MOSFET - Power, N-Channel, Shielded Gate 80 V, 8.3 m Ω , 61 A # **NVTFS8D1N08H** #### **Features** - Small Footprint (3x3 mm) for Compact Design - Low R_{DS(on)} to Minimize Conduction Losses - Low Q_G and Capacitance to Minimize Driver Losses - NVTFWS8D1N08H Wettable Flank Option for Enhanced Optical Inspection - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant # MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |--|-----------------------|----------------------------|-----------------------------------|----------------|------| | Drain-to-Source Voltage | | | V _{DSS} | 80 | ٧ | | Gate-to-Source Voltage | e | | V_{GS} | ±20 | ٧ | | Continuous Drain | Steady
State | T _C = 25°C | I _D | 61 | Α | | Current R _{θJC} (Notes 1, 3) | State | T _C = 100°C | | 43 | | | Power Dissipation | Steady | T _C = 25°C | P_{D} | 75 | W | | R _{θJC} (Note 1) | State | T _C = 100°C | | 38 | | | Continuous Drain
Current R _{0.IA} | Steady
State | T _A = 25°C | I _D | 14 | Α | | (Notes 1, 2, 3) | T _A = 25°C | | 1 | 10 | | | Power Dissipation | Steady | T _A = 25°C | P_{D} | 3.8 | W | | R _{θJA} (Notes 1, 2) | State | T _A = 25°C | | 1.9 | | | Pulsed Drain Current | T _A = 25° | C, t _p = 100 μs | I _{DM} | 216 | Α | | Operating Junction and Storage Temperature Range | | | T _J , T _{stg} | -55 to
+175 | °C | | Source Current (Body Diode) | | | I _S | 61 | Α | | Single Pulse Drain-to-Source Avalanche Energy | | | E _{AS} | 113 | mJ | | Lead Temperature for S (1/8" from case for 10 s) | | urposes | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Surface–mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | 80 V | 8.3 mΩ @ 10 V | 61 A | #### N-Channel WDFN8 (3.3x3.3, 0.65 P) CASE 511DY WDFNW8 (3.3x3.3, 0.65 P) CASE 515AP #### MARKING DIAGRAMS 1V08 AYWW 1V08/1W08 = Specific Device Code A = Assembly Location Y = Year WW = Work Week ■ Pb-Free Package (Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information on page 5 of this data sheet. # THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|----------------|-------|------| | Junction-to-Case - Steady State (Note 4) | $R_{ heta JC}$ | 2 | °C/W | | Junction-to-Ambient - Steady State (Note 4) | $R_{ heta JA}$ | 39 | | ^{4.} Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter Parameter | Symbol | Test Condi | tion | Min | Тур | Max | Unit | |--|-------------------------------------|--|----------------------------|-----|------|------|-------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 250 μ | A | 80 | _ | _ | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} / | | | - | 52 | - | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V,
V _{DS} = 64 V | T _J = 25°C | - | _ | 10 | μΑ | | | | V _{DS} = 64 V | T _J = 125°C | - | - | 250 | | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$ | V | - | - | 100 | nA | | ON CHARACTERISTICS (Note 5) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D} = 270$ | μΑ | 2.0 | 2.8 | 4.0 | V | | Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | - | -7.2 | _ | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V, I _D = 16 A | ١ | _ | 6.4 | 8.3 | mΩ | | | | V _{GS} = 6 V, I _D = 13 A | | ı | 9 | 12.6 | | | CHARGES, CAPACITANCES & GATE RES | ISTANCE | | | | | | | | Input Capacitance | C _{ISS} | $V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$ | V, f = 1 MHz | _ | 1450 | _ | pF | | Output Capacitance | C _{OSS} | | | _ | 776 | _ | | | Reverse Transfer Capacitance | C _{RSS} | | | - | 46 | _ | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 6 V, V _{DS} = 40 | V; I _D = 16 A | _ | 9 | - | nC | | | | $V_{GS} = 10 \text{ V}, V_{DS} = 40$ |) V; I _D = 16 A | - | 23 | - |] | | Threshold Gate Charge | Q _{G(TH)} | $V_{GS} = 10 \text{ V}, V_{DS} = 40$ |) V; I _D = 16 A | _ | 9 | - | nC | | Gate-to-Source Charge | Q_{GS} | | | - | 7.2 | - |] | | Gate-to-Drain Charge | Q_{GD} | | | _ | 4.2 | - | | | Plateau Voltage | V_{GP} | | | ı | 4.6 | - | V | | SWITCHING CHARACTERISTICS (Note 6) | | | | | | | | | Turn-On Delay Time | t _{d(ON)} | $V_{GS} = 10 \text{ V}, V_{DS} = 40$ |) V, | - | 9.1 | _ | ns | | Rise Time | t _r | $I_D = 16 \text{ A}, R_G = 2.5 \Omega$ | 2 | - | 13 | _ |] | | Turn-Off Delay Time | t _{d(OFF)} | | | - | 23.8 | _ | | | Fall Time | t _f | | | 1 | 2.5 | _ | | | DRAIN-SOURCE DIODE CHARACTERIST | ics | | | | | | | | Source-to-Drain Diode Forward Voltage | V_{SD} | V _{GS} = 0 V, I _S = 16 A | | - | 0.81 | 1.2 | V | | Reverse Recovery Time | t _{RR} | I _F = 16 A, di/dt = 100 | A/μs | - | 40.5 | - | ns | | Reverse Recovery Charge | Q _{RR} | | | - | 46.8 | - | nC | | Charge Time | ta | | _ | ı | 22.6 | - | ns | | Discharge Time | t _b | | | _ | 17.9 | - | ns | | | | | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. ^{6.} Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation Figure 8. Gate-to-Source Voltage vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Drain Current vs. Time in Avalanche # **TYPICAL CHARACTERISTICS** Figure 13. Transient Thermal Impedance # **DEVICE ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |------------------|---------|--------------------------------------|-----------------------| | NVTFS8D1N08HTAG | 1V08 | WDFN8
(Pb-Free) | 1500 / Tape & Reel | | NVTFWS8D1N08HTAG | 1W08 | WDFNW8
(Pb-Free, Wettable Flanks) | 1500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### WDFN8 3.3x3.3, 0.65P CASE 511DY ISSUE A **DATE 21 AUG 2018** - 1. CONTROLLING DIMENSION: MILLIMETERS - 2. DIMENSIONS D1 & E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS. | | 3. | 46 | - | |----------------------------|-------|--------|------------------| | <u> </u> | 8 2.3 | 88 — 5 | | | 0.78 (4X) | | | | | 1 1 1 1 1 1 1 1 1 1 | | | 2.51 | | | | | 4.10 | | 0.57 | | | | | 0.60 (3. | x) 1 | | .00
0.43 (8X) | RECOMMENDED LAND PATTERN # **GENERIC MARKING DIAGRAM*** XXXX **AYWW** XXXX = Specific Device Code = Assembly Location = Year Code WW = Work Week Code | DIM | MILLIMETERS | | | | |-------|-------------|--------|------|--| | ווועו | MIN | NOM | MAX | | | Α | 0.70 | 0.75 | 0.80 | | | A1 | 0.00 | ı | 0.05 | | | b | 0.23 | 0.33 | 0.43 | | | С | 0.15 | 0.20 | 0.25 | | | О | 3.20 | 3.30 | 3.40 | | | D1 | 2.95 | 3.13 | 3.30 | | | D2 | 1.98 | 2.20 | 2.40 | | | Е | 3.20 | 3.30 | 3.40 | | | E1 | 2.80 | 3.00 | 3.15 | | | E2 | 1.40 | 1.60 | 1.80 | | | E3 | 0.15 | 0.25 | 0.40 | | | е | 0 | .65 BS | С | | | G | 0.30 | 0.43 | 0.55 | | | G1 | 0.25 | 0.35 | 0.45 | | | K | 0.55 | 0.75 | 0.95 | | | L | 0.35 | 0.52 | 0.65 | | | L1 | 0.06 | 0.15 | 0.30 | | | М | 1.35 | 1.50 | 1.60 | | | Φ | 0 | - | 12 | | *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON90827G | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|----------------------|---|-------------|--| | DESCRIPTION: | WDFN8 3.3x3.3, 0.65P | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. PIN TINE // 0.10 C c 0.10 C REFERENCE #### WDFNW8 3.30x3.30x0.75, 0.65P CASE 515AP # **ISSUE A** #### **DATE 07 NOV 2023** A E1 В - DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. - ALL DIMENSION ARE IN MILLIMETERS - DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. - FULL-CUT u8FL FUSED WF. | MI | LLIMETER | 25 | |----------|--|------| | MIN. | N□M. | MAX. | | 0.70 | 0.75 | 0.80 | | 0.00 | | 0.05 | | 0.23 | 0.33 | 0.43 | | 0.15 | 0.20 | 0.25 | | 3.20 | 3.30 | 3.40 | | 2.95 | 3.13 | 3.30 | | 1.98 | 2.20 | 2.40 | | 3.20 | 3.30 | 3.40 | | 2.80 | 3.00 | 3.15 | | 1.40 | 1.60 | 1.80 | | 1.35 | 1.50 | 1.60 | | 0.15 | 0.25 | 0.40 | | | 0.65 BS | С | | 0.30 | 0.43 | 0.55 | | 0.25 | 0.35 | 0.45 | | 0.55 | 0.75 | 0.95 | | 0.35 | 0.52 | 0.65 | | 0.06 | 0.15 | 0.30 | | 0.25 BSC | | | | | MIN. 0.70 0.00 0.23 0.15 3.20 2.95 1.98 3.20 2.80 1.40 1.35 0.15 0.30 0.25 0.55 | 0.70 | 2 DETAIL A - TOP VIEW SEATING PLANE SIDE VIEW # RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR PO-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. # **GENERIC MARKING DIAGRAM*** XXXX = Specific Device Code = Assembly Location = Year = Work Week WW = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. (Note: Microdot may be in either location) | (trade into out into out in out is in out is in out is in out in out is in out | | | | | |---|------------------------|--|-------------|--| | DOCUMENT NUMBER: | 98AON24557H | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | DESCRIPTION: | WDFNW8 3.30x3.30x0.75, | 0.65P | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales