

Low-Bias-Current, High-Stability JFET Operational Amplifier

NP-41*

FEATURES

- High Gain 1000V/mV Min
- High Common-Mode Rejection 100dB Min
- Symmetrical Slew-Rates ±1.0V/μs Min

- Available in Die Form

ORDERING INFORMATION '

GENERAL DESCRIPTION

The OP-41 JFET-input op amp features a 5pA max bias current with an open-loop gain of over 1 million. 77° of phase margin provides exceptional stability, even in unity-gain with capacitive loads. The output is guaranteed stable with 250pF loads at unity-gain, and will typically drive several thousand pF. Transient response is extremely clean, and is considerably improved over industry-standard JFET amplifiers.

SIMPLIFIED SCHEMATIC

The OP-41's cascode input stage boosts CMR to over 100dB, improves CMR linearity, and stabilizes bias current with changing common-mode voltage. The linear common-mode rejection of 100dB min is unusually good for a FET input amplifier. The OP-41 consumes only 750µA supply current and has a powersupply rejection ratio of 25µV/V, making it an ideal choice for battery-operated systems. Despite the low supply-drain, the slew-rate is a respectable 1.3V/µs, and symmetrical. Using zener-zap trimming techniques, offset voltage is adjusted to below 500µV which eliminates the need for external nulling in many applications. The OP-41's guaranteed gain of 1 million into a $2k\Omega$ load, combined with the linear 100dB minimum CMR, vastly improves linearity over competitive low-cost devices. Linearity is excellent in both low-gain and high-gain amplifier configurations. In voltage follower applications CMR effects dominate linearity, and in high-gain applications openloop gain dominates linearity, hence the performance advantage of the OP-41.

*Manufactured under the following U.S. patent: 4,538,115.

0P-41

The device exhibits rapid recovery from signal overload. Following saturation at the positive supply, the output recovers in only 6μ s, and from a negative overdrive in only 100ns.

The combination of low-power, low bias current, and high-gain, plus the superior CMR and PSRR performance of the OP-41, make it suitable in a wide variety of demanding applications. The device makes an excellent output amplifier for CMOS DACs. Where low-power consumption is needed in portable instrumentation, the OP-41 permits high-gain and highaccuracy amplification with good speed performance. The low and stable bias current makes it an excellent choice as a photodiode amplifier in medical applications.

A standard 741 pin-out allows existing JFET designs and lowpower bipolar designs to be upgraded by switching to the OP-41.

ABSOLUTE MAXIMUM RATINGS (Note 2)

Supply Voltage		±18V
Input Voltage (Note 1)	±18V
Output Short-C	Circuit Duration	Indefinite
Differential Inp	ut Voltage (Note 1)	±18V
Storage Temp	erature Range	65°C to +150°C
Operating Tem	perature Range	
OP-41A, B	(J)	55°C to +125°C
OP-41E, F	(J)	25°C to +85°C
OP-41G	(P,S)	
Lead Tempera	ture Range (Soldering,	60 sec.)+300°C
Junction Temp	erature	65°C to +150°C

PACKAGE TYPE	e	θ _{ic}	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SO (S)	158	43	°C/W

NOTES:

7

 For supply voltages less than ±18V, the absolute maximum input voltage is equal to the supply voltage.

Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO and P-DIP packages; Θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERIST	ICS at VS =	±15V,	$T_A = 25^{\circ}C$, unles	s ot	erwise note	d.
		the state of the s			Supplying the su	and the second se	

