N-Channel Power MOSFET 100 V, 32 A, 37 m Ω

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

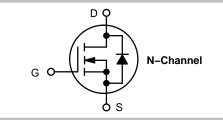
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltage	ge – Conti	nuous	V _{GS}	±20	V
Continuous Drain	Steady	$T_C = 25^{\circ}C$	I _D	32	Α
Current R _{θJC}	State	T _C = 100°C		22	
Power Dissipation $R_{\theta JC}$	Steady State T _C = 25°C		P _D	100	W
Pulsed Drain Current	t _p	= 10 μs	I _{DM}	117	Α
Operating and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	32	Α
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 32 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	154	mJ
Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

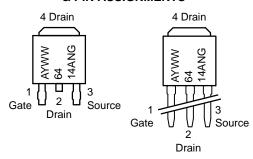
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	1.5	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	37	


^{1.} Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [1 oz] including traces).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
100 V	37 mΩ @ 10 V	32 A

MARKING DIAGRAM & PIN ASSIGNMENTS

= Assembly Location*

= Year WW = Work Week 6414AN = Device Code = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient Ibss V _{GS} = 0 V, V _{DS} = 100 V T _J = 25°C 1.0 μA	OFF CHARACTERISTICS		•				•	
Temperature Coefficient C	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Section Table T	•	V _{(BR)DSS} /T _J				107		mV/°C
Sate-to-Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V	Zero Gate Voltage Drain Current	I _{DSS}	VGS = 0 V.	T _J = 25°C			1.0	μΑ
Concentrate Concentration Concentratio			$V_{DS} = 100 \text{ V}$	T _J = 125°C			100	
Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 250 μA 2.0 4.0 V Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J 8.3 mV/FC mV/FC Drain-to-Source On-Resistance R _{DS} (on) V _{GS} = 10 V, I _D = 32 A 30 37 mΩ Forward Transconductance gFS V _{GS} = 5.0 V, I _D = 10 A 18 S CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 5.0 V, I _D = 10 A 18 S Output Capacitance C _{ISS} V _{GS} = 5.0 V, I _D = 10 A 18 S P Output Capacitance C _{ISS} V _{GS} = 5.0 V, I _D = 10 A 18 S P Output Capacitance C _{ISS} V _{GS} = 0 V, I _D = 32 A 1450 P P Output Capacitance C _{ISS} V _{GS} = 0 V, I _D = 25 V 230 P P Output Capacitance C _{ISS} V _{GS} = 10 V, V _{DS} = 25 V 230 Inc	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
Negative Threshold Temperature Coefficient VGS(TH)/TJ	ON CHARACTERISTICS (Note 3)	•		•		•	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	250 μΑ	2.0		4.0	V
Forward Transconductance gFS V _{GS} = 5.0 V, I _D = 10 A	•					8.3		mV/°C
CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 1450 PF Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 230 PF Reverse Transfer Capacitance C_{RSS} 95 95 PF Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}$ 40 nC Threshold Gate Charge Q_{GS} $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}$ 8.0 1.7 Gate—to—Drain Charge Q_{GS} $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}$ 8.0 20 Plateau Voltage $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}, I_{D} = 32 $	Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= 32 A		30	37	mΩ
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Total Gate Charge} & Q_{GS} \\ \hline \text{Gate—to—Drain Charge} & Q_{GS} \\ \hline \text{Plateau Voltage} & V_{GP} \\ \hline \hline \text{SWITCHING CHARACTERISTICS (Note 4)} \\ \hline \text{Turn—On Delay Time} & t_{f} \\ \hline \text{Forward Diode Voltage} & V_{SD} \\ \hline \text{Reverse Recovery Time} & t_{RR} \\ \hline \text{Charge Time} & T_{a} \\ \hline \text{Discharge Time} & T_{a} \\ \hline \text{Discharge Time} & T_{b} \\ \hline \end{array} \begin{array}{c} \textbf{1450} & \textbf{95} \\ \textbf{230} & \textbf{95} \\ \textbf{240} & \textbf{1.7} \\ \textbf{240} & \textbf{1.7} \\ \textbf{240} & \textbf{1.7} \\ \textbf{20} & \textbf{20} \\ \textbf{20} & \textbf{95} \\ \textbf{20} & \textbf{95} \\ \textbf{20} & \textbf{95} \\ \textbf{20} & \textbf{20} \\ $	Forward Transconductance	gFS	$V_{GS} = 5.0 \text{ V}, I_{D} = 0.0 \text{ V}$	= 10 A		18		S
Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 230 Reverse Transfer Capacitance C_{RSS} 95 Total Gate Charge $Q_{G(TOT)}$ 40 nC Threshold Gate Charge $Q_{G(TH)}$ 1.7 40 nC Gate—to—Source Charge Q_{GS} 1.7 8.0 1.7 20 Plateau Voltage V_{GP} 5.9 V 20 V Gate Resistance R_G 1.9 Ω Ω SWITCHING CHARACTERISTICS (Note 4) Turn—On Delay Time $t_{d(off)}$ $V_{GS} = 10 \text{ V}, V_{DD} = 80 \text{ V}, I_{DD} = 80 \text{ V},$	CHARGES, CAPACITANCES AND GAT	TE RESISTANO	CE	-				
	Input Capacitance	C _{ISS}				1450		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz	, V _{DS} = 25 V		230		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}		•		95		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				40		nC
Plateau Voltage V _{GP} S.9 V	Threshold Gate Charge	Q _{G(TH)}				1.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 80$	V, I _D = 32 A		8.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}		•		20		
	Plateau Voltage	V_{GP}		•		5.9		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_{G}				1.9		Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Not	e 4)		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}				11		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	V _{GS} = 10 V, V _{DD}	= 80 V,		52		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D = 32 \text{ A}, R_G =$	6.1 Ω		38		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f				48		
$V_{GS} = 0 \text{ V, } I_{S} = 32 \text{ A} \\ T_{J} = 125 ^{\circ}\text{C} \\ 0.76 \\ \text{Reverse Recovery Time} \\ \text{Charge Time} \\ T_{a} \\ \text{Discharge Time} \\ T_{b} \\ V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/μs}, \\ I_{S} = 32 \text{ A} \\ 16 \\ \text{Is} \\ \text{A} \\ \text{A} \\ \text{B} \\ \text{Charge Time} \\ Charge $	DRAIN-SOURCE DIODE CHARACTER	RISTICS				•	•	
Reverse Recovery Time t_{RR} $V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A/}\mu\text{s,}$ 16 16 $10 \text{ Discharge Time}$ $10 \text{ A/}\mu\text{s}$	Forward Diode Voltage	V_{SD}	V 0 \/ I 22 A			0.87	1.2	V
Charge Time T_a $V_{GS} = 0 \text{ V, dI}_S/\text{dt} = 100 \text{ A/}\mu\text{s,}$ $I_S = 32 \text{ A}$ $I_S = 32 \text{ A}$ $I_S = 32 \text{ A}$						0.76		
Discharge Time T_b $I_S = 32 \text{ A}$ I_6	Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dl}_{S}/dt = 100 \text{ A/}\mu\text{s,}$			68		ns
Discharge Time T _b I _S = 32 A 16	Charge Time	Ta				51		
Reverse Recovery Charge Q _{RR} 195 nC	Discharge Time	T _b				16		
	Reverse Recovery Charge	Q_{RR}				195		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

