash connection.

depending on boot location. See switch settings.

5.3 Lattice PLD

Lattic PLD LCMXO1200C is connected to the local bus of the processor. This gives the processor the ability to access the 8-bit registers in the PLD.For more details, refer to *P1024RDB-PA Combo Board CPLD Specification*. Figure 6 shows the connection between PLD and the P1024E.

Ethernet

Figure 6. Local Bus Connection of PLD

Table 6 summarizes the eLBC connectivity.

Table 6. eLBC Connectivity

eLBC chip select	Manufacturer	Device	Comment
LCS0 or LCS1 Assignment dependent on which device is used for booting. Handled automatically by the POR PLD based on the switch setting.	Spansion	S29GL128P	NOR FLASH memory 16 Mbyte (16bit)
LCS0 or LCS1 Assignment dependent on which device is used for booting. Handled automatically by the POR PLD based on the switch setting.	Samsung	K9F5608U0D-PCB0	NAND Flash 32 Mbytes (8bit)
LCS2	not used	not used	
LCS3	Lattice	LCMXO1200C	PLD
LCS4-LCS7	not used	not used	

6 Ethernet

The RDB supports three Ethernet ports.

6.1 eTSEC1 10/100/1000 BaseT Interface

eTSEC1 is set to operate in RGMII and is directly connected to the Atheros RGMII PHY (AR8021), as shown in Figure 7. This port can be used for WAN connectivity.

6.2 eTSEC2 10/100/1000 BaseT Interface

eTSEC2 is set to operate in SGMII and is directly connected to the Vitesse SGMII PHY (VSC8221), as shown in Figure 8. This port can be used for WAN connectivity.

Figure 8. eTSEC2 Connection

```
Ethernet
```

6.3 eTSEC3 10/100/1000 BaseT Interface

eTSEC3 is set to operate in RGMII and is directly connected to the Atheros RGMII PHY (AR8021), as shown in Figure 9. This port can be used for WAN connectivity.

Figure 9. eTSEC3 Connection

6.4 Ethernet Management

Table 7 lists how the MDC and MDIO connections are made on the RDB.

 Table 7. MDC/MDIO Connectivity

Device	PHY Address	Comment
eTSEC1 PHY	00010	AR8021
eTSEC2 PHY	00000	VSC8221
eTSEC3 PHY	00001	AR8021

6.5 Ethernet Ports

Figure 10 shows how the ethernet ports are connected on the backside of the RDB chassis.

Figure 10. Ethernet Port Connectivity

7 eSPI

The eSPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The P1024E has the ability to boot from a SPI serial flash device in addition to supporting other peripheral devices conforming to the SPI standard. Some of the peripheral devices include real-time clocks and A/D converters devices.

On the RDB, a Spansion SPI flash memory is supported. Additionly, the SPI interface is also connected to 1588 test circuitry. Table 8 lists the eSPI connections.

eSPI Chip Select	Manufacturer	Part #	Comment
SPI_CS0_N	Spansion	S25FL128P0XN	16MB Spansion SPI Flash
SPI_CS1_N	Zarlink	Le88266	TDM SLIC
SPI_CS2_N	Zarlink	Le88266	TDM SLIC
SPI_CS3_N	Microchip	MCP4921	12-bit DAC

Table 6. esri Connectivity	Table 8.	eSPI	Connectivity
----------------------------	----------	------	--------------

8 eSDHC Interface

The enhanced SD host controller (eSDHC) provides an interface between host system and SD/MMC cards. The secure digital (SD) card is specifically designed to meet the security, capacity, performance, and environmental requirements inherent in emerging audio and video consumer electronic devices. Booting from eSDHC interface is supported via the processor's on-chip ROM.

On the RDB, a single connector is used for both SD and MMC memory cards as shown in Figure 11.

Figure 11. SD Memory Card Connection

The SPI chip selects are multiplexed with the higher data nibble of SDHC interface signals. The selection between the two is controlled by the cfg_sdwidth signal (switch3[1]). By default, cfg_sdwidth = 0, thereby allowing SPI and a 4-bit SD/MMC interface to co-exist on the board.

When $cfg_sdwidth = 1$, the on-board mux connects the upper data nibble to the SD/MMC connector. When doing this, the user must still configure the processor in order to realize the increased bus width. Secondly, when used in this mode, SPI connectivity is not available.