		\sim		QP-414	/E/		OP-418.	/F	$\neg \tau$	OP-410		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	V _{QS}	OP-41E/F/G OP-41A/B	_	200 200	250 500		400	750 1000	J _	500	2000	μ¥
Offset Current	Ios	(Note 1)		0.04	1	-	0.05	2	7 – 7	0.05	5	PA
Bias Current	1 _B	(Note 1)		3.0	5		3.5	10		3.5	20	pА
Open-Loop Voltage Gain	Avo	$R_L = 2k\Omega$ $V_O = \pm 10V$	1000	5000		500	4000		500	4000	\leq	V/mV
Output Voltage Swing	Vo	$R_L = 2k\Omega$	±12.3	±12.6		±12.0	±12.6		± 12.0	±12.6		v
Supply Current	ISY	V _O = OV	—	.75	1.0		.75	1.2	-	.75	1.2	mA
Input Voltage Range	IVR	(Note 2)	±11	+15 -11.5	_	±11	+15 -11.5		±11	+15 -11.5	_	v
Common-Mode Rejection	CMR	V _{CM} = ±11V	100	115	_	90	110		90	110	_	dB
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = \pm 10V$ to $\pm 18V$	-	5	25	and and	10	80	_	10	80	μV/V
Noise Voltage Density Referred to Input	e _n	1kHz	_	32		_	32	_		32		nV/√Hz
Short Circuit Output Current	Isc	Short Circuit to Ground	±12	+20 -18	±36	±12	+20 -18	±36	±6	+20 -18	±36	mA
Slew Rate	SR		1	1.3	-	1	1.3		1	1.3	rates	V/µs
Gain Bandwidth	GBW		_	500	-		500			500		kHz
Power Bandwidth	BWP		_	20	_	-	20			20		k Hz

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted. (Continued)

				OP-41A	/E		OP-41B	/F		OP-410	i i	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		10V Step $A_V = -1$										
Settling Time	ts	to 0.1%		10		-	10	—		10	-	μs
		to 0.01%		12	_	_	12	-		12		
0		Positive Going		0.1		—	0.1	_	-	0.1	-	
Overload Recovery		Negative Going	—	6.0	—		6.0			6.0	-	μs
Capacitive Load		$A_V = +1$	250	> 1000		950	>1000		250	>1000		25
Stability		(Note 3)	250	>1000		250	>1000		250	>1000		ρr
Open-Loop Output Resistance	Ro		_	150	_	_	150	_	_	150		Ω

NOTES:

Warmed up. V_{CM} ≈ 0
 Guaranteed by CMR test.
 Guaranteed but not tested.

ELECTRICAL CI	ARACTERISTI	CS at V _S = \pm 15V, T _A = -5	55° C/+125° C	, unless of	therwise n	oted.			
	$) \land$			OP-41A		OP-41B			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	Vos	4/		400	1000	-	600	2000	μV
Temperature Coefficient of Input Offset Voltage	TOVOS	$\mathbb{D}(\mathbb{O})$)//-	2.5	5]	3.5	10	μ\/°C
Offset Current	los	(Note 1)	777-	40	1000	7	50	2000	pA
Bias Current	1 _B	(Note 1)		4000	7500		4500	15000	рА
Open-Loop Voltage Gain	Avo	$R_L = 2k\Omega$ $V_O = \pm 10V$	1000	5009		500	3000		Z ^{V/mV}
Output Voltage Swing	vo	$R_L = 2k\Omega$	±12.0	±12.5	-	±11.5	±12.5		
Supply Current	I _{SY}	V _O = 0V		.75	1.2	-	.75	1.2	mA
Input Voltage Range	IVR	(Note 2)	±11	+15 -11.5	-	±11	+15 -11.5	—	v
Common-Mode Rejection	CMR	V _{CM} = ±11V	95	105		85	100	_	dB
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = \pm 10$ V to ± 18 V	_	5	40	-	10	100	μV/V
Short Circuit Output Current	I _{sc}	Short Circuit to Ground	±6	+12 -17	±36	±6	+ 12 - 17	±36	mA
Slew Rate	SR		1	1.3	—	1	1.3		V/µs
Gain Bandwidth	GBW			500			500	_	kHz
Power Bandwidth	BWp			20	—		20	-	кНz
Capacitive Load Stability		A _V = +1 (Note 3)	100	>1000	—	100	>1000		pF

NOTES:

Warmed up. V_{CM} = 0
 Guaranteed by CMR test.
 Guaranteed but not tested.

ELECTRICAL CHARACTERISTICS at $V_s = \pm 15V$, $T_A = -25^{\circ}C/+85^{\circ}C$ for E/F grades and $-40^{\circ}C/+85^{\circ}C$ for G grade, unless otherwise noted.

				OP-41E			OP-41F	-		OP-410	3	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	Vos			250	750	_	500	1750		500	2500	μ٧
Temperature Coefficient of Input Offset Voltage	TCV _{OS}		_	3.5	8	_	7.5	-	-	7.5		μV/°C
Offset Current	los	(Note 1)	_	5	100		10	200		20	-	pА
Bias Current	۱ _B	(Note 1)	_	240	500	_	300	1000	_	100	500	pА
Open-Loop Voltage Gain	Avo	$R_L = 2k\Omega$ $V_O = \pm 10V$	1000	5000		500	4000	_	500	4000	_	V/mV
Output Voltage Swing	Vo	$R_L = 2k\Omega$	±12.0	±12.6		±11.5	±12.5	_	±11.5	±12.5	_	v
Supply Current	ISY	V _O = 0V	_	0.75	1.2	_	0.75	1.2	_	0.75	1.2	mA
nput Voltage Range	IVR	(Note 2)	±11	+ 15 11.5	_	±11	+15 -11.5	announced and the first down and the	±11	+15 -11.5		V
Common-Mode Rejection	CMR		95	110		85	100		85	100		dB
ower Supply Rejection Ratio	SRF	$V_{\rm S} = \pm 10V_{\rm O} \pm 18V_{\rm O}$	5-/	5	40	$\overline{\Box}$	10	100		10	100	μV/V
Short Circuit Output Current	I _{SC}	Short Circuit to Ground)) 👍	+ 16 - 18	±36	1 6	+ 16 -18	±36	±6	+20 ~18	±36	mA
Slew Rate	SR			1.3	F	1	1.3	[-	-1	1.3	~	V/µs
Gain Bandwidth	GBW		_	500	/-/	[-	500	-	7 -	500	$\neg \neg$	KH2
Power Bandwidth	BWP		_	20	L		7 20	[-		20	Ŧ	kHz
Capacitive Load Stability		A _V = +1 (Note 3)	100	>1000	-	100	>1000		100	>1000	-	pF

3. Guaranteed but not tested.

BURN-IN CIRCUIT

DICE CHARACTERISTICS

		2 0.103 × 0.074 2.62 × 1.88mm, 4	inch, 7622 sq. mils 4.92 sq. mm)	 OFFSET VOLTAGE NULL INVERTING INPUT NONINVERTING INPUT NEGATIVE SUPPLY OFFSET VOLTAGE NULL AMPLIFIER OUTPUT POSITIVE SUPPLY 	
/ (WAFER TEST LIMITS	at $V_{\rm S} = \pm 15V, T$	$_{A} = 25^{\circ}$ C, unless otherwise noted.		
$\langle \rangle$	PARAMETER	бумвоц	CONDITIONS	OP-41N LIMIT	UNITS
	Offset Voltage	Man		1000	μV MAX
	Bias Current	IB	(bote 1)	20	pA MAX
	Open-Loop Voltage Gain	Avo	$R_{L} = 2k\Omega$	500	V/mV MIN
	Output Voltage Swing	Vo	$R_L = 2k\Omega$	±12	V MIN
	Supply Current	I _{SY}	V _O = 0V		TIAMAX
	Input Voltage Range	IVR	(Note 2)	+11	V MIN
	Common-Mode Rejection	CMR	V _{CM} = ±11V	90	dB MIN
	Power Supply Rejection Ratio	PSRR	$V_{\rm S} = \pm 10V$ to $\pm 18V$	80	WW MAX
	Short Circuit Output Current	Isc	Short Circuit to Ground	±6 ±36	mA MIN mA MAX
	Slew Rate	SR		1	V/µs MIN
	Capacitive Load Stability	A _V = +1	(Note 3)	250	pF MIN

