EEPROM Serial 128-Kb I²C Automotive Grade 1 in Wettable Flank UDFN Package

Description

The NV24C128WF is a EEPROM Serial 128-Kb I2C Automotive Grade 1, internally organized as 16,384 words of 8 bits each.

It features a 64-byte page write buffer and supports both the Standard (100 kHz), Fast (400 kHz) and Fast-Plus (1 MHz) I²C protocol.

Write operations can be inhibited by taking the WP pin High (this protects the entire memory).

On-Chip ECC (Error Correction Code) makes the device suitable for high reliability applications.

Features

- Automotive AEC-Q100 Grade 1 (-40°C to +125°C) Qualified
- Supports Standard, Fast and Fast-Plus I²C Protocol
- 2.5 V to 5.5 V Supply Voltage Range
- 64–Byte Page Write Buffer
- Hardware Write Protection for Entire Memory
- Schmitt Triggers and Noise Suppression Filters on I²C Bus Inputs (SCL and SDA)
- Low Power CMOS Technology
- 1,000,000 Program/Erase Cycles
- 100 Year Data Retention
- UDFN8 2 x 3 mm Wettable Flank Package
- This Device is Pb-Free, Halogen Free/BFR Free and RoHS Compliant*

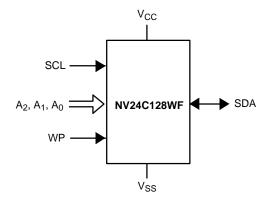
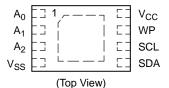


Figure 1. Functional Symbol

ON Semiconductor®

www.onsemi.com


MUW3 SUFFIX CASE 517DH

C7W = Specific Device Code = Assembly Location А WL = Wafer Lot = Year Y W

- = Work Week
- = Pb-Free Package

PIN CONFIGURATION

For the location of Pin 1, please consult the corresponding package drawing.

PIN FUNCTION

Pin Name	Function		
A ₀ , A ₁ , A ₂	Device Address Inputs		
SDA	Serial Data Input/Output		
SCL	Serial Clock Input		
WP	Write Protect Input		
V _{CC}	Power Supply		
V _{SS}	Ground		

ORDERING INFORMATION

* For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature	-65 to +150	°C
Voltage on Any Pin with Respect to Ground (Note 1)	–0.5 to +6.5	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 The DC input voltage on any pin should not be lower than -0.5 V or higher than V_{CC} + 0.5 V. During transitions, the voltage on any pin may undershoot to no less than -1.5 V or overshoot to no more than V_{CC} + 1.5 V, for periods of less than 20 ns.

Table 2. RELIABILITY CHARACTERISTICS (Note 2)

Symbol	Parameter	Min	Units
N _{END} (Notes 3, 4)	Endurance	1,000,000	Program / Erase Cycles
T _{DR}	Data Retention	100	Years

2. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC–Q100 and JEDEC test methods.

3. Page Mode, $V_{CC} = 5 V$, $25^{\circ}C$

4. This device uses ECC (Error Correction Code) logic with 6 ECC bits to correct one bit error in 4 data bytes. Therefore, when a single byte has to be written, 4 bytes (including the ECC bits) are re-programmed. It is recommended to write by multiple of 4 bytes in order to benefit from the maximum number of write cycles.

Table 3. D.C. OPERATING CHARACTERISTICS (V_{CC} = 2.5 V to 5.5 V, T_A = -40°C to +125°C, unless otherwise specified.)

Symbol	Parameter	Test Condit	Min	Max	Units	
I _{CCR}	Read Current	Read, f _{SCL} = 400 kHz/1 MHz		1	mA	
I _{CCW}	Write Current			3	mA	
I _{SB}	Standby Current	All I/O Pins at GND or V _{CC} $T_A = -40^{\circ}C$ to +125°C			5	μΑ
١L	I/O Pin Leakage	Pin at GND or V _{CC} $T_A = -40^{\circ}C$ to +125°C			2	μΑ
VIL	Input Low Voltage			-0.5	0.3 V _{CC}	V
V _{IH}	Input High Voltage		0.7 V _{CC}	V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage	I _{OL} = 3.0 mA		0.4	V	

Table 4. PIN IMPEDANCE CHARACTERISTICS (V_{CC} = 2.5 V to 5.5 V, T_A = -40°C to +125°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Max	Units
C _{IN} (Note 5)	SDA I/O Pin Capacitance	V _{IN} = 0 V	8	pF
C _{IN} (Note 5)	Input Capacitance (other pins)	V _{IN} = 0 V	6	pF
I _{WP} , I _A (Note 6) WP Input Current, Address Input		$V_{IN} < V_{IH}, V_{CC} = 5.5 V$	75	μΑ
	Current (A_0 , A_1 , A_2)	$V_{IN} < V_{IH}, V_{CC} = 3.3 V$	50	
		V _{IN} > V _{IH}	2	

5. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC–Q100 and JEDEC test methods.