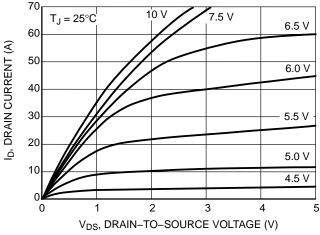


Figure 1. On-Region Characteristics

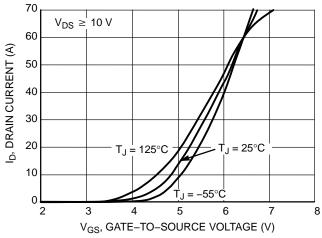


Figure 2. Transfer Characteristics

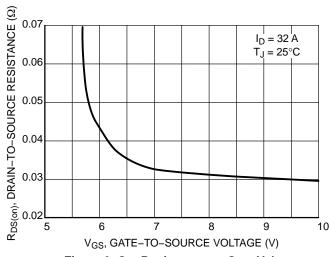


Figure 3. On-Region versus Gate Voltage



Figure 4. On-Resistance versus Drain Current and Gate Voltage

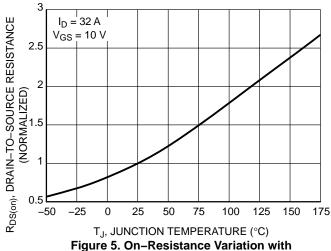


Figure 5. On–Resistance Variation with Temperature

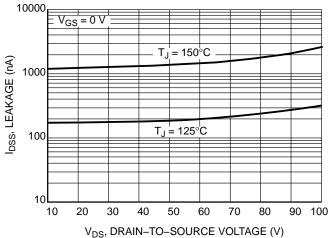
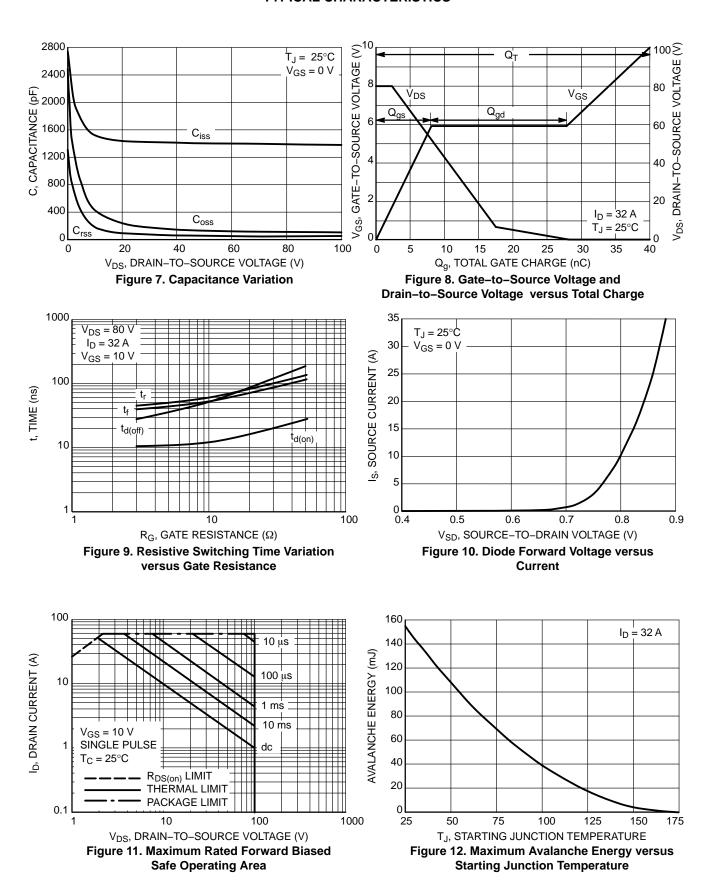



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

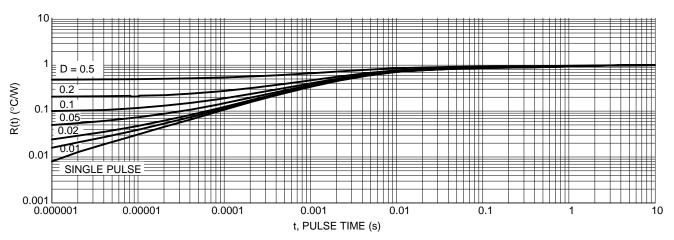
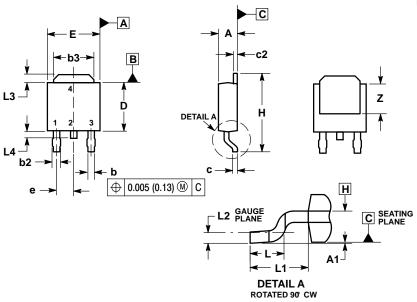


Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping†
NTD6414ANT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD6414AN-1G	IPAK (Pb-Free)	75 Units / Rail
NVD6414ANT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

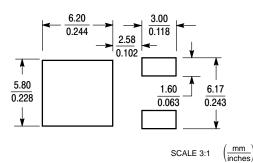

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

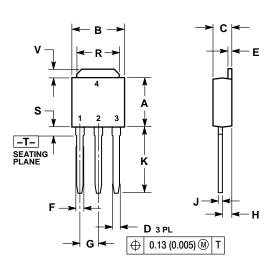
CASE 369AA **ISSUE B**

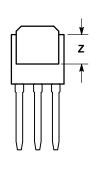


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- CONTROLLING DIMENSION: INCHES.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020	0.020 BSC		BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*



^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK CASE 369D **ISSUE C**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
7	0.155		3 93		

STYLE 2:

PIN 1. GATE

- 2. DRAIN
- SOURCE
- 3. 4. DRAIN

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative