32-BIT ARM926EJ-S BASED MCU

NUC945ADN 32-bit ARM926EJ-S Based Microcontroller Product Data Sheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. Nuvoton is providing this document only for reference purposes of ARM926-based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice.. For additional information or questions, please contact: Nuvoton Technology Corporation.

Table of	Contents
----------	----------

1		AL DESCRIPTION	
2	FEATUR	RES	5
3		AGRAM	
4		SCRIPTION	
		Assignment O Share Pin Description	
5		ONAL BLOCK	
6	FUNCTI	ONAL DESCRIPTION	
		1926EJ-S CPU CORE	12
		TEM MANAGER	
	6.2.1	Overview	
	6.2.2	System Memory Map	
	6.2.3	AHB Bus Arbitration	
		1 Fixed Priority Mode	
		2 Rotate Priority Mode	
	6.2.4	Power-On Setting	
	6.2.5	System Global Control Registers Map	
	6.3 CLOC	CK CONTROLLER	
	6.3.1	Power Management	
	6.3.2	Clock Control Registers Map	
	6.4 Exter	ernal Bus Interface	
	6.4.1	Overview	
	6.4.2	Functional Description	
		1 SDRAM Controller	
		2 SDRAM Components Supported	
		3 AHB Bus Address Mapping to SDRAM Bus	
		4 SDRAM Power-Up Sequence	
		EBI Register Mapping	
	6.4.4		
		ERNET MAC CONTROLLER	
		EMC Descriptors	
		1 Rx Buffer Descriptor	
		2 Tx Buffer Descriptor	
	6.5.2	EMC Register Mapping	
	6.5.2 6.5.3	EMC Register Details	
	6.5.4	Operation Notes	
		NA CONTROLLER	
	6.6.1	Overview & Features	
	6.6.2	GDMA Non-Descriptor Functional Description	
	6.6.3	GDMA Descriptor Functional Description	
	6.6.3.1	1 Descriptor Fetch Function	
		Publication Release	Date: Jun. 18, 2010

		_
6.6.3.2	Ordering function in Descriptor fetch mode	125
6.6.3.3	Channel Reset Non-Descriptor Fetch Function	126
6.6.4	GDMA Register Map	
6.7.1	Host Controller (USBH) Register Mapping	
6.7.2	Register Details	
	2.0 Device Controller	
6.8.1	USB Device Register Group Summary	
6.8.2	USB Device Control Registers Map	
6.8.3		
	USB Device Control Registers	
6.9.1	DMA Controller Registers Map	
6.9.2	DMAC Registers	
	H MEMORY INTERFACE CONTROLLER (FMI)	
6.10.1	FMI Controller Registers Map	
6.10.2	Register Details	
	CONTROLLER.	
6.11.1	UART Control Registers Map	
	R Controller	
6.12.1	General Timer Controller	
6.12.2	Timer Control Registers Map	
	NCED INTERRUPT CONTROLLER	
6.13.1	AIC Registers Map	
	ral-Purpose Input/Output (GPIO)	
6.14.1	Overview	
6.14.2	GPIO Multiplexed Functions Table	
6.14.3	GPIO Control Registers Map	305
7 ELECTRI	CAL SPECIFICATIONS	320
7.1 Absol	LUTE MAXIMUM RATINGS	320
7.2 DC S	PECIFICATIONS	321
7.2.1	Digital DC Characteristics	321
7.2.2	USB Low-/Full-Speed DC Electrical Specifications	322
7.2.3	USB High-Speed DC Electrical Specifications	
7.3 AC SI	PECIFICATIONS	
7.3.1	RESET AC Characteristics	323
7.3.2	Clock Input Characteristics	323
7.3.3	EBI/SDRAM Interface AC Characteristics	
7.3.4	EBI (Flash/ROM) AC Characteristics	
7.3.5	SD Host Interface AC Characteristics	
7.3.6	Memory Stick Interface AC Characteristics	
7.3.7	USB Transceiver AC Characteristics	
7.3.8	EMC RMII AC Characteristics	
	E SPECIFICATIONS	
REVISION H	II STORY	32

1 General Description

This chip is built around an outstanding CPU core: the 16/32 ARM926EJ-S RISC processor designed by Advanced RISC Machines, Ltd. The ARM926EJ-S core, offers 8K-byte I-cache and 8K-byte D-cache with MMU. One 10/100 Mb MAC of Ethernet controller is built-in to reduce total system cost. This micro-controller is suitable for a high end, high performance and low cost related products as well as general purpose applications.

The following integrated on-chip functions are described in detail in this document.

	MAIN FUNCTION
CPU	ARM926EJ-S
Platform	Programmable PLL System Clock Synthesizer
	AMBA Peripherals
	Timer
	Advanced Interrupt Controller
	External Bus Interface Controller
Networking	Ethernet MAC Controller
USB Interface	 USB 1.1/2.0 High/Full/Low Speed Host Controller
	2.0 High/Full Speed Device Controller
Storage Interface	SD/SDIO Controller
Peripheral & Misc.	• GPIO
	• UART

32-BIT ARM926EJ-S BASED MCU

2 Features

Architecture

- Efficient and powerful ARM926EJ-S core with fully 16/32-bit RISC architecture
- Little Endian mode supported
- 8K-byte I-cache and 8K-byte D-cache with MMU

Power management

- Programmable clock enable for individual peripherals
- IDLE mode to halt ARM Core and keep peripheral working
- Power-Down mode to stop all clocks included external crystal oscillator.
- Exit IDLE/Power-Down by interrupts

PLL

- Supports one on-chip PLLs
- The external clock can be multiplied by on-chip PLL to provide high frequency system clock
- The input frequency range is 4-30MHz; 15MHz is preferred.
- Programmable clock frequency
- Wakeup by interrupt, USB device.

Advanced Interrupt Controller

- 31 interrupt sources, including 2 external interrupt sources
- Programmable normal or fast interrupt mode (IRQ, FIQ)
- Programmable as either edge-triggered or level-sensitive for 2 external interrupt sources
- Programmable as either low-active or high-active for 2 external interrupt sources
- Priority methodology is encoded to allow for interrupt daisy-chaining
- Automatically mask out the lower priority interrupt during interrupt nesting
- Automatically clear the interrupt flag when the interrupt source is programmed to be edge-triggered

External Bus Interface

- 8/16-bit external bus support for ROM/SRAM, flash memory, SDRAM and external I/O
- Programmable access cycle (0-7 wait cycle)
- Four-word depth write buffer

Ethernet MAC Controller

- 100/10-Mbps operation
- DMA engine with burst mode
- MAC Tx/Rx buffers (256 bytes Tx, 256 bytes Rx)
- Full compliance with IEEE standard 802.3
- RMII interface only
- Station Management Signaling
- On-Chip CAM (up to 16 destination addresses)
- Full-duplex mode with PAUSE feature
- Long/short packet modes

32-BIT ARM926EJ-S BASED MCU

USB Host Controller with transceiver

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Built-in DMA for real-time data transfer.
- Support one port transceiver , which is shared with USB Device Controller

USB Device Controller with transceiver

- Compliant with USB version 2.0 specification.
- Software control for device remote-wakeup.
- Supports 6 configurable IN/OUT endpoints in addition to Control Endpoint. Each of these endpoints can be configures as In or Out with Isochronous, Bulk or Interrupt transfer.
- Three different modes of operation of an in-endpoint (Auto validation mode, manual validation mode, Fly mode.
- Supports Endpoint Maximum Packet Size up to 1024 bytes.

Flash Memory Interface (FMI)

- Directly connect to Secure Digital (SD and SDIO) flash memory card
- Supports DMA function to accelerate the data transfer between the internal buffer, external SDRAM, and flash memory card.
- Two 512 bytes internal buffers are embedded inside

UART

- one UART (serial I/O) blocks with interrupt-based operation
- Support for 5-bit, 6-bit, 7-bit or 8-bit serial data transmit and receive
- Programmable baud rates
- 1,1½ or 2 stop bits
- Odd or even parity
- Break generation and detection
- Parity, overrun and framing error detection
- X16 clock mode

Timers

- Five programmable 24-bit timers with 8-bit pre-scalar
- One-short mode, period mode or toggle mode operation

Programmable I/Os

- Pins individually configurable to input, output or I/O mode for dedicated signals
- I/O ports are Programmable and Configurable for Multiple functions

32-BIT ARM926EJ-S BASED MCU

Operation Voltage Range

- VDD18 for IO Buffer: 1.8V+/-10%
- VDD33 for Core Logic: 3.3V+/-10%
- USBVDD for USB: 3.3V+/-5%
- PLLVDD18 for PLL: 1.8V+/-10%

Operation Temperature Range

● -40°C ~+85°C

Operating Frequency

• Up to 200 MHz for ARM926EJ-S CPU

Package Type


• 128-Pin LQFP, Pb free

32-BIT ARM926EJ-S BASED MCU

3 Pin Diagram

NUC945 Pin Diagram

32-BIT ARM926EJ-S BASED MCU

4 Pin Description

4.1 Pin Assignment

Pin Name	ІО Туре	Num.	Description
Clock & Reset (5)	-		
EXTAL15M	<u> </u>	62	15MHz External Clock / Crystal Input
XTAL15M	0	63	15MHz Crystal Output
EXTAL48MO	0	124	48MHz Crystal Output for USB2.0 PHY0
XTAL48MO		123	48MHz Crystal Input for USB2.0 PHY0
nRESET	I	2	System Reset (Low active)
External Bus Interfa	ce (49)		
MA [21:0]	0	[41-29]	Address Bus of external memory
		[27-19]	(MA[21:13] are set to input mode when nRESET low active)
MD [15:0]	10 (D)	[59-44]	Data Bus of external memory
			(Pull-down are programmable)
nWBE [1:0] /	0	14,13	Write Enable for Booting Flash Memory (nBTCS) and IO Device.
SDQM [1:0]			Data Bus Mask signal for SDRAM (nSCS [1:0]), (Low active)
nSCS0	0	8	SDRAM chip select, (Low active)
nSRAS	0	17	Row Address Strobe for SDRAM, (Low active)
nSCAS	0	18	Column Address Strobe for SDRAM, (Low active)
nSWE	0	16	SDRAM Write Enable, (Low active)
MCLK	0	10	System Master Clock Out, SDRAM clock
MCKE	0	15	SDRAM Clock Enable, (high active)
nECSO	0	6	External IO Chip Select, (Low active)
nBTCS	0	7	ROM/Flash Chip Select, (Low active)
nOE	0	5	ROM/Flash Memory Output Enable, (Low active)
USB Interface (6)	<u> </u>		
DP0	10	120	Differential Desitive USB Dert0 10 signal
DPO	10	128 127	Differential Positive USB PortO IO signal
REXTO			Differential Negative USB Port0 IO signal External Resister Connect for Port0
	A	126	
		117	USB Over Current Detection signal
HDS	-	119	USB PHY 0 Device/Host Mode Select Control signal
UPWRO	0	116	USB Port0 Power Control signal
~			This pin is always driven to Low when USB Port0 is at Device
		-	mode (the HDS pin at high state)
Ethernet RMII Inter	face (10 pir	ıs)	
PHY_MDC	0(IS)	102	RMII Management Data Clock
PHY_MDIO	10(D)	103	RMII Management Data I/O
Vin all			(Pull-down is programmable)
PHY_TXD [1:0]	O(ID)	105,104	RMII Transmit Data bus
			(Pull-down are programmable)
PHY_TXEN	O(ID)	106	RMII Transmit Enable
30	-		(Pull-down is programmable)
PHY_REFCLK	O(ID)	107	RMII Reference Clock.
	S UA		(Pull-down is programmable)
PHY_RXD [1:0]	I (OD)	109.108	RMII Receive Data bus
	11 8	0	(Pull-down are programmable)
PHY_CRSDV	I (OD)	110	RMII Carrier Sense / Receive Data Valid
	ser.	G	(Pull-down is programmable)
PHY_RXERR	I (OD)	111	RMII Receive Data Error
	40		(Pull-down is programmable)
UARTO Interface (2	pins)		
TXD0	10(D)	114	UARTO Transmit Data.
		(0)	(Pull-down is programmable)
		100	

Pin Name	ІО Туре	Num.	Description
RXD0	10(D)	115	UARTO Receive Data.
			(Pull-down is programmable)
SD/SDIO Interface ((7 pins)		
SD0_CMD	10(U)	88	SD/SDIO Mode #0 – Command/Response (SPI Mode – Data In) (Pull-up is programmable)
SDO_CLK	10(U)	89	SD/SDIO Mode #0 – Clock; (SPI Mode – Clock) (Pull-up is programmable)
SDO_DATO	10(U)	90	SD/SDIO Mode #0 – Data Line Bit 0; (Pull-up is programmable)
SD0_DAT1	10(U)	91	SD/SDIO Mode #0 – Data Line Bit 1; (Pull-up is programmable)
SD0_DAT2	10(U)	92	SD/SDIO Mode #0 – Data Line Bit 2; (Pull-up is programmable)
SDO_DAT3	10(U)	93	SD/SDIO Mode #0 – Data Line Bit 3; (Pull-up is programmable)
SD0_CDn	10(U)	95	SD/SDIO Mode #0 – Card Detect. (Pull-up is programmable)
Miscellaneous(20 pir	ns)	-	
nIRQ[1:0]	I (OU)	99,	External Interrupt Request
		98	(Pull-up is programmable)
SCAN[4:0]	I	73,	Scan function for Testing Mode
		72,	(Keep NC in normal operation)
		71,	
		68, 67	
TEST	I	97	Testing Mode
			(Keep NC in normal operation)
GPI OC02	10	76	General Purpose In/Out Group C bit 02
GPI OC04	10	77	General Purpose In/Out Group C bit 04
GPI OC 05	10	78	General Purpose In/Out Group C bit 05
GPIOC06	10	79	General Purpose In/Out Group C bit 06
GPIOC07	10	80	General Purpose In/Out Group C bit 07
GPI OC08	10	82	General Purpose In/Out Group C bit 08
GPIOC09	10	83	General Purpose In/Out Group C bit 09
GPIOC10	10	84	General Purpose In/Out Group C bit 10
GPIOC11	10	85	General Purpose In/Out Group C bit 11
GPIOC13	10	86	General Purpose In/Out Group C bit 13
GPIOC14	10	87	General Purpose In/Out Group C bit 14
GPIOE13	10	96	General Purpose In/Out Group E bit 13
Power/Ground (29 p	· · ·	1	
USBVDD	Р	121,12 5	USB Port0 PHY power (3.3V)
USBVSS	G	1, 122	USB Port0 PHY ground (0V)
PLLVDD18	Р	66	PLL power (1.8V)
PLLVSS18	G	65	PLL ground (0V)
VDD18	P	4, 60, 69, 75, 100,11 8	Core Logic power (1.8V)
VDD33	P	11, 28, 43, 94, 112	IO Buffer power (3.3V)

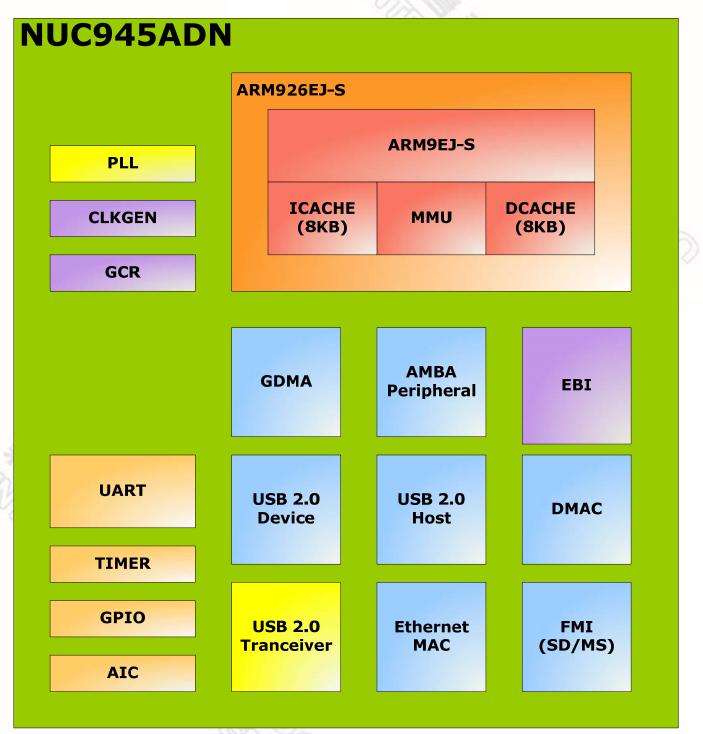
32-BIT ARM926EJ-S BASED MCU

Pin Name	ІО Туре	Num.	Description
VSS	G	3,9, 12, 42, 61, 64, 70, 74, 81, 101,11 3,120	IO Buffer and Core ground (OV)

4.2 GPIO Share Pin Description

In this chip, there are GPIOD~GPIOH groups for general IO control. All of GPIO pins are shared with the other interface and define as the following

GPIOD (7 pins)	SD(SDIO) /
	Memory Stick Interface
GPIOD[0]	SD_CMD /
	MS_BS
GPIOD[1]	SD_CLK /
	MS_CLK
GPIOD[2]	SD_DATO /
	MS_DATO
GPIOD[3]	SD_DAT1 /
	MS_DAT1
GPIOD[4]	SD_DAT2 /
	MS_DAT2
GPIOD[5]	SD_DAT3 /
	MS_DAT3
GPIOD[6]	SD_CDn /
	MS_CDn


GPIOE (2 pins)	UART Interface
GPIOE[0]	TXD0
GPIOE[1]	RXD0

GPIOF (10 pins)	RMII Interface
GPIOF [0]	PHY_MDC
GPIOF [1]	PHY_MDIO
GPI OF [3:2]	PHY_TXD [1:0]
GPIOF [4]	PHY_TXEN
GPIOF [5]	PHY_REFCLK
GPIOF [7:6]	PHY_RXD [1:0]
GPIOF [8]	PHY_CRSDV
GPIOF [9]	PHY_RXERR

GPIOH (2 pins)	nIRQ Interface
GPIOH[1:0]	nIRQ[1:0]

32-BIT ARM926EJ-S BASED MCU

5 Functional Block

32-BIT ARM926EJ-S BASED MCU

6 Functional Description

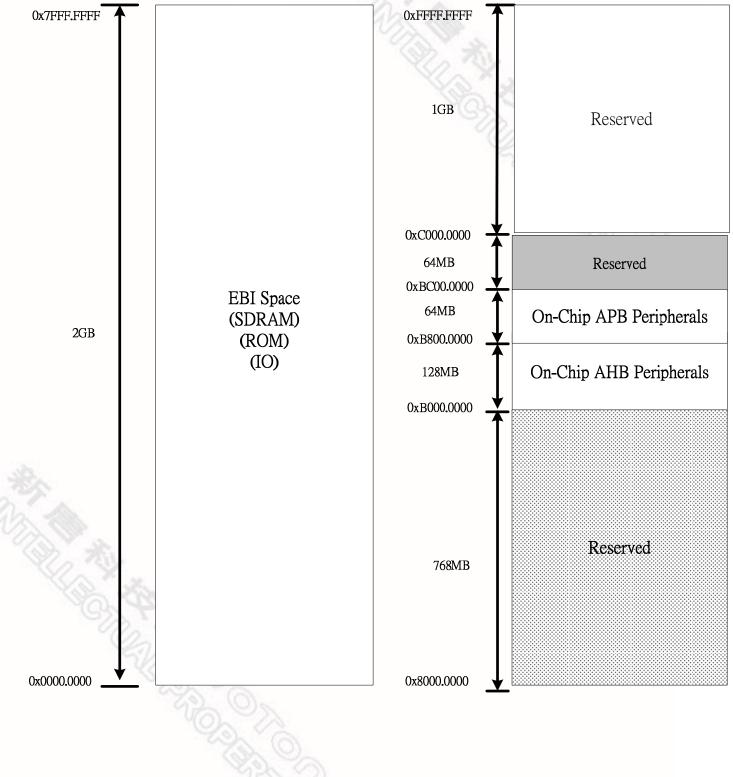
6.1 ARM926EJ-S CPU CORE

The ARM926EJ-S CPU core is a member of the ARM9 family of general-purpose microprocessors. The ARM926EJ-S CPU core is targeted at multi-tasking applications with a Memory Management Unit (MMU) and supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to trade off between high performance and high code density.

6.2 System Manager

6.2.1 Overview

The System Manager has the following functions.


- System memory map
- The width of external memory address
- Data bus connection with external memory
- Product identifier register
- Bus arbitration
- PLL module
- Clock select register
- Power-On setting

6.2.2 System Memory Map

This chip provides 2G bytes memory space (0x0000_0000~0x7FFF_FFF) for the SDRAM and ROM Devices, 192M bytes space (0xB000_0000~0xBBFF_FFF) for On-Chip Peripherals and the other memory spaces are reserved.

The size and location of each SDRAM memory bank is determined by the register settings for "current bank base address pointer" and "current bank size" (SDCONF0). Please note that when setting the bank control registers, the address boundaries of consecutive banks must not be overlapped.

The CPU booting start address is fixed at address 0x0000_0000 after reset or power-on. In the event of an access request to an address outside any programmed bank size, an abort signal is generated. The maximum accessible memory size of Boot ROM bank is 4MB@8bit (8MB@16bit), and 64M bytes on SDRAM banks.

Address Space	Token	Modules
0x0000_0000 - 0x7FFF_FFF		EBI (SDRAM, ROM, and IO) Memory Space
0x8000_0000 - 0xAFFF_FFFF		Reserved Shadow of EBI Memory Space(0x0000_0000~0x2FFF_FFFF)
0xB000_0000 – 0xB000_01FF	GCR_BA	System Global Control Registers
0xB000_0200 – 0xB000_02FF	CLK_BA	Clock Control Registers
0xB000_1000 - 0xB000_1FFF	EBI_BA	EBI Control Registers
0xB000_3000 - 0xB000_3FFF	EMC_BA	Ethernet MAC Control Registers
0xB000_4000 – 0xB000_4FFF	GDMA_BA	GDMA Control Registers
0xB000_5000 - 0xB000_5FFF	USBH_BA	EHCI USB Host Control Registers
0xB000_6000 - 0xB000_6FFF	USBD_BA	USB Device Control Registers
0xB000_7000 – 0xB000_7FFF	USBO_BA	OHCI USB Host Control Registers
0xB000_8000 - 0xB000_8FFF		Reserved
0xB000_9000 - 0xB000_9FFF		Reserved
0xB000_A000 - 0xB000_AFFF		Reserved
0xB000_B000 - 0xB000_BFFF		Reserved
0xB000_C000 – 0xB000_CFFF	DMAC_BA	DMA Controller Registers
0xB000_D000 - 0xB000_DFFF	FMI_BA	Flash Memory Interface Control Registers

Address Space	Token	Modules
0xB800_0000 – 0xB800_00FF	UARTO_BA	UART 0 Control Registers
0xB800_0100 – 0xB800_01FF		Reserved
0xB800_0200 - 0xB800_02FF		Reserved
0xB800_0300 - 0xB800_03FF		Reserved
0xB800_0400 – 0xB800_04FF		Reserved
0xB800_1000 – 0xB800_1FFF	TMR_BA	Timer Control Registers
0xB800_2000 – 0xB800_2FFF	AIC_BA	Interrupt Controller Registers
0xB800_3000 – 0xB800_3FFF	GPIO_BA	GPIO Control Registers
0xB800_4000 – 0xB800_4FFF		Reserved
0xB800_5000 - 0xB800_5FFF		Reserved
0xB800_6000 - 0xB800_60FF		Reserved
0xB800_6100 - 0xB800_61FF		Reserved
0xB800_6200 - 0xB800_62FF		Reserved
0xB800_7000 - 0xB800_7FFF		Reserved
0xB800_8000 - 0xB800_8FFF	2,	Reserved
0xB800_9000 - 0xB800_9FFF	A	Reserved
0xB800_A000 – 0xB800_AFFF	200	Reserved

32-BIT ARM926EJ-S BASED MCU

6.2.3 AHB Bus Arbitration

The system bus is AHB-compliant and supports modules with standard AHB master or slave interfaces. The AHB arbiter has two priority-decision modes, i.e., the fixed priority mode and the rotate priority mode. In the rotate priority mode, there are three types for AHB-Master bus. The selection of modes and types is determined on the **PRTMODO** and **PRTMOD1**bits in the Arbitration Control Register. **PRTMODO** is used to control the fixed priority of AHB1 (CPU AHB-Lite) Bus and **PRTMOD1** is used to control the fixed priority of AHB2 Master Bus.

6.2.3.1 Fixed Priority Mode

Fixed priority mode is selected if PRTMODx = 0. The order of priorities on the AHB mastership among the on-chip master modules is fixed. If two or more master modules request to AHB at the same time, the mastership is always granted to the module with the highest priority.

AHB	AHB Bus Priority Order in Fixed Priority Mode						
Priority Sequence	PRTMOD0 = 0 AHB1 Bus	PRTMOD1 = 0 AHB2 Bus					
1 (Lowest)	ARM CPU Instruction	AHB Bridge					
2	ARM CPU Data	SDIO(FMI)					
3	GDMAO	USB Device					
4 GDMA1		USB Host					
5 (Highest)		EMC Controller					

The ARM core normally has the lowest priority under the fixed priority mode; however, this chip provides a mechanism to raise the priority to the highest. If the IPEN bit (bit-1 of Arbitration Control Register) is set to 1, the **IPACT** bit (bit-2 of Arbitration Control Register) will be automatically set to 1 while an unmasked external interrupt occurs. Under this circumstance, the ARM core gains the highest AHB priority.

The programmer can recover the original priority order by directly writing "0" to clear the **IPACT** bit. For example, this can be done that at the end of an interrupt service routine. Note that **IPACT** only can be automatically set to 1 by an external interrupt when **IPEN** = 1. It will not take effect if a programmer to directly write 1 to **IPACT** to raise ARM core's AHB priority.

6.2.3.2 Rotate Priority Mode

Rotate priority mode is selected if PRTMODx = 1. The AHB arbiter uses a round robin arbitration scheme by which every master module can gain the bus ownership in turn.

32-BIT ARM926EJ-S BASED MCU

6.2.4 Power-On Setting

After power on reset, Power-On setting registers are latched from EBI Address pins (MA [21:13]) to configure this chip.