6. When not driven, the WP, A₀, A₁, A₂ pins are pulled down to GND internally. For improved noise immunity, the internal pull–down is relatively strong; therefore the external driver must be able to supply the pull–down current when attempting to drive the input HIGH. To conserve power, as the input level exceeds the trip point of the CMOS input buffer (~ 0.5 x V_{CC}), the strong pull–down reverts to a weak current source.

		Standard		Fast		Fast-Plus		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
F _{SCL}	Clock Frequency		100		400		1,000	kHz
t _{HD:STA}	START Condition Hold Time	4		0.6		0.25		μs
t _{LOW}	Low Period of SCL Clock	4.7		1.3		0.45		μs
t _{HIGH}	High Period of SCL Clock	4		0.6		0.40		μs
t _{SU:STA}	START Condition Setup Time	4.7		0.6		0.25		μs
t _{HD:DAT}	Data In Hold Time	0		0		0		μs
t _{SU:DAT}	Data In Setup Time	250		100		50		ns
t _R (Note 8)	SDA and SCL Rise Time		1,000		300		100	ns
t _F (Note 8)	SDA and SCL Fall Time		300		300		100	ns
t _{SU:STO}	STOP Condition Setup Time	4		0.6		0.25		μs
t _{BUF}	Bus Free Time Between STOP and START	4.7		1.3		0.5		μs
t _{AA}	SCL Low to Data Out Valid		3.5		0.9		0.40	μs
t _{DH}	Data Out Hold Time	100		100		50		ns
T _i (Note 8)	Noise Pulse Filtered at SCL and SDA Inputs		100		100		50	ns
t _{SU:WP}	WP Setup Time	0		0		0		μs
t _{HD:WP}	WP Hold Time	2.5		2.5	1	1		μs
t _{WR}	Write Cycle Time		5		5		5	ms
t _{PU} (Notes 8, 9)	Power-up to Ready Mode		1		1	0.1	1	ms

Table 5. A.C. CHARACTERISTICS ($V_{CC} = 2.5 \text{ V}$ to 5.5 V, $T_A = -40^{\circ}\text{C}$ to +125°C) (Note 7)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Test conditions according to "A.C. Test Conditions" table.

8. Tested initially and after a design or process change that affects this parameter. 9. t_{PU} is the delay between the time V_{CC} is stable and the device is ready to accept commands.

Table 6. A.C. TEST CONDITIONS

Input Levels	0.2 x V _{CC} to 0.8 x V _{CC}
Input Rise and Fall Times	$\leq 50 \text{ ns}$
Input Reference Levels	0.3 x V _{CC} , 0.7 x V _{CC}
Output Reference Levels	0.5 x V _{CC}
Output Load	Current Source: I_{OL} = 3 mA; C_L = 100 pF

Power-On Reset (POR)

The NV24C128WF incorporates Power–On Reset (POR) circuitry which protects the device against powering up in the wrong state.

The NV24C128WF will power up into Standby mode after V_{CC} exceeds the POR trigger level and will power down into Reset mode when V_{CC} drops below the POR trigger level. This bi-directional POR feature protects the device against 'brown-out' failure following a temporary loss of power.

Pin Description

SCL: The Serial Clock input pin accepts the Serial Clock generated by the Master.

SDA: The Serial Data I/O pin receives input data and transmits data stored in EEPROM. In transmit mode, this pin is open drain. Data is acquired on the positive edge, and is delivered on the negative edge of SCL.

 A_0 , A_1 and A_2 : The Address pins accept the device address. When not driven, these pins are pulled LOW internally.

WP: The Write Protect input pin inhibits all write operations, when pulled HIGH. When not driven, this pin is pulled LOW internally.

Functional Description

The NV24C128WF supports the Inter–Integrated Circuit (I²C) Bus data transmission protocol, which defines a device that sends data to the bus as a transmitter and a device receiving data as a receiver. Data flow is controlled by a Master device, which generates the serial clock and all START and STOP conditions. The NV24C128WF acts as a Slave device. Master and Slave alternate as either transmitter or receiver. Up to 8 devices may be connected to the bus as determined by the device address inputs A_0 , A_1 , and A_2 .

I²C Bus Protocol

The I²C bus consists of two 'wires', SCL and SDA. The two wires are connected to the V_{CC} supply via pull-up

resistors. Master and Slave devices connect to the 2-wire bus via their respective SCL and SDA pins. The transmitting device pulls down the SDA line to 'transmit' a '0' and releases it to 'transmit' a '1'.

Data transfer may be initiated only when the bus is not busy (see A.C. Characteristics).

During data transfer, the SDA line must remain stable while the SCL line is HIGH. An SDA transition while SCL is HIGH will be interpreted as a START or STOP condition (Figure 2). The START condition precedes all commands. It consists of a HIGH to LOW transition on SDA while SCL is HIGH. The START acts as a 'wake-up' call to all receivers. Absent a START, a Slave will not respond to commands. The STOP condition completes all commands. It consists of a LOW to HIGH transition on SDA while SCL is HIGH.

Device Addressing

The Master initiates data transfer by creating a START condition on the bus. The Master then broadcasts an 8-bit serial Slave address. The first 4 bits of the Slave address are set to 1010, for normal Read/Write operations (Figure 3). The next 3 bits, A_2 , A_1 and A_0 , select one of 8 possible Slave devices and must match the state of the external address pins. The last bit, R/\overline{W} , specifies whether a Read (1) or Write (0) operation is to be performed.

Acknowledge

After processing the Slave address, the Slave responds with an acknowledge (ACK) by pulling down the SDA line during the 9th clock cycle (Figure 4). The Slave will also acknowledge all address bytes and every data byte presented in Write mode. In Read mode the Slave shifts out a data byte, and then releases the SDA line during the 9th clock cycle. As long as the Master acknowledges the data, the Slave will continue transmitting. The Master terminates the session by not acknowledging the last data byte (NoACK) and by issuing a STOP condition. Bus timing is illustrated in Figure 5.

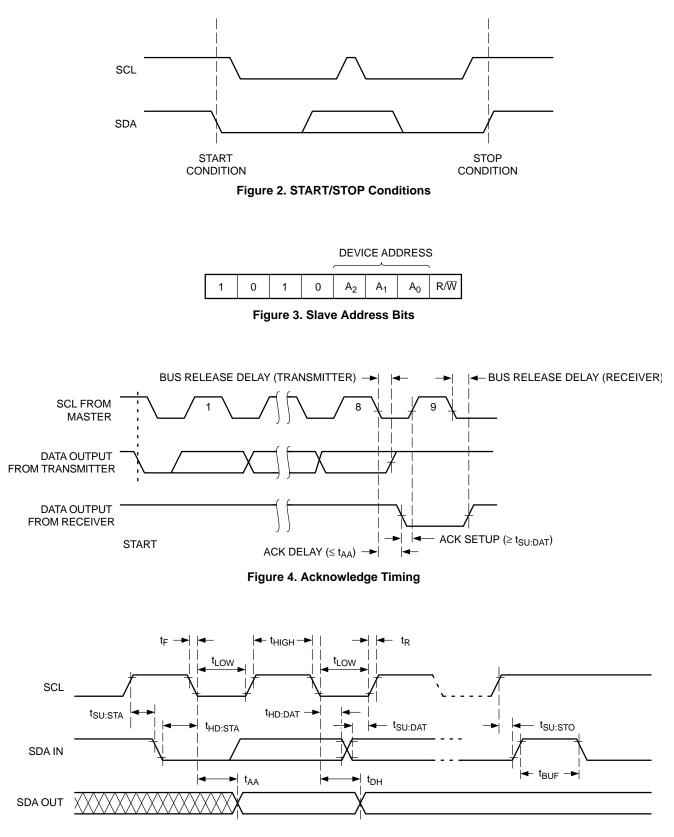


Figure 5. Bus Timing

Write Operations

Byte Write

Upon receiving a Slave address with the R/\overline{W} bit set to '0', the NV24C128WF will interpret the next two bytes as address bytes. These bytes are used to initialize the internal address counter; the 2 most significant bits are 'don't care', the next 8 point to one of 256 available pages and the last 6 point to a location within a 64 byte page. A byte following the address bytes will be interpreted as data. The data will be loaded into the Page Write Buffer and will eventually be written to memory at the address specified by the 14 active address bits provided earlier. The NV24C128WF will acknowledge the Slave address, address bytes and data byte. The Master then starts the internal Write cycle by issuing a STOP condition (Figure 6). During the internal Write cycle (t_{WR}), the SDA output will be tri–stated and additional Read or Write requests will be ignored (Figure 7).

Page Write

By continuing to load data into the Page Write Buffer after the 1st data byte and before issuing the STOP condition, up to 64 bytes can be written simultaneously during one internal Write cycle (Figure 8). If more data bytes are loaded than locations available to the end of page, then loading will continue from the beginning of page, i.e. the page address is latched and the address count automatically increments to and then wraps-around at the page boundary. Previously loaded data can thus be overwritten by new data. What is eventually written to memory reflects the latest Page Write Buffer contents. Only data loaded within the most recent Page Write sequence will be written to memory.

Acknowledge Polling

The ready/busy status of the NV24C128WF can be ascertained by sending Read or Write requests immediately following the STOP condition that initiated the internal Write cycle. As long as internal Write is in progress, the NV24C128WF will not acknowledge the Slave address.

Hardware Write Protection

With the WP pin held HIGH, the entire memory is protected against Write operations. If the WP pin is left floating or is grounded, it has no impact on the operation of the NV24C128WF. The state of the WP pin is strobed on the last falling edge of SCL immediately preceding the first data byte (Figure 9). If the WP pin is HIGH during the strobe interval, the NV24C128WF will not acknowledge the data byte and the Write request will be rejected.

Delivery State

The NV24C128WF is shipped erased, i.e., all bytes are FFh.

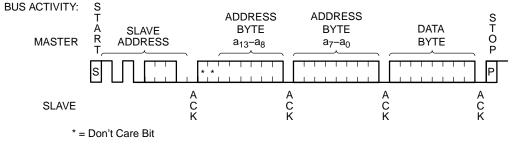


Figure 6. Byte Write Sequence

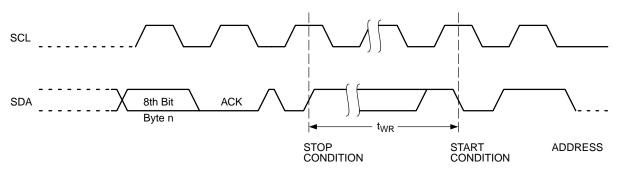


Figure 7. Write Cycle Timing

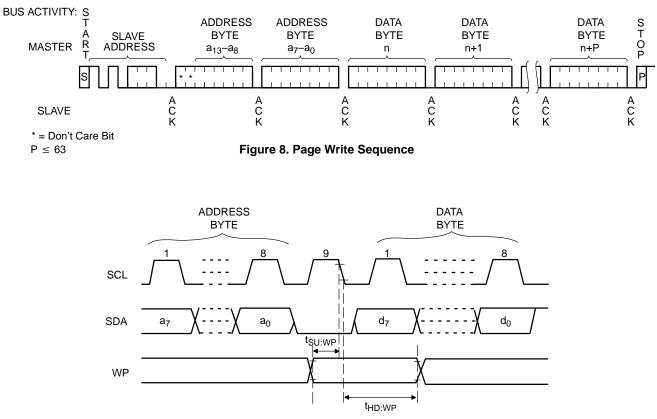
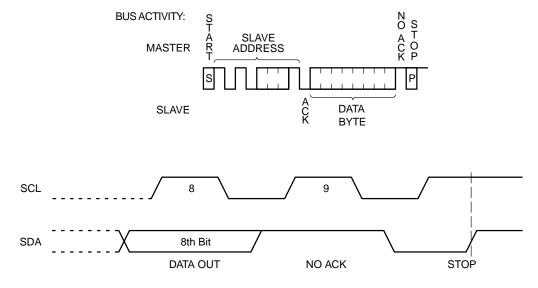