NOTES:

1. V_{CM} = 0

2. Guaranteed by CMR test.

3. Guaranteed but not tested.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

-6-

TYPICAL PERFORMANCE CHARACTERISTICS

OFFSET VOLTAGE ADJUSTMENT

Offset voltage is adjusted by a potentiometer of $10k\Omega$ to $100k\Omega$ resistance. This potentiometer should be connected between pins 1 and 5 with the wiper connected to the V- supply. (See Figure 1.) Nulling V_{OS} will change TCV_{OS} by no more than 5μ V/°C per millivolt of V_{OS} change.

FIGURE 1: INPUT OFFSET VOLTAGE NULLING

TYPICAL AC PERFORMANCE CHARACTERISTICS

Figure 2 shows the overload recovery time after the output saturates at each supply. A high degree of slew-rate symmetry is maintained even during severe input overload. The photo also shows the well controlled linear characteristics of the amplifier and freedom from oscillations. The OP-41's symmetry greatly reduces the generation of large DC components in the output when the amplifier is overdriven. This significantly reduces system recovery time after an overload.

Figure 3 shows the unity-gain small-signal transient response of the OP-41. Note the clean symmetrical waveform.

Figure 4 illustrates the high degree of stability even when loaded with 1000pF at unity-gain. Heavy capacitive loading will cause stability problems with many amplifiers.

Figure 5 illustrates the use of the OP-41 in a high sensitivity, wide-dynamic-range light detector. This circuit will produce an output voltage proportional to the light input over a 60dB range.

FIGURE 2: OVERLOAD RECOVERY TIME AT Av = 10

FIGURE 3: SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 4: SMALL-SIGNAL TRANSIENT RESPONSE WITH 1000pF LOAD

CMR MEASUREMENT METHODS

Two separate methods are used to measure the CMR. The first method is used over the range of 10Hz to 20kHz. This method grounds the input circuitry and applies the common-mode signal to the remainder of the op amp, Figure 6.

The AMP-01 eliminates loading on the output stage. This assures that the OP-41 output is not required to deliver current into the feedback circuit. The effects of the DUT open-loop gain changing with frequency are therefore significantly reduced. The circuit does not require tight resistor matching. DC data sheet limits may be verified using this method. Circuit accuracy is dependent on the high CMR of the AMP-01.

FIGURE 6: CIRCUIT USED TO MEASURE CMR FROM 10Hz TO 20kHz

An alternate circuit may be used to make high-frequency measurements from 2kHz to 500kHz, Figure 7. The 2kHz to 20kHz data overtap can be used to verify the accuracy of the respective test methods.

This method drives the input stage with the test signal and requires a n accurate ratio of resistors. R4/R3 = R1/R2To measure CMR to 100dB equires ratio matching to better than 10ppm. For this reason, it is not practical to u se the secon method at low frequencies where SMR is g reater than 80-100dE The DUT output is normally connected directly to R4 which may cause problems. If the DUT is not buffered with a broadband low-output-impedance amplifier, the frequency-dependent output impedance of the DUT, in series with R4, rapidly unbalances the resistor ratios. This causes frequency dependent errors. The OP-27 provides good performance over the

FIGURE 7: CIRCUIT USED TO MEASURE CMR FROM 2kHz TO 500kHz

GUARDING AND SHIELDING

range of frequencies used.

In applications where the input is at high impedance, careful shielding is required to prevent hum pickup from power line sources or detection of RF from radio stations and nearby radar transmitters. Loss of accuracy can also occur from surface and bulk leakages in printed circuit boards. Both of these conditions can be avoided by the following methods.

Hum and RF pickup are eliminated or reduced by keeping all high impedance leads, including feedback resistor leads, inside shielded enclosures. In addition to shielding, power supply lines should be bypassed where they pass through the shielding. This will prevent noise from being retransmitted from the power supply lines inside the shielded enclosure.

Noise can also be created by the flexing of coax cable. These signals can be caused by mechanical vibrations inside or outside the shielding. Prevention consists of securely supporting all high-impedance shielded lines to prevent motion.

Printed circuit board leakage currents can easily exceed the OP-41 bias currents or the incoming signal. Leakage currents can be minimized by using Teflon insulators to support wires instead of using PC traces. An alternate method is guarding the high impedance traces. When the OP-41 is in the inverting mode, the signal traces should have grounded guard traces on both sides, Figure 8. The opposite side of the board should be used as a ground plane and shield, if not otherwise used. A ground plane is implemented by leaving copper on all areas that are not being used for signal or power conduction. Ground connection should be made to all areas of isolated copper. In the noninverting configuration, the OP-41's output signal or a portion of it should be used to drive the guard traces, Figure 9. When the guard drive voltage is equal to the input signal, leakage currents will be effectively eliminated.

FIGURE 9: VERY HIGH IMPEDANCE NONINVERTING AMPLIFIER

The High Q Notch Filter benefits from the low bias current and high input impedance of the OP-41, Figure 10. These features enable small value capacitors and large resistors to be used in this 60Hz notch filter. The 5pA bias current only develops $100\mu V$ across R1 and R2.

FIGURE 10: HIGH Q NOTCH FILTER

FIGURE 11: DAC CIRCUIT USING THE OP-41

Figure 12 shows an amplifier for high-impedance ac transducers like a piezoelectric accelerometer. These sensors normally require a high-input-resistance amplifier. The OP-41 can provide input resistance in the range of $10^{12}\Omega$, however, a dc return for bias current is needed. To maintain a high R_{IN}, large value resistors above 22M Ω are often required. These may not be practicable.

Using the circuit in Figure 12, input resistances that are orders of magnitude greater than the values of the dc return resistors can be obtained. This is accomplished by bootstrapping the resistors to the output. With this arrangement, the lower cutoff frequency is determined more by the RC product of R1 and C1 than it is by resistor values and the equivalent capacitance of the transducer.

FIGURE 12: AMPLIFIER FOR PIEZOELECTRIC TRANSDUCERS

WIDE RANGE LOW-CURRENT AMMETER

The circuit shown in Figure 13 can measure currents from 100pA to 100μ A without the use of high value resistors. Accuracy is better than 1% over most of the range, depending upon the accuracy of the divider resistor and the input bias current of the op amp. Using the OP-41 as the input amplifier allows low end measurement down to a few pA due to the 3.5pA input bias current.

One of the requirements for a good current meter is low series voltage drop. Since the voltage across the inputs of an op amp is forced to virtually zero, it makes a good choice for the input of a current meter. Amplifier A1 is used as an inverting amplifier for the input. This ensures less than 500µV drop at any current level.

reedback around the op amp is accomplished with a transistor, rather than a registor. The op amp forces the collector surrent of Q1A to equal the input current. This causes the emitter-base voltage of Q1A to be proportional to the log of the input current. Resistors R1, R2, R3 and capacitors C1, C2 requescy compensate the log circuit since Q1A provides gain in the feedback loop.

The output of the log amplifier is taken from the emitter of Q1A to drive Q1B. Q1B anti-logs the output and drives the meter. The output of Q1B is proportional to the log of the input current scaled by a constant, which is proportional to the voltage from the divider, selected by S1. For transistors operating at different current levels, the V_{be} difference equals:

$$\Delta V_{be} = \frac{kT}{q} \ln \frac{IC2}{IC1}$$

solving for IC2

$$IC2 = IC1 e^{\left(\frac{\Delta V_{be} q}{kT}\right)}$$

Where IC1 and IC2 are the collector currents of Q1A and Q1B; Q is the charge of an electron; k is Boltzmann's constant; T is temperature in degrees Kelvin; and V_{be} is the voltage applied to the base of Q1B. If V_{be} varies as absolute temperature, the exponent will be a constant.

FIGURE 13: WIDE RANGE LOW-CURRENT AMMETER