Table 9 lists the multiplexed signals.

SPI Signal	Alternative Signal
SPI_CS0_B (IO)	SDHC_DAT4
SPI_CS1_B (IO)	SDHC_DAT5
SPI_CS2_B (IO)	SDHC_DAT6
SPI_CS3_B (IO)	SDHC_DAT7

Table 9. Multiplexed Signal

9 GPIO

Table 10 lists the GPIO pin usage on the RDB platform.

GPIO	Input / Output	Signal Name	Comment
GPIO07	input	LOAD_DEFAULT_N	Default configuration load request via pushing down Reset Switch SW1 for more than 6 seconds
GPIO11	output	WDI	Periodic signal for Watchdog MAX6370 (U65) input
GPIO13	output	RST_SLIC_N	Resets SLIC1 and SLIC2 = 0 device in reset = 1 device out of reset

Table 10. GPIO Pin Usage

10 I²C

The P1024E device has two I²C controllers. On the RDB, the I2C buses are connected as shown in Figure 12. The M24256 serial EEPROM can be used to store configuration registers' values and/or user program if the P1024E boot sequencer is enabled. For details about the boot sequencer mode, refer to the *P1020E reference manual*. By default, the boot sequencer is not used and the boot code and initialization for the board is loaded from the local bus flash memory.

I²C

Figure 12. I²C Connection

I2C Bus	I2C Address	Manufacturer	Device	Comment
I2C1	50H	ST Microelectronics	M24256	Boot sequencer eeprom 256Kbits
I2C1	68H	Pericom	PT7C4338	Real time clock

P1024RDB-PA Specification, 2.0

I2C Bus	I2C Address	Manufacturer	Device	Comment
I2C2	11H	Zilker	ZL2006	Vcore Regulator
I2C2	18H	NXP	PCA9557	8-bit I2C register
I2C2	52H	Atmel	AT24C01	Board eeprom 1Kbits
I2C2			Mini PCIe PCIe x1 Connector	

 Table 11. I2C Bus Connections

11 USB Interface

The USB interface is configured to operate as a standalone host. To complete the USB interface, an external PHY is employed and connected to the processor's ULPI signals. The SMSC USB3300 PHY is used on the RDB. A 4 downstream ports, 1 upstream port USB Hub Genesys Logic GL850A is connected to the USB PHY to expand the USB ports.

The board features:

- High-speed (480 Mbps), full-speed (12 Mbps) and low-speed (1.5 Mbps) operation
- Host mode
- Dual stacked Type A connection
- One port connected to Mini PCIe connector

Dual RS-232 Ports

Figure 13 illustrates how the USB connectivity is implemented on the RDB.

Figure 13. USB Interface

12 Dual RS-232 Ports

The P1024E device has two UART controllers. The RS-232 interface provides an RS-232 standard interconnection between the card and an external host. The serial connection is typically configured to run at 115.2 Kbps.

Each UART supports:

- Full-duplex operation.
- Software-programmable baud generators:
 - Divide the input clock by 1 to (216 1)
 - Generate a 16x clock for the transmitter and receiver engines
- Clear-to-send (CTS) and ready-to-send (RTS) modem control functions.
- Software-selectable serial interface data format that includes:
 - Data length
 - Parity
 - 1/1.5/2 STOP bit
 - Baud rate
- Overrun, parity, and framing error detection.

The UART ports are routed to dual stacked RJ45 connectors J7 as shown in Figure 14. UART0 is used as default port.

Dual RS-232 Ports

Figure 14. RS-232 Debug Ports Connection

Table 12 lists the connectivity for the UART RJ45 to DB9 female cable connections.

RJ45 Pin#	RS-232 Signal	DB9 Female Pin#
1	RTS	8
2	NC	
3	TXD	2
4	GND	
5	GND	5
6	RXD	3
7	NC	
8	CTS	7

Table 12. UART Connections

13 Lattice PLD

The Lattice PLD (U56) is used for power up sequence control, system reset, POR configuration, multiplexed function select and LEDs control. For more details refer to *P1024RDB Combo Board CPLD Specification-V0.1*.