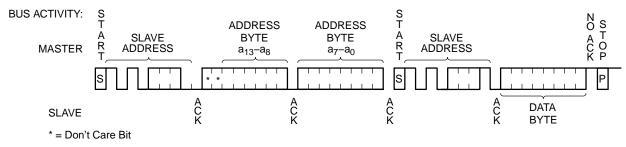
Figure 9. WP Timing

Read Operations

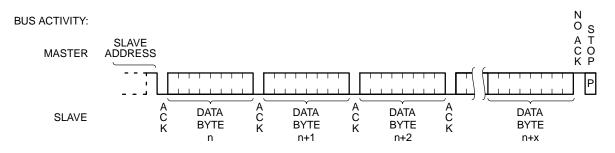
Immediate Read

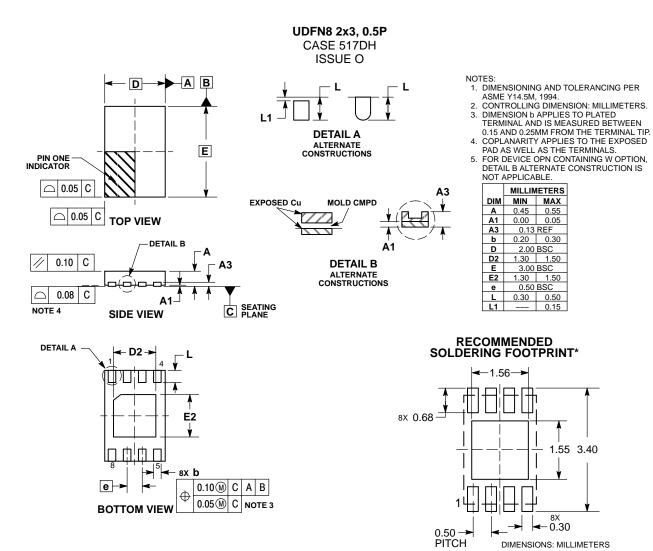

Upon receiving a Slave address with the R/\overline{W} bit set to '1', the NV24C128WF will interpret this as a request for data residing at the current byte address in memory. The NV24C128WF will acknowledge the Slave address, will immediately shift out the data residing at the current address, and will then wait for the Master to respond. If the Master does not acknowledge the data (NoACK) and then follows up with a STOP condition (Figure 10), the NV24C128WF returns to Standby mode.

Selective Read


To read data residing at a specific location, the internal address counter must first be initialized as described under Byte Write. If rather than following up the two address bytes with data, the Master instead follows up with an Immediate Read sequence, then the NV24C128WF will use the 14 active address bits to initialize the internal address counter and will shift out data residing at the corresponding location. If the Master does not acknowledge the data (NoACK) and then follows up with a STOP condition (Figure 11), the NV24C128WF returns to Standby mode.

Sequential Read


If during a Read session the Master acknowledges the 1st data byte, then the NV24C128WF will continue transmitting data residing at subsequent locations until the Master responds with a NoACK, followed by a STOP (Figure 12). In contrast to Page Write, during Sequential Read the address count will automatically increment to and then wrap–around at end of memory (rather than end of page).

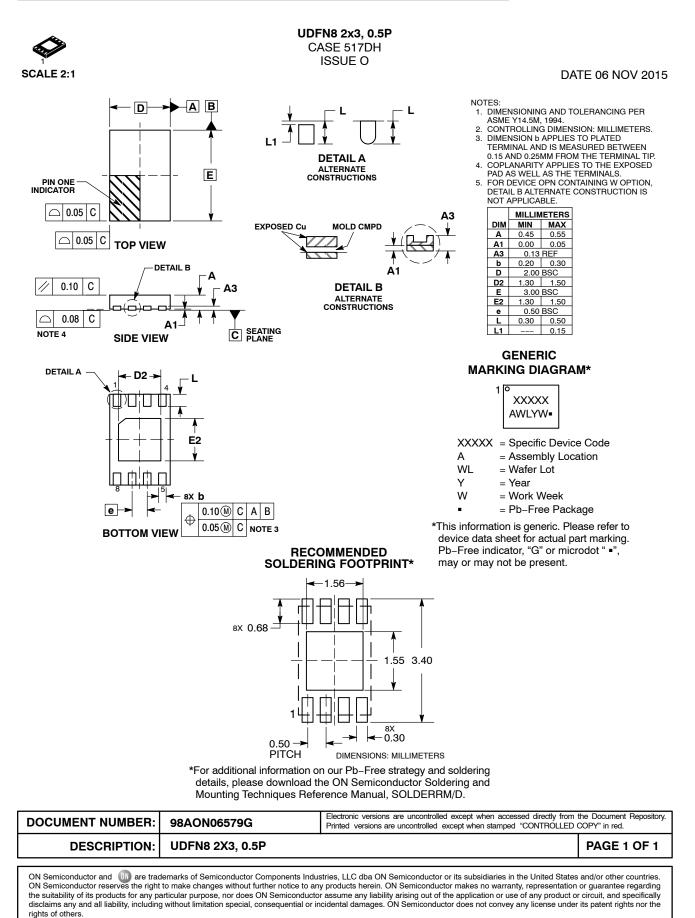


PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION (Notes 10 thru 13)

Device Order Number	Specific Device Marking	Package Type	Temperature Range	Lead Finish	${ m Shipping}^{\dagger}$
NV24C128MUW3VTBG	C7W	UDFN8 (2x3 mm) Wettable Flank	V = Auto Grade 1 (-40°C to +125°C)	NiPdAu	Tape & Reel, 3,000 Units / Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

10. All packages are RoHS-compliant (Lead-free, Halogen-free).
11. The standard lead finish is NiPdAu.

 For additional package and temperature options, please contact your nearest ON Semiconductor Sales office.
 For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com

ON Semiconductor is licensed by the Philips Corporation to carry the I²C bus protocol.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative