Plastic Point Source Infrared Emitting Diode

OP245PS

Features:

- Point source irradiance pattern
- Side-looking package for space-limited applications
- Wavelength matched to silicon's peak response
- Higher power output than GaAs at equivalent drive currents
- Fast switching speed

Description:

Each OP245PS device is an infrared emitting diode with a 850 nm GaAIAs chip, molded in a clear IR-transmissive sidelooking epoxy package. This package makes these devices ideal for PCBoard mounted slotted switches and for mounted interrupt detectors.

The stable forward V_F vs T_A characteristic make them suitable for applications that have limited voltage, such as battery operation; whereas, the low T_R/T_F makes them ideal for high-speed operations.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Space-limited applications
- · PCBoard mounted slotted switch
- Mounted interrupt detector
- High-speed applications

Ordering Information								
Part Number	LED Peak Wavelength	Lens Type	Total Beam Angle	Lead Length (min.)				
OP245PS	850 nm	Flat	±18°	0.5" / 12.7 mm				

DIMENSIONS ARE IN:

[MILLIMETERS]

INCHES

Pin# **LED** Anode Cathode

NOTES:

- 1. OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700-11 CLEAR.
- 2. THIS LED IS BUILT WITH A 0.011" X 0.011" GaAIAs CHIP.
- 3. MAX ALLOWABLE EPOXY MENSCUS IS 0.010".

CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. /ibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

General Note

Plastic Point Source Infrared Emitting Diode

OP245PS

Electrical Specifications

•				
Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Storage and Operating Temperature Range	-40° C to +100° C			
Reverse Voltage	2.0 V			
Continuous Forward Current	50 mA			
Peak Forward Current	1.0 A			
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽¹⁾			
Power Dissipation	100 mW ⁽²⁾			

Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS		
nput Diode								
E _{E (APT)}	Apertured Radiant Incidence	0.12	-	0.8	mW/ cm²	I _F = 20 mA ^(,3)		
V_{F}	Forward Voltage	1.2	-	1.7	V	I _F = 20 mA		
I _R	Reverse Current	-	10	-	μΑ	V _R = 2 V		
λ_{P}	Wavelength at Peak Emission	-	850	-	nm	I _F = 20 mA		
В	Spectral Bandwidth between Half Power Points	-	50	-	nm	I _F = 20 mA		
θ_{HP}	Emission Angle at Half Power Points	-	±18°	-	Degree	I _F = 20 mA		
t _r	Output Rise Time	-	10	-	ns	$I_{F(PK)}$ = 20 mA, PW = 10 μ s, D.C. = 10%		
t _f	Output Fall Time	-	10	-	ns	$I_{F(PK)}$ = 20 mA, PW = 10 μ s, D.C. = 10%		

Notes:

- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- 2. Derate linearly 1.33 mW/° C above 25° C.
- 3. E_{E(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.180" (4.57 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (16.6 mm) from the lens tip. E_{E(APT)} is not necessarily uniform within the measured area.

Rev B 07/2016 Page 2

Plastic Point Source Infrared Emitting Diode

OP245PS

Performance

OP245PS

Optical Power vs Forward Current vs Temperature

Distance vs Power vs Forward Current