14 POR Configuration

14.1 POR Configuration PLD

The POR configuration PLD drives the appropriate configuration signals to the processor based on the selected configuration switch setting. When hard reset (HRESET) is asserted, the POR config PLD begins to drive the POR config signals to the processor. The config signals remain asserted until the POR config signals have been properly latched by the processor. The POR configuration PLD does not drive all POR configuration pins, just those needed for frequency selection and boot location.

14.2 POR Configuration Resistors

The POR settings that are not set by the POR configuration PLD are controlled via on-board resistors. For a list of POR configuration resistors, refer to *page 16 of the schematic*.

15 JTAG/COP

The JTAG connection is provided by a direct connection to the appropriate header connector.

15.1 COP/JTAG Port

The common on-chip processor (COP) is part of the P1024E's JTAG module and is implemented as a set of additional instructions and logic. This port can connect to a dedicated emulator for extensive system debugging. Several third-party emulators in the market can connect to the host computer through the Ethernet port, USB port, parallel port, RS-232, and so on. A typical setup using a USB port emulator is shown in Figure 15.

Figure 15. Connecting P1024RDB-PA to a USB Emulator

P1024RDB-PA Specification, 2.0

The 16-pin generic header connector carries the COP/JTAG signals and the additional signals for system debugging. The pinout of this connector is shown in Figure 16.

 Table 13 lists the connections made from the RDB COP Connector

	Pin Number				
Pin #	Signal Name	Connection			
1	TDO	Connected directly between the processor and JTAG/COP connector.			
2	NC	Not connected			
3	TDI	Connected directly between the processor and JTAG/COP connector.			
4	TRST	Routed to the RESET PLD. TRST to the processor is generated from the PLD.			
5	NC	Not connected			
6	VDD_SENSE	Pulled to 3.3V via a 10 Ohm resistor			
7	ТСК	Connected directly between the processor and JTAG/COP connector.			
8	CKSTP_IN	Connected directly between the processor and JTAG/COP connector.			
9	TMS	Connected directly between the processor and JTAG/COP connector.			
10	NC	Not connected			
11	SRESET	Routed to the RESET PLD. SRESET to the processor is generated from the PLD.			
12	GND	Connected to ground			
13	HRESET	Routed to the RESET PLD. HRESET to the processor is generated from the PLD.			

Table 13.	Connectivity	from th	ne COP	Connector
14010 101	Connectivity	II OIII UI		connector

Pin Number			
14	KEY	Not connected	
15	CKSTP_OUT	Connected directly between the processor and JTAG/COP connector.	
16	GND	Connected to ground	

Table 13. Connectivity from the COP Connector

16 Interrupts

Figure 17 shows the external interrupts to the P1024E.

Figure 17. P1024E Interrupts

Table 14 lists how the interrupts are connected on the RDB platform.

Table 14. Interrupts

Name	Connection	Note
IRQ0	not used	On-board Pull-up
IRQ1	not used	On-board Pull-up
IRQ2	not used	On-board Pull-up
IRQ3	SGMII PHY VSC8221	On-board Pull-up
IRQ4	SLIC1	On-board Pull-up
IRQ5	SLIC2	On-board Pull-up

Table 14. Interrupts (continued)

Name Connection		Note
IRQ6	not used	On-board Pull-up
IRQ_OUT	not used	On-board Pull-up

17 DMA

The DMA function itself is not utilized on the RDB platform. Unused input pins are pulled high. Since certain DMA pins have POR functionality, these pins are connected on the platform.

18 TDM

The SLIC/SLAC and TDM interface is applicable for P1024RDB. The P1024E's TDM interface is connected to two dual SLIC/SLAC devices from Zarlink. The Zarlink Le88266 Automatic Battery Switching (ABS) VoicePort[™] device implements a dual-channel telephone line interface by providing all the necessary voice interface functions from the high voltage subscriber line to the P1024E's digital TDM interface.

The Zarlink device provides a highly functional line interface which meets the requirements of short and medium loop (up to 1500 Ohms total at 1 REN) applications. Features include high voltage switching regulator, line test capabilities, integrated ringing (up to 92-Vpk), worldwide software programmability with wideband capability, flexible signal generator with tone cadencing and caller ID generation. These device features allow Voice over Broadband solutions to be enabled on the P1024RDB. Figure 18 shows how the SLIC is connected to the TDM interface of P1024E device.

Figure 18.

P1024RDB-PA Specification, 2.0

TDM

18.1 Headers

Table 15 lists the various headers on the RDB platform.

Table 15. Headers

Reference Designators	Used for	Note
J21	Lattice Header	Used for programming the Lattice PLD devices.
J14	1588	
J22	COP/JTAG	
J20	Jumper to select SPI_CS3 as SPI_DAC_N or UMI_CS_N	Default as SPI_DAC_N

18.2 Connectors

Table 16 lists all the connectors on the RDB platform.

Reference Designators	Used for	Note
J17	Open Frame Power	
J25	SD/MMC Card	
U35	PCIe x1 cards	Intended use is for PCIe cards that are 10W are less.
Р5	Mini-PCIe cards	
J6	Ethernet Port	Bot port-eTSEC2 (SGMII); VSC8221 Top port-eTSEC3(RGMII); AR8021
P1	Ethernet Port	eTSEC1 (RGMII); AR8021
Р2	TDM Ports	Top Port-FXS4 Bot Port - FXS3
Р3	TDM Ports	Top Port - FXS2 Bot Port - FXS1
J4	Dual Type A USB	
J7	UART	TOP: UART1 BOT: UART0
BT1	Battery Holder	CR-2032

Table 16. Connectors

18.2.1 Battery Holder

The board contains an RTC that requires a battery in order to maintain the data inside the RTC. The battery holder (BT1) accommodates a CR-2032. Figure 19 shows how to insert a battery.

Figure 19. Installation of Battery

18.3 Push Buttons

Table 17 lists how the push buttons are used on the RDB platform.

Table 17. Push Buttons

Reference Designators	Used for
SW1	Reset

18.4 LEDs

Table 18 lists all the LEDs on the RDB chassis.

Table 18. LEDs				
LEDs	Used for	Controlled by		
D26	Power on	+3.3V rail		
D27	Status	Lattice PLD (U44)		
D17	TOP:FXS1 BOT: FXS2	CPLD		

Power Related

LEDs	Used for	Controlled by
D18	TOP: FXS3 BOT: FXS4	CPLD
D19	TOP: Link BOT: Activity	eTSEC1 RGMII PHY AR8021
D20	TOP: Link BOT: Activity	eTSEC3 RGMII PHY AR8021
D21	TOP: Link BOT: Activity	eTSEC2 SGMII PHY VSC8221

See *P1024RDB Combo Board CPLD Specification-V0.1* for details about how to control the LEDs by Lattice PLD.

Figure 20 shows LEDs on the P1024RDB front side chassis.

Figure 20. LEDs on Chassis

19 Power Related

19.1 Open Frame Power Supply

Open Frame power supply PD45 supplys +12V and +5V for the RDB board. The rated power is 40W.

19.2 CPU_VDD

The CPU core voltage CPU_VDD rail is sourced from an Intersil switching regulator. The device used on the RDB is the ZL2006. CPU_VDD=1.0V

19.3 AVDD Signals

All AVDD pins are sourced by the CPU_VDD rail through the recommended filter circuit.

19.4 DDR

The memory interface power rails (VTT, GVDD, and VREF) are sourced by a TI switching regulator. The part used is the TPS51116 device. For DDR3, VTT=0.75V, GVDD=1.5V, and VREF = 0.75V.

19.5 SerDes

The SerDes rails (SVDD, XVDD) are sourced from the on-board CPU_VDD core voltage rail.

19.6 USB, SPI, eSDHC (CVDD)

Each of these rails are sourced from 3.3V rail, which is a dedicated power plane on the board. The 3.3V rail is from a MPS switching regulator MP2380.

19.7 Local Bus (BVDD)

This rail is sourced from 3.3V, which is a dedicated power plane on the board.

19.8 DUARTs, System Control, I2C, JTAG (OVDD)

This rail is sourced from 3.3V, which is a dedicated power plane on the board.

19.9 eTSECs (LVDD)

The LVDD rail is used for the TSEC I/Os and is configured for 2.5V operation. The rail is sourced from MPS switching regulator, part number MP2119DQ.

19.10 Mini-PCIe (+1.5V)

The +1.5V rail is used by the mini-PCIe slot and is sourced by a MPS switching regulator. The part used is the MP2105DJ device.

19.11 PCIe x1 slot (+3.3V and +12V)

The PCIe x1 slot +12V rail is directly derived from power supply. The 3.3V is sourced from MPS switching regulator MP2380.

19.12 Vitesse Devices (+1.2V)

The +1.2V rail used by the Vitesse devices is sourced by a MPS Switching Regulator. The part used is the MP2365 device.

19.13 TDM (+3.3V,VBATH and VBATL)

The 3.3V is sourced from MPS switching regulator MP2380.VBATH and VBATL are sourced form the buck-boost converter that is controlled by the SLIC1 (U17)and SLIC2(U16).

P1024RDB-PA Specification, 2.0

19.14 Voltage Selection

The P1024E device supports multiple supply voltages on its I/O supplies. Table 19 shows how the voltage selection pins are configured on the RDB platform.

Signal Name Connection		Comment
LVDD_SEL	Pulled high. $LVDD = 2.5V$	eTSEC1, 2, 3, Ethernet management, 1588
BVDD_VSEL[0:1]	Pulled high. $BVDD = 3.3V$	Local Bus, GPIO[8:15]
CVDD_VSEL[0:1]	Pulled high. $CVDD = 3.3V$	USB, SD/MMC, SPI

Table 19. I/O Supply Voltage Selection

20 1588

The 1588 signals are routed to a 1588 header on the board (J14). The 1588 clock input into the processor can be controlled over the SPI interface through a 12-bit digital-to-analog converter (U41). The output of the DAC feeds directly into a precision VCXO which in turn is used to drive the 1588 clock into the processor. The DAC and VCXO combination allows the 1588 clock to be varied as needed for testing.

21 Clocking

The input system clock for the processor is a 66.66 MHz clock source. The DDR clock input is also driven by a 66.66 MHz clock source. All PCIe ports receive a dedicated 100 MHz clock. All Gigabit PHYs receive a dedicated 25 MHz oscillator clock.TDM is driven by a 2.048M clock source

22 Reset

All resets for the board are handled by the PLD (U56). Power-on reset is initiated by unpressing the power switch if the board is in a chassis. Warm reset is initiated by pressing SW1 on the board. Software is also capable of initiating a warm reset by asserting the HRESET_REQ line from the processor.

23 Switch Settings

The RDB has user selectable switches for evaluating different frequency and boot options for the P1024E device. Table 20 describes the available options.

23.1 P1024RDB Configuration (Switch Method)

NOTE

All frequencies below assume that the input SYSCLK is set to 66.66 MHz for P1024RDB.

Switch Settings SW4[1:6]	Core1 Freq (MHz)	Core2 Freq (MHz)	Platform (MHz)	DDR Freq (MHz)	Boot Location	Boot Hold-off
110000	533	533	267	667	NOR	Core0 boot; Core1 hold-off
110001	533	533	267	667	SD/MMC	Core0 boot; Core1 hold-off
11 0010	533	533	267	667	SPI	Core0 boot; Core1 hold-off
110011	533	533	267	667	NAND	Core0 boot; Core1 hold-off
110100	400	400	267	667	NOR	Core0 boot; Core1 hold-off
11 0101	400	400	267	667	SD/MMC	Core0 boot; Core1 hold-off
11 0110	400	400	267	667	SPI	Core0 boot; Core1 hold-off
110111	400	400	267	667	NAND	Core0 boot; Core1 hold-off

Table 20. P1024E Config Options

23.2 Other configuration options

Table 21 describes the other configuration options that are available on the board.

Switch	Signal Name	Signal Meaning	Setting
SW4[7]	LGPL5 (cfg_boot_seq[1])	Selects whether the boot sequencer is enabled during boot-up.	OFF: boot sequencer enabled and configuration information loaded from I2C ROM. A valid ROM must be present. If not the card will hang. ON: boot sequencer disabled
SW4[8]	FBANK_SELECT	Selects which NOR flash bank is selected.	OFF: upper 4 sectors used for booting ON: middle 4 sectors used for booting
SW3[1]	CFG_SDWIDTH	Configs the width of the SD/MMC bus, 4-bit or 8-bit	OFF: then width = 4bits, SPI interface active ON: then width = 8bits Software can read the status of this bit by reading the I2C 8-bit register.
SW3[2]	TEST_SEL	Personality Selection	OFF: Single e500 Core Device (P1015) ON: Dual e500 Core Device (P1024)
SW3[3]	DMA1_DACK_N	Freescale use only	Must be set to OFF for P1024E
SW3[4]	LA19 (cfg_host_agt[2])	Controls the setting of the cfg_host_agt[2] pin	ON: cfg_host_agt[2] = 1 OFF: cfg_host_agt[2] = 0 Refer to the Section 23.4, Configuring Host/Agent Mode
SW3[5]	USB1_STP	Freescale use only	Must be set to ON for P1024E
SW3[6]	SWITCH7	Reserved	Default ON

Table 21. Other Config Options

Switch	Signal Name	Signal Meaning	Setting
SW3[7]	LA18 (cfg_host_agt[1])	Controls the setting of the cfg_host_agt[1] pin	Default ON
SW3[8]	LWE1_N (cfg_host_agt[0])	Controls the setting of the cfg_host_agt[0] pin	ON: cfg_host_agt[0] = 1 OFF: cfg_host_agt[0] = 0 Refer to the Section 23.4, Configuring Host/Agent Mode

23.3 Factory Settings of board switches

Table 22 shows default settings of all the switches on SW4 and SW3.

Switch	1	2	3	4	5	6	7	8
SW4	ON	ON	OFF	OFF	OFF	OFF	ON	ON
SW3	OFF	ON	OFF	ON	ON	ON	ON	ON

Table 22. Default Settings of Board Switches

23.4 Configuring Host/Agent Mode

Table 23 shows how the PCIe port can be configured in either Host or Agent mode.

Table 25. Host/Agent Selection					
Device	Configuration	cfg_host_agt[0] controlled SW3[8]	cfg_host_agt[1] On-chip Pull-up	cfg_host_agt[2] controlled by SW3[4]	
P1024E	P1024E acts as the host/root complex for all PCIe interface(default)	SW3[8] =ON cfg_host_agt[0] = 1	SW3[7] =ON	SW3[4] =ON cfg_host_agt[2] = 1	
P1024E	P1024E acts as an host on PCIe 1 and acts as an agent on PCIe 2	SW3[8] =OFF cfg_host_agt[0] = 0	SW3[7] =ON	SW3[4] = OFF $cfg_host_agt[2] = 0$	
P1024E	P1024E acts as an agent on PCIe 1 and acts as an host on PCIe 2	SW3[8] =OFF	SW3[7] =OFF	SW3[4] =ON	
P1024E	P1020 acts as an agent on all its PCI Express interfaces.	SW3[8] =OFF	SW3[7] =OFF	SW3[4] =OFF	

Table 23. Host/Agent Selection

23.5 Read and Writing of certain board switches

An 8-bit I2C register allows software to override certain switches remotely without having to change the physical switch. In addition, the CFG_SDWIDTH status can also be read via the I2C register. The I2C register is implemented by Philips PCA9557 device. The register definition is shown in Table 24. The

mapping between the I2C register bits and the switches are shown Table 25. The I2C switch is located on I2C2 and is accessible at address 18H.

After being set, software must issue a reset command (asserting HRESET_REQ_B) for the new switch settings to take effect. Once the I2C registers are written and enabled, they override the board switches until either the I2C bits are disabled or a power cycle occurs.

Name	Туре	Function
Register 0	Read	Input port register
Register1	Read/Write	Output port register
Register 2	Read/Write	Input pins polarity inversion register =1, the corresponding port pin's polarity is inverted =0, the corresponding port pin's original polarity is retained Note that default value of this register is: Bit [7:4] = 1, polarity inverted Bit [3:0] = 0, polarity not inverted
Register 3	Read/Write	Configuration register =1, the corresponding port pin is enabled as an input =0, the corresponding port pin is enabled as an output Note that default value of this register is FF

Table 24.	PCA9557	Register	Definition
1 and 24.	1010001	Register	Demmeion

Table 25. Mapping between I2C register and POR switches

I2C Register Bit	Comment
IO7	overrides SW4[1], and thereby controls Switch1
IO6	overrides SW4[2], and thereby controls Switch2
IO5	overrides SW4[3], and thereby controls Switch3
IO4	overrides SW4[4], and thereby controls Switch4
IO3	overrides SW4[5], and thereby controls Switch5
IO2	overrides SW4[6], and thereby controls Switch6
IO1	overrides SW4[8]; and thereby controls FBANK_SELECT
IO0	"read-only" of CFG_SDWIDTH switch SW3[1]

23.5.1 Uboot steps for overriding on-board switches to change frequency

- 1. First change to the correct I2C bus
 - => i2c dev 1
 - Setting bus to 1

- 2. A read of the input register will return the current state of the on-board switches
 - => i2c md 180

 - Set you desired values for switches.
 - => i2c mw 18 1 10
- 3. Next, set appropriate pins as outputs.
 - => i2c mw 18 3 ef
- 4. A read will return the current over-written value that will be used for all subsequent resets.
 - => i2c md 18 0

 - This value will be used until either the power is turned off, or until the pins from the I2C device are tri-stated

23.5.2 Example log file showing change of frequencies via software

U-Boot 2010.12-00063-g8669298-dirty (Jul 09 2011 - 14:33:07)

CPU0: P1024E, Version: 1.1, (0x80ec0211) Core: E500, Version: 5.1, (0x80212051) Clock Configuration: CPU0:533.333 MHz, CPU1:533.333 MHz, CCB:266.667 MHz, DDR:333.333 MHz (666.667 MT/s data rate) (Asynchronous), LBC:16.667 MHz L1: D-cache 32 kB enabled I-cache 32 kB enabled Board: P1024RDB CPLD: V2.2 PCBA: V2.0 rom loc: nor lower bank SD/MMC : 4-bit Mode eSPI : Enabled I2C: ready SPI: ready DRAM: Detected UDIMM(s) WARNING: Calling __hwconfig without a buffer and before environment is ready WARNING: Calling __hwconfig without a buffer and before environment is ready DDR: 1 GiB (DDR3, 32-bit, CL=5, ECC off) FLASH: 16 MiB L2: 256 KB enabled NAND: 32 MiB MMC: FSL ESDHC: 0 PCIe1: Root Complex of mini PCIe SLOT, no link, regs @ 0xffe0a000 PCIe1: Bus 00 - 00 PCIe2: Root Complex of PCIe SLOT, no link, regs @ 0xffe09000 PCIe2: Bus 01 - 01 Video: No radeon video card found! In: serial Out: serial

Switch Settings

Err: serial Net: eTSEC2 is in sgmii mode. eTSEC1, eTSEC2, eTSEC3 Hit any key to stop autoboot: 0 => i2c dev 1 Setting bus to 1 => i2c md 18 0 => i2c mw 18 1 10 => i2c mw 18 3 ef => i2c md 18 0 => reset U-Boot 2010.12-00063-g8669298-dirty (Jul 09 2011 - 14:33:07) CPU0: P1024E, Version: 1.1, (0x80ec0211) Core: E500, Version: 5.1, (0x80212051) Clock Configuration: CPU0:400 MHz, CPU1:400 MHz, CCB:266.667 MHz, DDR:333.333 MHz (666.667 MT/s data rate) (Asynchronous), LBC:16.667 MHz L1: D-cache 32 kB enabled I-cache 32 kB enabled Board: P1024RDB CPLD: V2.2 PCBA: V2.0 rom loc: nor lower bank SD/MMC : 4-bit Mode eSPI : Enabled I2C: ready SPI: ready DRAM: Detected UDIMM(s) WARNING: Calling __hwconfig without a buffer and before environment is ready WARNING: Calling hwconfig without a buffer and before environment is ready DDR: 1 GiB (DDR3, 32-bit, CL=5, ECC off) FLASH: 16 MiB L2: 256 KB enabled NAND: 32 MiB MMC: FSL_ESDHC: 0 PCIe1: Root Complex of mini PCIe SLOT, no link, regs @ 0xffe0a000 PCIe1: Bus 00 - 00 PCIe2: Root Complex of PCIe SLOT, no link, regs @ 0xffe09000 PCIe2: Bus 01 - 01 Video: No radeon video card found! In: serial Out: serial Err: serial Net: eTSEC2 is in sgmii mode. eTSEC1, eTSEC2, eTSEC3 Hit any key to stop autoboot: 0 =>

```
Getting Started
```

23.5.3 Uboot steps for overriding on-board switch to change NOR boot bank

- 1. First change to the correct I2C bus
 - => i2c dev 1
 - Setting bus to 1
- 2. A read of the input register will return the current state of the on-board switches.
 - => i2c md 18 0

The register value shows that FBANK_SELECT on IO1 is one, thereby the switch SW4[8] is set to ON and the U-Boot is stored in the lower NOR boot bank now.

- Set you desired values for switches
- =>i2c md 18 1 0
- 3. Next, set the IO ports as outputs.
 - => i2c mw 18 3 fd
 - Set the FBANK_SELECT IO1 bit to zero, thereby selecting the upper bank upon reset.
- 4. A read will return the current over-written value that will be used for all subsequent resets.
 - => i2c md 18 0
- 5. Use U-Boot command to reset the system.
 - reset
 - if there is no uboot in the other bank of nor flash, system will not boot up.

NOTE

This value will be used until either the power is turned off, or the pins from the I2C device are tri-stated

24 Getting Started

This section describes how to boot the P1024RDB. The on-board flash memory is preloaded with a flash image from the factory. The on-board switches and jumpers are set to the factory defaults.

CAUTION

Avoid touching areas of integrated circuitry and connectors; static discharge can damage circuits.

WARNING

Turn OFF power during insertion and removal of any PCIe card.

P1024RDB-PA Specification, 2.0

24.1 External Cable Connections

Connect the serial port of the P1024RDB system and a host computer using an RS-232 cable. Also, connect the AC cable to the backside of the chassis.

24.2 Serial Port Configuration (PC)

Before powering up the P1024RDB, configure the serial port of the attached computer with the following values:

- Data rate: 115200 bps
- Number of data bits: 8
- Parity: None
- Number of Stop bits: 1
- Flow Control: Hardware/None

24.3 Power Up

Do not turn power on until all cables are connected and the serial port is configured as described previously. Once done, power up the unit by pressing the power button on the backside of the chassis. A few seconds after power up, the U-Boot prompt should be received by the serial terminal program like the example below:

```
U-Boot 2010.12-00063-g8669298-dirty (Jul 09 2011 - 14:33:07)
```

```
CPU0: P1024E, Version: 1.1, (0x80ec0211)
Core: E500, Version: 5.1, (0x80212051)
Clock Configuration:
   CPU0:533.333 MHz, CPU1:533.333 MHz,
   CCB:266.667 MHz,
   DDR:333.333 MHz (666.667 MT/s data rate) (Asynchronous), LBC:16.667 MHz
L1: D-cache 32 kB enabled
   I-cache 32 kB enabled
Board: P1024RDB CPLD: V2.2 PCBA: V2.0
rom loc: nor lower bank
SD/MMC : 4-bit Mode
eSPI : Enabled
I2C: ready
SPI: ready
DRAM: Detected UDIMM(s)
WARNING: Calling hwconfig without a buffer and before environment is ready
WARNING: Calling hwconfig without a buffer and before environment is ready
DDR: 1 GiB (DDR3, 32-bit, CL=5, ECC off)
FLASH: 16 MiB
L2: 256 KB enabled
NAND: 32 MiB
MMC: FSL ESDHC: 0
PCIe1: Root Complex of mini PCIe SLOT, no link, regs @ 0xffe0a000
```

Revision History

PCIe1: Bus 00 - 00 PCIe2: Root Complex of PCIe SLOT, no link, regs @ 0xffe09000 PCIe2: Bus 01 - 01 Video: No radeon video card found! In: serial Out: serial Err: serial Net: eTSEC2 is in sgmii mode. eTSEC1, eTSEC2, eTSEC3 Hit any key to stop autoboot: 0

=>

25 Revision History

Table 26 provides a revision history for this document.

Rev. Number	Date	Description
0.0	3/2011	First draft
1.0	3/2011	Connect LA18 to SW3, so P1024E acts as an agent on PCIe 1, refer to table23, page32
2.0	3/2011	Update uboot log based on new BSP image, refer to page34-page38

Table 26. Document Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: P1024RDB-PA Agile # UMS-26815 2.0 07/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the freescale logo,QorIQ are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. The PowerPC name is a trademark of IBM Corp. and is used under license. RapidIO is a registered trademark of the RapidIO Trade Association. IEEE 1588 is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© Freescale Semiconductor, Inc., 2004, 2011. All rights reserved.

