

High Performance Current Mode PWM Controller

GENERAL DESCRIPTION

OBGZ11 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications.

PWM switching frequency at normal operation is internally fixed and is trimmed to tight range. At no load or light load condition, the IC operates in extended 'burst mode' to minimize switching loss. Lower standby power and higher conversion efficiency is thus achieved.

VCC low startup current and low operating current contribute to a reliable power on startup and low standby design with OBGZ11.

OBGZ11 offers comprehensive protection coverage with auto-recovery including Cycle-by-Cycle current limiting (OCP), over load protection (OLP), VCC under voltage lockout (UVLO), over temperature protection (OTP), and over voltage protection (OVP). Excellent EMI performance is achieved with On-Bright proprietary frequency shuffling technique.

The tone energy at below 25KHz is minimized in the design and audio noise is eliminated during operation.

OBGZ11 is offered in SOT23-6 package.

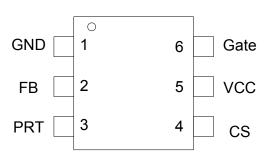
APPLICATIONS

Offline AC/DC flyback converter for

- Printer, Storage power supply
- Power Adapter

AC IN EMI Filter OBGZ11 GND GATE FB VCC PRT CS

TYPICAL APPLICATION


FEATURES

- Power on soft start reducing MOSFET Vds stress
- Frequency shuffling for EMI
- Extended burst mode control for improved efficiency and low standby power design
- Audio noise free operation
- Over Load operation with increased frequency
- Comprehensive protection coverage
 - VCC Under Voltage Lockout with hysteresis (UVLO)
 - VCC Over Voltage Protection (VCC OVP)
 - Cycle-by-cycle over current threshold setting for constant output power limiting over universal input voltage range
 - Over Load Protection (OLP) with autorecovery
 - External (if NTC resistor is connected at PRT pin)or internal Over Temperature Protection (OTP)
 - Output Over Voltage Protection(Output OVP) and the OVP triggered voltage can be adjusted by the resistor connected between auxiliary winding and PRT pin
 - Output diode short protection with autorecovery

GENERAL INFORMATION

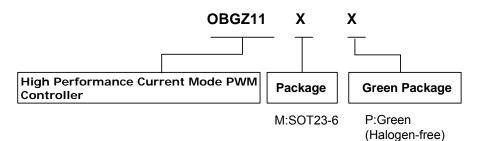
Pin Configuration

Ordering Information

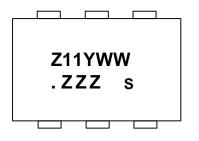
Part Number	Description			
OBGZ11MP	SOT23-6, Halogen-free in			
OBGZITIME	T&R			

Package Dissipation Rating

r dokage bissipation Rating		
Package	RθJA(℃/W)	
SOT23-6	200	


Recommended operating condition

Symbol	Parameter	Range
VCC	VCC Supply Voltage	12 to 26V

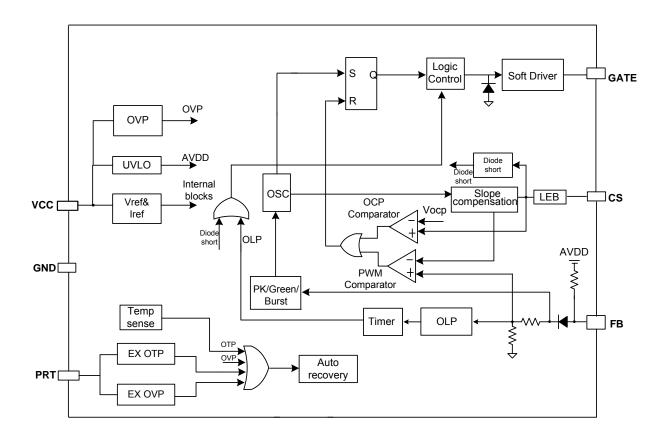

Absolute Maximum Ratings

Parameter	Value	
VCC DC Supply Voltage	V _{OVP} -1V	
FB Input Voltage	-0.3 to 7V	
CS Input Voltage	-0.3 to 7V	
PRT Input Voltage	-0.3 to 7V	
Min/Max Operating Junction Temperature TJ	-40 to 150 ℃	
Operating Ambient Temperature T_A	-40 to 85 ℃	
Min/Max Storage Temperature Tstg	-55 to 150 ℃	
Lead Temperature (Soldering, 10secs)	260 ℃	

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y:Year Code WW:Week Code(01-52) S: Internal code ZZZ: Lot code



TERMINAL ASSIGNMENTS

Pin Name	I/O	Description
GND	Р	Ground
FB	I	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and the current-sense signal at Pin CS.
PRT	I	Dual functions pin. Connecting a NTC resistor to ground for OTP detection. Connecting a resistor from Vaux can adjust OVP trigger voltage. If both OTP and OVP are needed, a diode should be connected between PRT pin and the NTC resistor.
CS	I	Current sense input
VCC	Р	Power Supply
Gate	0	Totem-pole gate driver output for power MOSFET

FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

$(T_A = 25^{\circ}C, VCC = 18V, unless otherwise noted)$

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
Supply Voltage (VD	DD)					
Istartup	VCC Start up Current	VCC=UVLO(OFF)-1V, measure leakage current into VCC		2	5	uA
I_VCC_Operation	Operation Current	VDD=18V,CS=4V, FB=3.5V,measure I(VCC)		2.5	3	mA
I_VCC_Burst	Burst Current	CS=0V,FB=0.5V, measure I(VCC)		0.55	0.75	mA
UVLO(ON)	VCC Under Voltage Lockout Enter		6.5	7.3	8.1	V
UVLO(OFF)	VCC Under Voltage Lockout Exit (Recovery)		14.7	16.2	17.7	V
Vpull-up	Pull-up PMOS active			10		V
OVP	VCC Over Voltage Protection threshold voltage	FB=3V,CS=0V. Slowly ramp VCC, until no gate switching.		28	29.5	V
Feedback Input See	ction(FB Pin)					
V _{FB} Open	V _{FB} Open Loop Voltage			5.1		V
Avcs	PWM input gain ΔVFB/ΔVCS			3.5		V/V
Maximum duty cycle	Max duty cycle @ VCC=18V,VFB=3V,VCS=0V		75	80	85	%
Vref_green	The threshold enter green mode			2.1		V
Vref_burst_H	The threshold exits burst mode			1.33		V
 Vref_burst_L	The threshold enters burst mode			1.23		V
I _{FB} _Short	FB pin short circuit current	Short FB pin to GND and measure current		0.21		mA
V _{TH} OLP	Open loop protection, FB Threshold Voltage			4.4		V
Td_OLP	Open loop protection, Debounce Time			15		ms
Z _{FB} _IN	Input Impedance			30		KΩ
Current Sense Inpu	it(CS Pin)					
SST_CS	Soft start time for CS peak			4		ms
 T_blanking	Leading edge blanking time			300		ns
Td_OC	Over Current Detection and Control Delay	From Over Current Occurs till the Gate driver output start to turn off		90		ns
V _{TH} _OC	Internal Current Limiting Threshold Voltage with zero duty cycle		0.43	0.45	0.47	V
V _{TH} _OC_Clamp	OCP CS voltage clamper			0.72		V
Td_OCP	Over Current protection			60		ms



	Output automation automatic OTD			1		
IRT	Output current for external OTP detection		92	100	108	uA
VOTP	Threshold voltage for external OTP		0.95	1	1.05	V
loutput_ovp	Current threshold for adjustable output OVP			60		uA
Td_output_ovp	Output OVP debounce time			5		Cycles
In-chip OTP						
OTP enter				150		°C
OTP exit				130		°C
Oscillator						
F _{osc}	Normal Oscillation Frequency	VDD=18V,FB=3V, CS=0V	60	65	70	KHz
Fosc_PK	Peak frequency	VDD=18V,FB=4.5V, CS=0V		130		KHz
SST_freq	Soft start time of frequency			30		ms
∆f_OSC	Frequency jittering			+/-6		%
F_shuffling	Shuffling frequency			32		Hz
∆f_Temp	Frequency Temperature Stability			1		%
∆f_VCC	Frequency Voltage Stability			1		%
F_Burst	Burst Mode Switch Frequency			25		KHz
Gate driver		•			•	
VOL	Output low level @ VDD=18V, lo=5mA				1	V
VOH	Output high level @ VCC=18V, lo=20mA		6			V
V_clamping	Output clamp voltage			11.5		V
T_r	Output rising time 1.2V ~ 10.8V @ CL=1000pF			150		ns
T_f	Output falling time 10.8V ~ 1.2V @ CL=1000pF			50		ns

CHARACTERIZATION PLOTS

VDD = 18V, TA = 25° C condition applies if not otherwise noted.

©On-Bright Electronics

Confidential

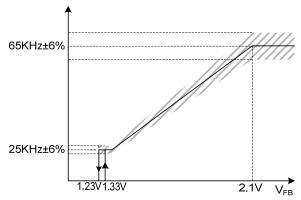
OPERATION DESCRIPTION

OBGZ11 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications. The 'extended burst mode' control greatly reduces the standby power consumption and helps the design easier to meet the international power conservation requirements.

• Startup Current and Start up Control

Startup current of OBGZ11 is designed to be very low so that VCC could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet achieve a reliable startup in application.

• Operating Current


The Operating current of OBGZ11 is low at 2.5mA (typical). Good efficiency is achieved with OBGZ11 low operation current together with the 'extended burst mode' control features.

• Soft Start

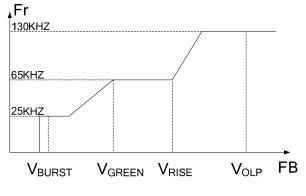
OBGZ11 features an internal 4ms (typical) soft start to soften the electrical stress occurring in the power supply during startup. It is activated during the power on sequence. As soon as VCC reaches UVLO(OFF), the CS peak voltage is gradually increased from 0.05V to the maximum level. Every restart up is followed by a soft start.

• Frequency shuffling for EMI improvement

The frequency shuffling (switching frequency modulation) is implemented in OBGZ11. The oscillation frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design.

At light load or no load condition, most of the power dissipation in a switching mode power

©On-Bright Electronics


supply is from switching loss of the MOSFET, the core loss of the transformer and the loss of the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy.

The switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below Vref_burst_L (the threshold enter burst mode) and device enters Burst Mode control. The Gate drive output switches when FB input rises back to Vref_burst_H (the threshold exit burst mode). Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend.

Oscillator Operation

During the full load power operation, OBGZ11 operates at a 65KHz (typical) fixed frequency. The efficiency and system cost is controlled at an optimal level. In over load mode, frequency is increased from 65KHz (typical) to 130KHz (typical).

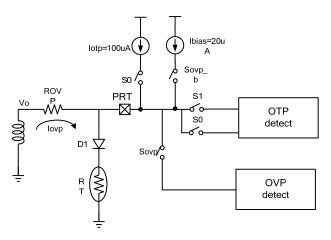
At light load levels, OBGZ11 enters the light load mode, where the output current is reduced. The switching losses are reduced by lowering the switching frequency.

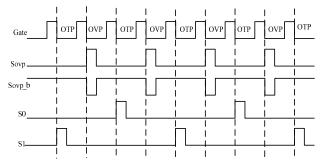
• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OBGZ11 current mode PWM control. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state due to snubber diode reverse recovery and surge gate current of power MOSFET. The current limiting comparator is disabled and cannot turn off the internal power

MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

• Internal Synchronized Slope Compensation


Built-in slope compensation circuit adds voltage ramp into the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.


• Driver

The power MOSFET is driven by a dedicated gate driver for power switch control. Too weak the gate driver strength results in higher conduction and switch loss of MOSFET while too strong gate driver strength results the compromise of EMI.

A good tradeoff is achieved through the built-in totem pole gate design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme.

• Dual Function of External OTP and Output OVP

On-Bright proprietary dual function of external OTP and output OVP provides feasible and accurate detection of external OTP through NTC resistor and output OVP. The dual function is realized through time-division technology as shown in the figure.

For external OTP detection, when switch control signal S1= "1", about 20uA (typical) current flows out from PRT pin. When switch control signal S0= "1", about 120uA (typical) current flows out from PRT pin. The PRT pin voltage difference \triangle Votp at phase S0 and S1 phase is equal to $RT \cdot ROVP$

$$\Delta V_{OTP} = \frac{RI \cdot ROVP}{ROVP + RT} \cdot 100uA$$

When \triangle Votp<1V , external OTP protection is triggered after 60 Gate cycles debounce.

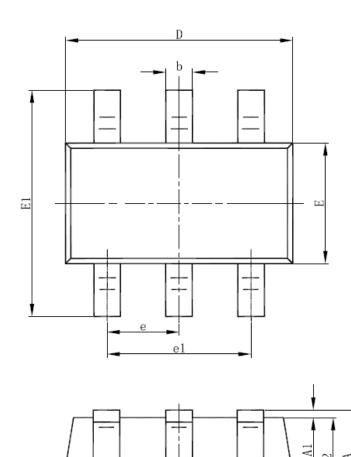
For output OVP detection, when Sovp= "1", lovp is equal to Vo/ROVP. If lovp is larger than 60uA (typical), OVP protection is triggered after 5 Gate cycles debounce. By selecting proper Rovp resistance, output OVP level can be programmed.

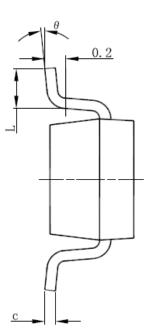
$$\frac{Vout * \frac{Naux}{Nout} - 0.15V}{Rovp} \ge 60uA$$

Vout: output voltage Nout: the secondary winding turns Naux: the auxiliary winding turns

Protection Controls

Good power supply system reliability is achieved with auto-recovery protection features including Cycle-by-Cycle current limiting (OCP), Under Voltage Lockout on VDD (UVLO), Over Temperature Protection (OTP), VCC and output Over Voltage Protection (OVP).


With On-Bright proprietary technology, the OCP is line voltage compensated to achieve constant output power limit over the universal input voltage range.


At overload condition when FB input voltage exceeds power limit threshold value for more than Td_OLP, control circuit reacts to shut down the converter. It restarts when VDD voltage drops below UVLO limit.

PACKAGE MECHANICAL DATA

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.000	1.450	0.039	0.057
A1	0.000	0.150	0.000	0.006
A2	0.900	1.300	0.035	0.051
b	0.300	0.500	0.012	0.020
С	0.080	0.220	0.003	0.009
D	2.800	3.020	0.110	0.119
E	1.500	1.726	0.059	0.068
E1	2.600	3.000	0.102	0.118
е	0.950 (l	BSC)	0.037 (BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

2

©On-Bright Electronics

Confidential

Revision History

File name	Date	Update information
OB_DOC_DS_GZ11A0	2016/08/31	First issue

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.