Power-On Setting	Pin
Booting Device Select	MA20
Internal System Clock Select	MA17
GPIO Pin Configuration Select	MA [15:14]
USB PHY0 Mode Select	HDS

MA21 : Pull-up is necessary

MA20 : Booting Device Select

MA20	Booting Device
Pull-down	USB ISP
Pull-up	NOR-type Flash ROM

MA19: Pull-up is necessary

MA18 : Can either Pull-up or Pull-down

MA17 : Internal System Clock Select

If pin MA17 is pull-down, the external clock from EXTAL15M pin is served as internal system clock. If pin MA17 is pull-up, the PLL output clock is used as internal system clock.

MA16 : Pull-down is necessary

MA15 : GPIO Pin Configuration Select

MA15	GPIO Pin Function		
Pull-down	GPIOF Group Select		
Pull-up	RMII Group Select		

MA14 : Pull-down is necessary

MA13 : Pull-up is necessary

HDS : USB PHY0 Mode Select

HDS	USB PHY0 Mode
Pull-down	USB20 Host
Pull-up	USB20 Device

6.2.5 System Global Control Registers Map

Register	Address	R/W	Description	Reset Value		
GCR_BA = 0xB000_0000						
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_09x0		
PWRON	0xB000_0004	R/W	Power-On Setting Register	N/A		
ARBCON	0xB000_0008	R/W	Arbitration Control Register	0x0000_0000		
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000		
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-up/down Enable Register	0xFFFF_FFFF		
LCDDPE	0xB000_0014	R/W	LCD Data Pin Pull-up/down Enable Register	0x0003_FFFF		
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up/down Enable Register	0x0000_7FFF		
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up/down Enable Register	0x0000_07FF		
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF		
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF		
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF		
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up/down Enable Register	0x0000_00FF		
GTMP1	0xB000_0034	R/W	General Temporary Register 1	N/A		
GTMP2	0xB000_0038	R/W	General Temporary Register 2	N/A		
GTMP3	0xB000_003C	R/W	General Temporary Register 3	N/A		

32-BIT ARM926EJ-S BASED MCU

Product Identifier Register (PDID)

This register is for only read and enables software to recognize certain characteristics of the chip ID and the version number.

Register	Address	R/W	Description	Reset Value
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_09x0

					- (12)	1. San	
31	30	29	28	27	26	25	24
VERSION							
23	22	21	20	19	18	17	16
CHPID							
15	14	13	12	11	10	9	8
			CHP	DID		13	20-00
7	6	5	4	3	2	1	0
			CHP	D			5

Bits	Descriptions	
[31:24]	VERSION	Version of chip
[23:0]	CHIPID	Chip identifier

Power-On Setting Register (PWRON)

This register latches the chip power-on setting from EBI Address Bus during chip reset.

Register	Address	R/W	Description	Reset Value
PWRON	0xB000_0004	R/W	Power-On Setting Register	Undefined

					CS T	5	
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
			RESE	RVED		202 (0)
15	14	13	12	11	10	9	8
	R	ESERVED			USBDEN	USBHD	RESERVED
7	6	5	4	3	2	1	0
Booting Device Select RESERVED				GPIOSEL	0	PLL	

Bits	Descriptions	5							
[0]	PLL	Power-C 0= the e	Internal System Clock Select (Read/Write) Power-On value latched from MA17 0= the external clock from EXTAL15M pin is served as internal system clock. 1= the PLL output clock is used as internal system clock.						
		GPIO P	in Configuratio	on Sele	ect(Read Only)				
[2]			Latched pin	H/L	GPIO Pin Function				
[2]	GPIOSEL		-	0	GPIOF				
	S	4	[2]	MA15	1	RMII			
[5:3]	RESERVED		Read Only These three bits are read only						
X	18 M		Device Select to bits are powe						
[7:6]	Booting Device Select	Booting Device Select [7:6]		ct	Booting Device				
		2.1	0		USB ISP				
	X	1	1		NOR-type Flash ROM				
				21	Publication Rele	ease Date:	Jun. 18, 201 Revision: A		

		USB PHYO Mode Select (Read/Write) this bit is power-on reset from HDS					
[9]	[9] USBHD	USBHD USB PHY0 Mode		HDS Pin			
		0 USB20 Device		External Pull-Up			
		1	USB20 Host	External Pull-Down			
			nable Control for USB Device y active when the USBHD bit be				
[10]	USBDEN	USBDEN	USB PHY0 Enable				
[10]	USBDEN	0	Set Device PHY at SE0 (Not active to external host)				
		1	Set Device PHY controlled by the UTMI interface of the Device Controller				

Arbitration Control Register (ARBCON)

		1			N/ANW	100		1	
Registe	ster Address		R/W	2/W Description				Reset Value	
ARBCO	N 0xB0	00_0008	R/W	Arbitratio	Arbitration Control Register			0x0000_000	
						1997	E.		
	31	30	29	28	27	26	25	24	
	RESERVED								
	23	22	21	20	19	18	17	16	
				RESE	RVED		202	00	
	15	14	13	12	11	10	9	8	
	RESERVED								
	7	6	5	4	3	2	1	0	
		RESERVED	·	DGMASK	IPACT	IPEN	PRTMOD1	PRTMODO	

Bits	Descriptions	
[4]	DGMASK	Default Grant Master Mask Control 0 = AHB-Bridge always be the default grant master (default) 1 = No default grant master on AHB-2 Bus
[3]	IPACT	Interrupt Priority Active When IPEN="1", this bit is set when the ARM core has an unmasked interrupt request. This bit is available only when the PRTMOD1 =0 and PRTMOD0 =0.
[2]	IPEN	Interrupt Priority Enable Bit 0 = the ARM core has the lowest priority. 1 = enable to raise the ARM core priority to second This bit is available only when the PRTMOD=0 and PRTMOD0=0.
[1]	PRTMOD1	Priority Mode Select for AHB2 (AHB Master Bus) 0 = Fixed Priority Mode (default) 1 = Rotate Priority Mode
[0]	PRTMODO	Priority Mode Select for AHB1 (CPU AHB-Lite Bus) 0 = Fixed Priority Mode (default) 1 = Rotate Priority Mode

Multiple Function Pin Select Register (MFSEL)

Register	Address	R/W	Description	Reset Value
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000

				1	No con	2		
31	30	29	28	27	26	25	24	
RESE	RVED	USBPHY0			RESERVED			
23	22	21	20	19	18	17	16	
			RESE	RVED		207	6	
15	14	13	12	11	10	9	8	
RESE	RVED		RESERVED					
7	6	5	4	3	2	1	0	
	GF	SELD		GPS	ELC	GPSELF	G-Option	

Bits	Descriptions							
[29:28]	USBPHYO		USB PHYO Select Control Register 00 : Normal USB operation mode (Default)					
[24]	GPSELH	PIN GPIOH[1:0]	Ction Select Co GPSELH[24] 0 1 ilt value is 0 for GP	GPIO Pin Function GPIOH[1:0] nIRQ[1:0]				
[8]	GPSELE	GPIOE Pin Fun PIN GPIOE[1:0]	Ction Select Co GPSELE[8] 0 1	Arrol Register GPIO Pin Function GPIOE[1:0] UARTO				
[7:4]	GPSELD	PIN GPIOD[10:5] See GPIO Shared I	Ction Select Co GPSELD[7:4] 0000 1010 1111 the others Pin Description for ult value is depend	GPIO Pin Function GPIOD[10:0] SD 0 Interface Memory Stick 0 Reserved				
			24	Publication Release D	ate: Jun. 18, 2010 Revision: A5			

		GPIOC Pin Function Select Control Register					
		PIN	GPSELC[3:2]	GPIO Pin Function			
			00	GPIOC[14:0]			
[3:2]	GPSELC	00100[14:0]	01	Reserved			
[].2]	GFJLLC	GPIOC[14:0]	10	Reserved			
			11	Reserved			
1		GPI OF Pin Fur	nction Select Co	ntrol Register			
		GPIOF Pin Fur	GPSELF[1]	ontrol Register GPIO Pin Function			
[1]	GPSFI F	PIN					
[1]	GPSELF			GPIO Pin Function			
[1]	GPSELF	PIN GPIOF[9:0] See GPIO Shared	GPSELF[1] 0 1 Pin Description for	GPIO Pin Function GPIOF[9:0] RMII Interface			

32-BIT ARM926EJ-S BASED MCU

EBI Data Pin Pull-up/down Enable Register (EBIDPE)

NC Pin Pull-up/down Enable Register (NCPE)

GPIOC~GPIOH Pin Pull-up/down Enable Register (GPIOCPE~GPIOHPE)

These registers are used to control the IO pins to be internal pull-up or down, which can avoid the input pins floating if there is no external resistors.

Register	Address	R/W	Description	Reset Value
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-down Enable Register	0xFFFF_FFFF
NCPE	0xB000_0014	R/W	NC Pin Pull-up Enable Register	0x0003_FFFF
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up Enable Register	0x0000_7FFF
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up Enable Register	0x0000_07FF
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up Enable Register	0x0000_00FF

31	30	29	28	27	26	25	24
			PI	PE			
23	22	21	20	19	18	17	16
			PI	РЕ			
15	14	13	12	11	10	9	8
Y			PI	РЕ			
7	6	5	4	3	2	1	0
1 20	R		PI	PE			

Bits	Descripti	ons
[31:0]	PPE	Pin Pull-down Enable Register 1 = Disable the Pull-high/down for each relative pin (default) 0 = Enable the Pull-high/down for each relative pin
		Publication Release Date: Jun. 18, 2010

32-BIT ARM926EJ-S BASED MCU

Register	Descriptions
EBIDPE	EBI Data Pin Pull-down Enable Register PPE[15:0] Controls the Pull-down of the EBI Data Bus[15:0] PPE[31:16] should be set to 0.
NCPE	NC Pin Pull-up Enable Register PPE[31:18] is reserved in this register PPE[17:0] should be set to 0.
GPIOCPE	GPIOC Pin Pull-up Enable Register PPE[31:15] is reserved in this register PPE[14:0] Controls the Pull-up of the GPIOC[14:0] PPE[0,1,3,12] should be set to 0
GPIODPE	GPIOD Pin Pull-up Enable Register PPE[31:9] is reserved in this register PPE[8:0] Controls the Pull-up of the GPIOD[8:0] PPE[7,8] should be set to 0
GPIOEPE	GPIOE Pin Pull-up/down Enable Register PPE[31:14] is reserved in this register PPE[1:0] Controls the down of the GPIOE[1:0] PPE[13:2] should be set to 0
GPIOFPE	GPIOF Pin Pull-up/down Enable Register PPE[31:10] is reserved in this register PPE[9:0] Controls the Pull-up/down of the GPIOF[9:0] Pull-down : GPIOF[9:8], GPIOF[5:4], GPIOF[1] Pull-up : GPIOF[7:6], GPIOF[3:2] No action : GPIOF[0]
GPIOGPE	GPIOG Pin Pull-up/down Enable Register PPE[31:17] is reserved in this register PPE[16:0] should be set to 0
GPIOHPE	GPIOH Pin Pull-up Enable Register PPE[31:8] is reserved in this register PPE[1:0] Controls the Pull-up of the GPIOH[1:0] PPE[7:2] should be set to 0

1 = Disable the Pull-high/down for each relative pin 0 = Enable the Pull-high/down for each relative pin

General Temporary Register 1 ~ 3 (GTMP1 ~GTMP3)

Register	Address	R/W	Description	Reset Value
GTMP1	0xB000_0034	R/W	General Temporary Register 1	Undefined
GTMP2	0xB000_0038	R/W	General Temporary Register 2	Undefined
GTMP3	0xB000_003C	R/W	General Temporary Register 3	Undefined

31	30	29	28	27	26	25	24		
	DATA								
23	22	21	20	19	18	17	16		
	DATA								
15	14	13	12	11	10	9	8		
			DA	ТА			3		
7	6	5	4	3	2	1	0		
	DATA								

Bits	Descriptions	
[31:0]	DATA	General Temporary Data

nuvoton

32-BIT ARM926EJ-S BASED MCU

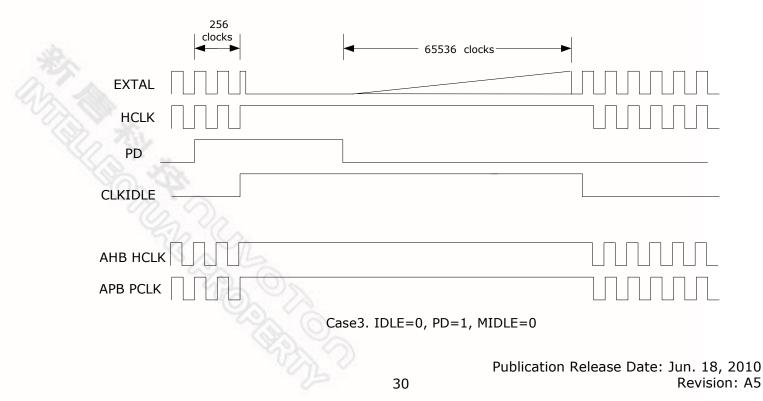
6.3 Clock Controller

The clock controller generates all clocks for CPU, AMBA and all the engine modules. In this chip includes one PLL module. The clock source for each module is come from the PLL, or from the external crystal input directly. For each clock there is bit on the CLKEN register to control the clock ON or OFF individually, and the divider setting is on the CLKDIV register. The register can also be used to control the clock enable or disable for power control.

6.3.1 **Power Management**

This chip provides three power management scenarios to reduce power consumption. The peripheral clocks can be enabled / disabled individually by controlling the corresponding bit in CLKSEL control register. Software can turn-off the unused modules' clock for power saving. It also provides IDLE and **Power-down** modes to reduce the power consumption.

IDLE MODE


If the IDLE bit in Power Management Control Register (PMCON) is set, the ARM CORE clock source will be halted after 256 cycles, and then the ARM core will stop. The AHB or APB clocks are still active except the clock to cache controller and ARM core. This ARM core will exit from this mode when a nIRQ or nFIQ signals from any peripheral, such as Timer overflow interrupts. The memory controller can also be forced to enter idle state if both the **MIDLE** and **IDLE** bits are set.

н н	OUT PLL)	256 clocks				
CLF	KIDLE					
CPU						
Н		111				
			ON C	ase1. IDLE=1,	PD=0, MIDLE=0	
				29	Publication Releas	se Date: Jun. 18, 2010 Revision: A5

Power-Down Mode

The mode provides the minimum power consumption. When the system is not working or waiting an external event, software can write PD bit to turn off all the clocks includes system crystal oscillator and PLL to let ARM core to enter sleep mode after 256 clock cycles. In this state, all peripherals are also in sleep mode since the clock source is stopped. This system will exit from this mode when external interrupts (**nIRQ** signals) are detected; this chip provides external interrupts and USB device to wake up the clock.

6.3.2 Clock Control Registers Map

Register	Address	R/W	Description	Reset Value
CLK_BA = 0xB00	0_0200			
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000
PLLCONO	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000
IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000
IPSRST	0xB000_0220	R/W	IP Software Reset Register	0x0000_0000
CLKEN1	0xB000_0224	R/W	Clock Enable Register	0x0000_0000
CLKDIV1	0xB000_0228	R/W	Clock Divider Control 1 Register	0x0000_0000

32-BIT ARM926EJ-S BASED MCU

Clock Enable Register (CLKEN)

Register	Address	R/W	Description	Reset Value
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834

31	30	29	28	27	26	25	24
RESERVED				GDMA	~ (U)	RESERVED)
23	22	21	20	19	18	17	16
TIMER4	TIMER3	TIMER2	TIMER1	TIMERO	RESERVED		
15	14	13	12	11	10	9	8
	RESE	RVED		UARTO	RESERVED	USBH	USBD
7	6	5	4	3	2	1	0
EMC	RESERVED	DMAC	FMI		RES	ERVED	NY.

Bits	Descriptions	5
[31:28]	Reserved	Reserved, write 0 is recommended.
[27]	GDMA	GDMA Clock Enable Bit 0 = Disable GDMA clock 1 = Enable GDMA clock
[26:24]	Reserved	Reserved, write 0 is recommended.
[23]	TIMER4	Timer4 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[22]	TIMER3	Timer3 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[21]	TIMER2	Timer2 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[20]	TIMER1	Timer1 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[19]	TIMERO	Timer0 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[18:12]	Reserved	Reserved, write 0 is recommended.
[11]	UARTO	UARTO Clock Enable Bit 0 = Disable UART0 clock 1 = Enable UART0 clock

[10]	Reserved	Reserved, write 0 is recommended.
[9]	USBH	USB Clock Enable Bit 0 = Disable USB Host Controller clock 1 = Enable USB Host Controller clock
[8]	USBD	USB Device Clock Enable Bit 0 = Disable USB Device Controller clock 1 = Enable USB Device Controller clock
[7]	EMC	EMC Clock Enable Bit 0 = Disable EMC Controller clock 1 = Enable EMC Controller clock
[6]	Reserved	Reserved, write 0 is recommended.
[5]	DMAC	DMAC Clock Enable Bit 0 = Disable DMAC Controller clock 1 = Enable DMAC Controller clock
[4]	FMI	FMI Clock Enable Bit 0 = Disable FMI Controller clock 1 = Enable FMI Controller clock
[3:0]	Reserved	Reserved, write 0 is recommended.

32-BIT ARM926EJ-S BASED MCU

Clock Select Register (CLKSEL)

Register	Address	R/W	Description	Reset Value
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX

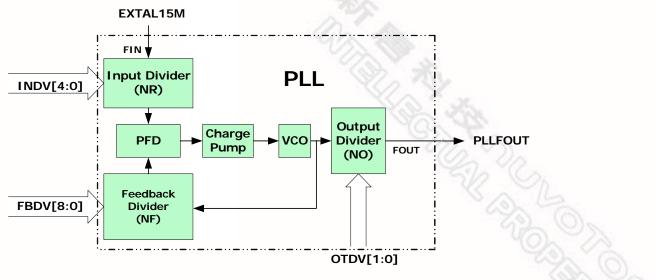
31	30	29	28	27	26	25	24
			RESE	RVED	× ())	NOS-	
23	22	21	20	19	18	17	16
RESERVED)		S	MSDSEL
15	14	13	12	11	10	9	8
	MSD	SEL	•		RESE		200
7	6	5	4	3	2	1	0
		RESE	RVED			CPU	CKSEL

Descriptions				
	MS/SD Er [16:15]	ngine Clock	Source Select Bit	
	MSDSEL	[16:15]	Clock Source	
	0	0	PLL0 Clock	
6:12] MSDSEL	0	1	RESERVED	
	1	0	EXTAL15M pin	
	1	1	EXTAL15M pin (Default)	
	[14:12]			
	Selected PL	L0 source div	vided from 1 to 8.	
2				7)
- C.	CPUCKSEL		Clock Source	
CPUCKSEL	0	0	PLL0 Clock	
	0	1	RESERVED	
1912 6	1	0	PLL0 /2 Clock	
GATA	1	1	EXTAL15M pin	
	MSDSEL	MSDSEL 0 0 0 1 1 1 1 14:12] Selected PL Selected PL Default value CPUCKSEL 0 0 0	MSDSEL 16:15] 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0	MSDSEL Clock Source 0 0 PLL0 Clock 0 1 RESERVED 1 0 EXTAL15M pin 1 1 EXTAL15M pin (Default) [14:12] Selected PLL0 source divided from 1 to 8. CPU/AMBA Clock Source Select Bit Default value is depended on power-on setting (Pin MA17) CPUCKSEL Clock Source 0 0 PLL0 Clock 0 0 PLL0 Clock 1 0 PLL0 Clock

Clock Divider Control Register (CLKDIV)

Register	Address	R/W	Description	Reset Value
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000

				~~~	N. M.		
31	30	29	28	27	26	25	24
RESERVED RESERVED			APBCKDIV AHBCKDIV		CKDIV		
23	22	21	20	19	18	17	16
RESERVED				RESERVED			
15	14	13	12	11	10	9	8
	RESI	ERVED		RESERVED			
7	6	5	4	3	2	1	0
	RESERVED				CPUC	KDIV	20


Bits	Descriptions							
	APBCKDIV	AMBA APB Clock Divider Control Register						
		<b>APBCKDIV</b>		Clock Frequency	7			
[27:26]		0	0 0 Reserved					
		0	1	AHBCLK/2				
		1	0	AHBCLK/4				
		1	1	AHBCLK/8				
[25:24]	AHBCKDIV	AMBA AHB Clock (AHBCLK) Divider Control Register           AHBCKDIV         Clock Frequency						
		0	0	CPUCLK/1				
	AIDORDIV	0	1	CPUCLK/2				
	No.	1	0	CPUCLK/4				
	1995 20	1	1	CPUCLK/8				
[3:0]	CPUCKDIV	CPU Clock Source Divider Control Register CPUCLK = CCK clock/(CPUCKDIV +1) Where (1) CPUCKDIV is 0~15 (2) CCK clock is the clock source output by CPUCKSEL control register						

### PLL Control Register 0 (PLLCON0)

Register	Address	R/W	Description	Reset Value
PLLCON0	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63

						Cold Same	
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
RESERVED							PWDEN
15	14	13	12	11	10	9	8
FBDV							
7	6	5	4	3	2	1	0
FBDV	OTDV		INDV				

Bits	Descriptions	;							
[16]	PWDEN	0 = PLL is in nor	Power Down Mode Enable 0 = PLL is in normal mode (default) 1 = PLL is in power down mode						
[15:7]	FBDV		PLL VCO Output Clock Feedback Divider Feedback Divider divides the output clock from VCO of PLL.						
		PLL Output Clo	ock Divider						
12 2		OTDV	Divided by						
1/2	οτον	0 0	1						
[6:5]		0 1	2						
1		1 0	2						
		1 1	4						
[4:0]	INDV	PLL Input Cloc Input Divider div		reference clock into the PLL.					
			36	Publication Release Date: Jun. 18, 2010 Revision: A					



32-BIT ARM926EJ-S BASED MCU

The formula of output clock of PLL is:

Fout = Fin 
$$*\frac{NF}{NR}*\frac{1}{NO}$$

Fout: Output clock of **Output Divider** FIN : External clock into the **Input Divider** NR : Input divider value (NR = INDV + 2) NF : Feedback divider value (NF = FBDV + 2) NO : Output divider value (NO = OTDV)

Example Case:

The input clock frequency of EXTAL15M pin is 15MHz

PLL Output Frequency	200MHz	166MHz	133MHz	100MHz
PLLCON0 Reg.	0x0000_4F24	0x0000_4124	0x0000_22A2	0x0000_4F64

PLL Output Frequency	66MHz	169.34MHz (44.1K*3840)	122.88MHz (48K*2560)	
PLLCON0 Reg.	0x0000_2B63	0x0000_4E25	0x0000_92E7	



#### **Power Management Control Register (PMCON)**

Register	Address	R/W	Description	Reset Value
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			RES	ERVED	SID	Cs.	
23	22	21	20	19	18	17	16
			RESI	ERVED	1	820	S.
15	14	13	12	11	10	9	8
			RESI	ERVED		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
7	6	5	4	3	2	1	0
	RESE	RVED		RESET	MIDLE	PD	IDLE

Bits	Description	IS
[3]	RESET	Software Reset This is a software reset control bit. Set logic 1 to generate an internal reset pulse. This bit is auto-clear to logic 0 at the end of the reset pulse.
[2]	MIDLE	Memory Controller IDLE enable         Setting this bit HIGH to enable memory controller enter IDLE mode, the clock source of memory controller will be halted while ARM CORE enter IDLE mode.         1 = Memory controller will enter IDLE mode when IDLE bit is set.         0 = Memory controller still active when IDLE bit is set.
[1]	PD	Power Down Enable Setting this bit HIGH, this chip enters power saving mode. The clock source 15M crystal oscillator and PLL both will stop to generate clock. User can use nIRQ[1:0], USB device and external nRESET to wakeup chip. 1 = Power down mode enable 0 = Normal mode
		Publication Release Date: Jun. 18, 2010 38 Revision: A5

## 32-BIT ARM926EJ-S BASED MCU

		CPU IDLE mode Enable
[0]	IDLE	Setting this bit HIGH, ARM CPU Core enters power saving mode. The peripherals still working if the clock enable bit in <b>CLKSEL</b> is set. Any nIRQ or nFIQ to ARM core will let ARM core to exit IDLE state. 1 = CPU IDLE mode enable 0 = Normal mode

#### **IRQ Wakeup Control Register (IRQWAKECON)**

Register	Address	R/W	Description	Reset Value
IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			RESI	ERVED		70	22.0
23	22	21	20	19	18	17	16
			RESI	ERVED			
15	14	13	12	11	10	9	8
	•	RESE	RVED	•	•	IRQWAK	EUPPOL0
7	6	5	4	3	2	1	0
		RESE	RVED			IRQWA	<b>KEUPENO</b>

Bits	Descriptions	
[9:8]	IRQWAKEUPPOLO	Wakeup Polarity for nIRQ[1:0] 1 = nIRQx is high level wakeup 0 = nIRQx is low level wakeup
[1:0]	IRQWAKEUPENO	Wakeup Enable for nIRQ[1:0] 1 = nIRQx wakeup enable 0 = nIRQx wakeup disable

The reserved bit has to keep on logical 0.



#### IRQ Wakeup Flag Register (IRQWAKEFLAG)

Register	Address	R/W	Description	Reset Value
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000

					YUA Y	23	
31	30	29	28	27	26	25	24
			RESE	RVED	N/	26	
23	22	21	20	19	18	17	16
			RESE	RVED		0	$\sim$
15	14	13	12	11	10	9	8
			RESE	RVED		N.	ふう
7	6	5	4	3	2	1	0
		RESE	RVED			IRQWA	KEFLAG

identify in IRQ

#### IP Software Reset Register (IPSRST)

Register	Address	R/W	Description	Reset Value		
IPSRST	0xB000_0220	W	IP Software Reset Register	0x0000_0000		

31	30	29	28	27	26	25	24			
	RESERVED			RESERVE	D (O)	RVED				
23	23 22		20	19	18	17	16			
	RESER	RVED		TIMER	i i	RESERVED				
15	14	13	12	11	10	9	8			
	RESEF	RVED		UART	RESERVED	USBH	USBD			
7	6	5	4 3 2		2	2 1				
EMC	RESERVED	DMAC	FMI	GDMA	RESERVED					

Bits	Descriptions	
[19]	TIMER	<b>Timer Software Reset Control Bit</b> 0 = write 0 is no action for all of TIMERs 1 = write 1, a reset pulse is generated to reset all of TIMERs, and This bit will be auto clear to zero.
[11]	UART	UART Software Reset Control Bit 0 = write 0 is no action for UART 1 = write 1, a reset pulse is generated to reset UART, and This bit will be auto clear to zero.
[9]	USBH	<b>USB Software Reset Control Bit</b> 0 = write 0 is no action for USB Host Controller 1 = write 1, a reset pulse is generated to reset USB Host Controller, and This bit will be auto clear to zero.
[8]	USBD	USB Device Software Reset Control Bit 0 = write 0 is no action for USB Device Controller 1 = write 1, a reset pulse is generated to reset USB Device Controller, and This bit will be auto clear to zero.
[7]	EMC	EMC Software Reset Control Bit 0 = write 0 is no action for EMC Controller 1 = write 1, a reset pulse is generated to reset EMC Controller, and This bit will be auto clear to zero.
[5]	DMAC	DMAC Software Reset Control Bit 0 = write 0 is no action for DMA Controller 1 = write 1, a reset pulse is generated to reset DMA Controller, and This bit will be auto clear to zero.

[4]	FMI	<ul> <li>FMI Software Reset Control Bit</li> <li>0 = write 0 is no action for FMI Controller</li> <li>1 = write 1 , a reset pulse is generated to reset FMI Controller, and This bit will be auto clear to zero.</li> </ul>
[3]	GDMA	<b>GDMA Software Reset Control Bit</b> 0 = write 0 is no action for GDMA Controller 1 = write 1, a reset pulse is generated to reset GDMA Controller, and This bit will be auto clear to zero.



## 32-BIT ARM926EJ-S BASED MCU

#### Clock Enable 1 Register (CLKEN1)

Register	Address	R/W	Description	Reset Value
CLKEN1	0xB000_0224	R/W	Clock Enable Register	0x0000_0000

					Yah	2,	_
31	30	29	28	27	26	25	24
			RESE	RVED	54	2 Sh	
23	22	21	20	17	16		
			RESE	RVED		·0;	
15	14	13	12	11	10	9	8
			RESE	RVED			ST
7	6	5	4	3	2	1	0
	F	RESERVED			RMH	SD	MS

Bits	Descriptio	ns	
[2]	RMH	<b>RMII Clock Enable Bit</b> 0 = Disable RMII clock 1 = Enable RMII clock	
[1]	SD	<b>SD Clock Enable Bit</b> 0 = Disable SD clock 1 = Enable SD clock	
[0]	MS	MS Clock Enable Bit 0 = Disable MS clock 1 = Enable MS clock	



#### Clock Divider Control 1 Register (CLKDIV1)

Register	Address	R/W	Description	Reset Value	
CLKDIV1	0xB000_0228	R/W	Clock Divider Control 1 Register	0x0000_0000	

	Mark Mer											
31	30	29	28	27	27 26 25							
		Sh										
23	22	21	20	18	17	16						
			RESE	RVED		"Op"	1					
15	14	13	12	11	10	9 8						
			SD_	DIV		0	S					
7	6	5	4	3	2	1	0					
			MS_	DIV								

Bits	Descriptions	
[15:8]	SD_DIV	SD divider SD_CLK = Source Clock/(SD_DIV +1) Where Source Clock selection is controlled by MSDSEL of register CLKSEL.
[7:0]	MS_DIV	MS divider MS_CLK = Source Clock/(MS_DIV +1) Where Source Clock selection is controlled by MSDSEL of register CLKSEL.

## 32-BIT ARM926EJ-S BASED MCU

### 6.4 External Bus Interface

#### 6.4.1 Overview

This chip supports External Bus Interface (**EBI**), which controls the access to the external IO, ROM/FLASH and SDRAM devices. The **EBI** has chip select signals to select one ROM/FLASH bank, one IO and one SDRAM bank with 22-bit address bus and 8-bit/16-bit data width.

## 6.4.2 Functional Description

#### 6.4.2.1 SDRAM Controller

The SDRAM controller module contains configuration registers, timing control registers, common control register and other logic to provide 8, 16 bits SDRAM interface with a single 8, 16 bits SDRAM device or two 8-bit devices wired to give a 16-bit data path.

The SDRAM controller has the following features :

- Supports up to one external SDRAM banks
- Maximum size of SDRAM bank is 128M bytes
- 8, 16-bit data interface
- Programmable CAS Latency : 1, 2 and 3
- Fixed Burst Length : 1
- Sequential burst type
- Write Burst Length mode is Burst
- Auto Refresh Mode and Self Refresh Mode
- Adjustable Refresh Rate
- Power up sequence

# 32-BIT ARM926EJ-S BASED MCU

### 6.4.2.2 SDRAM Components Supported

Table: SDRAM Components supported												
Size	Туре	Banks	Row Addressing	Column Addressing								
1 GM bita	2Mx8	2	RA0~RA10	CA0~CA8								
16M bits	1Mx16	2	RA0~RA10	CA0~CA7								
	8Mx8	4	RA0~RA11	CA0~CA8								
64M bits	4Mx16	4	RA0~RA11	CA0~CA7								
	2Mx32	4	RA0~RA10	CA0~CA7								
	16Mx8	4	RA0~RA11	CA0~CA9								
128M bits	8Mx16	4	RA0~RA11	CA0~CA8								
	4Mx32	4	RA0~RA11	CA0~CA7								
256M bits	32Mx8	4	RA0~RA12	CA0~CA9								
250M DILS	16Mx16	4	RA0~RA12	CA0~CA8								
512M bits	64Mx8	4	RA0~RA12	CA0~CA9,CA11								
JIZM DITS	32Mx16	4	RA0~RA12	CA0~CA9								

## 32-BIT ARM926EJ-S BASED MCU

#### 6.4.2.3 AHB Bus Address Mapping to SDRAM Bus

Note: * indicates the signal is not used; ** indicates the signal is fixed at logic 0 and is not used; The HADDR prefixes have been omitted on the following tables.

MA14 ~ MA0 are the Address pins of the EBI interface;

MA14 and MA13 are also the bank selected signals of SDRAM.

#### SDRAM Data Bus Width: 16-bit

Total	Туре	RxC	R/ C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	10	**	10*	21	20	19	18	17	16	15	14	13	12	11
			С	**	10	**	10*	AP	24*	9	8	7	6	5	4	3	2	1
16M	1Mx16	11x8	R	**	9	**	9*	10	20	19	18	17	16	15	14	13	12	11
			С	* *	9	**	9*	AP	24*	9*	8	7	6	5	4	3	2	1
64M	8Mx8	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
64M	4Mx16	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
64M	2Mx32	11x8	R	10	9	10*	22*	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
128M	16Mx8	12x10	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24	9	8	7	6	5	4	3	2	1
128M	8Mx16	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
128M	4Mx32	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	9*	8	7	6	5	4	3	2	1
256M*	32Mx8	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1
256M	16Mx16	13x9	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
100			С	10	11	23*	22*	AP	25*	9	8	7	6	5	4	3	2	1
512M	64Mx8	13x11	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
	1		С	10	11	23*	26	AP	25	9	8	7	6	5	4	3	2	1
512M	32Mx16	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1

## 32-BIT ARM926EJ-S BASED MCU

SDRA	M Dat	a Bus	: Wic	dth: 8	-bit				1	50	100							
Total	Туре	RxC	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	* *	9	**	9*	20	19	18	17	16	15	14	13	12	11	10
			С	* *	9	* *	9*	AP	23*	8	7	6	5	4	3	2	1	0
16M	1Mx16	11x8	R	**	8	* *	8*	9	19	18	17	16	15	14	13	12	11	10
			С	**	8	**	8*	AP	23*	8*	7	6	5	4	3	2	1	0
64M	8Mx8	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	1
64M	4Mx16	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
64M	2Mx32	11x8	R	9	8	9*	21*	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
128M	16Mx8	12x10	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23	8	7	6	5	4	3	2	1	0
128M	8Mx16	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	0
128M	4Mx32	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	8*	7	6	5	4	3	2	1	0
256M	32Mx8	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0
256M	16Mx16	13x9	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24*	8	7	6	5	4	3	2	1	0
512M	64Mx8	13x11	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	25	AP	24	8	7	6	5	4	3	2	1	0
512M	32Mx16	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0

Publication Release Date: Jun. 18, 2010 Revision: A5

## 32-BIT ARM926EJ-S BASED MCU

#### 6.4.2.4 SDRAM Power-Up Sequence

The default value of the mode register is not defined, therefore the mode register must be written after power up to operate the SDRAM. This chip supports the function of Power-Up Sequence, that is, after system power on, the SDRAM Controller automatically executes the commands needed for Power-Up sequence and set the mode register of each bank to default value. The default value is :

- Burst Length = 1
- Burst Type = Sequential (fixed)
- CAS Latency = 2
- Write Burst Length = Burst (fixed)

The value of mode register can be changed after power up sequence by setting the value of corresponding bank's configuration register "LENGTH" and "LATENCY" bits and set the MRSET bit enable to execute the Mode Register Set command.

Register	Offset	R/W	Description	Reset Value					
(EBI_BA=0xB000_1000)									
EBICON	0xB000_1000	R/W	EBI control register	0x0001_0001					
ROMCON	0xB000_1004	R/W	ROM/FLASH control register	0x0000_0FFX					
<b>SDCONFO</b>	0xB000_1008	R/W	SDRAM bank 0 configuration register	0x0000_0800					
SDTIMEO	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000					
EXTOCON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000					
CKSKEW	0xB000_102C	R/W	Clock skew control register (for testing)	0xXXXX_0048					

### 6.4.3 EBI Register Mapping

## 6.4.4 EBI Register Details

#### **EBI Control Register (EBICON)**

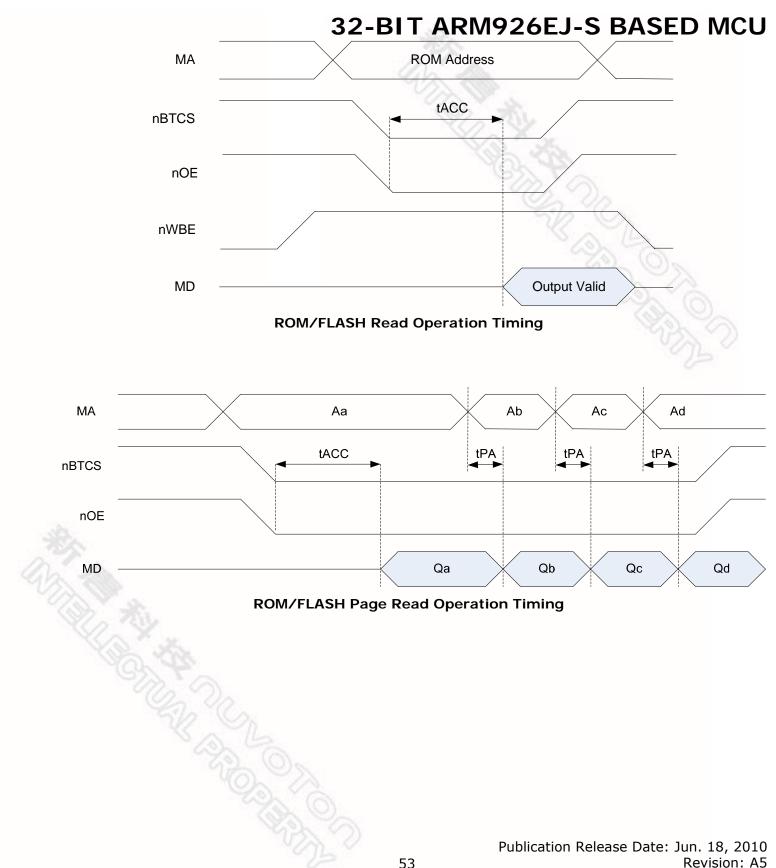
Register	Address	R/W	Description	Reset Value
EBICON	0xB000_1000	R/W	EBI Control Register	0x0001_0001

30	29	28	27	26	25	24					
Reserved											
22	21	20	19	18	17	16					
	Reserved	REFEN	REFMOD	CLKEN							
14	13	12	11	10	9	8					
		REFF	RAT		102	12					
6	5	4	3	2	1	0					
	REFRAT	Res	erved	LITTLE							
		22 21 Reserved 14 13 6 5	Reser           22         21         20           Reserved           14         13         12           REFR           6         5         4	Reserved           22         21         20         19           Reserved           14         13         12         11           REFRAT           6         5         4         3	Reserved           22         21         20         19         18           Reserved         REFEN         REFEN           14         13         12         11         10           REFRAT           6         5         4         3         2	Reserved           22         21         20         19         18         17           Reserved         REFEN         REFMOD           14         13         12         11         10         9           REFRAT           6         5         4         3         2         1					

Bits	Descriptions	
[24]	EXBEO	<b>EXBEO: External IO Bank O Byte Enable</b> 0: nWBE[1:0] pin is byte write strobe signal 1: nWBE[1:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
[18]	REFEN	Enable SDRAM refresh cycle for SDRAM bank0 & bank1 This bit set will start the auto-refresh cycle to SDRAM. The refresh rate is according to REFRAT bits.
[17]	REFMOD	The refresh mode of SDRAM for SDRAM bank Defines the refresh mode type of external SDRAM bank 0 = Auto refresh mode 1 = Self refresh mode
[16]	CLKEN	Clock enable for SDRAM Enables the SDRAM clock enable (CKE) control signal 0 = Disable (power down mode) 1 = Enable (Default)
[15:3]	REFRAT	Refresh count value for SDRAMThe refresh period is calculated as $period = \frac{value}{fMCLK}$ The SDRAM Controller automatically provides an auto refresh cycle for every refresh period programmed into the <b>REFRAT</b> bits when the <b>REFEN</b> bit of each bank is set.
[0]	LITTLE	Little Endian mode This bit always set to a logic 1 (Read Only)

Notice: Reserved bits have to be 0 for normal operation

## 32-BIT ARM926EJ-S BASED MCU


#### **ROM/Flash Control Register** (**ROMCON**)

Register	Address	R/W	Description	Reset Value	
ROMCON	0xB000_1004	R/W	ROM/FLASH Control Register	0x0000_0FFX	

				XO	No.						
31	30	29	28	27	26	25	24				
BASADDR											
23	22	21	20	19	18	17	16				
		BASADDR		SIZE							
15	14	13	12	11	10	9	8				
SIZE		Reserved		tPA							
7	6	5	4	3	2	1	0				
	tA	CC		BTSIZE PGMODI			IODE				
						1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					

Bits	Descriptions											
[31:19] <b>BASADDR Base Address Pointer of ROM/Flash Bank</b> The start address is calculated as ROM/Flash bank base pointer base address pointer together with the "SIZE" bits constitu- address range of each bank.												
		Size of	Size of ROM/FLASH Memory									
			SIZE	[18:15]		Byte						
		0	0	0	0	256K						
		0	0	1	0	512K						
		0	1	0	0	1M						
[18:15]	SIZE	0	1	1	0	2M						
100		1	0	0	0	4M						
n s	2	1	0	1	0	8M						
	8		C	)thers		Reserved						
St.	201											
×Ç.	Se D											
				51		Publication Release Date: J	un. 18, 2010 Revision: A5					

Bits	Descriptions										
		Page N	lode A	ccess (	Cycle T	ime					
			tPA[	11:8]	1	MCL K	tPA[11:8] I			MCL K	
		0	0	0	0	1		0	0	0	10
		0	0	0	1	2	13	0	0	1	12
[11:8]	tPA	0	0	1	0	3	1	0	1	0	14
		0	0	1	1	4	271	0	1	1	16
		0	1	0	0	5	1	12	0	0	18
		0	1	0	1	6	1		0	1	20
		0	1	1	0	7	1	×1_	1	0	22
		0	1	1	1	8	1	10	1	1	24
		Access	Cycle	Time					172	28	
				<b>[7:4]</b>		MCLK			[7:4]		MCLK
		0	0	0	0	3	1	0	0	0	10
[7:4]		0	0	0	1	3	1	0	0	1	12
	tACC	0	0	1	0	3	1	0	1	0	14
		0	0	1	1	4	1	0	1	1	16
		0	1	0	0	5	1	1	0	0	18
		0	1	0	1 0	6 7	1	1 1	0	1 0	20 22
		0	1	1	1	8	1 1	1	1	1	22
		This RC its start setting	Boot ROM/FLASH Data Bus Width This ROM/Flash bank is designed for a boot ROM. BASADDR bits de its start addresses. The external data bus width is determined by po setting when booting from external ROM.								
[2.2]		BTSIZE [3:2] Bus Width									
[3:2]	BTSIZE	0		0		8-bit					
12 -		0		1		16-bit					
17	100	1		0		RESERVED					
× ()	NY NY	1		1				RESER	VED		
1	PGMODE	Page N									
			JNIODI	E [1:0]				Mod			
[1:0]		0		0		Normal ROM					
		0		0				4 word 8 word	•••		
	~ 63	201		1				16 word			
	5	Up 9	S	T					i paye		



#### SDRAM Configuration Register (SDCONF0)

The configuration registers enable software to set a number of operating parameters for the SDRAM controller.

Register	Address	R/W	Description	Reset Value
SDCONF0	0xB000_1008	R/W	SDRAM Bank 0 Configuration Register	0x0000_0800

31	30	29	28	27	26	25	24			
			BASA	DDR		0n				
23	22	21	20	19	18	17	16			
		BASADDR			1	Reserved	served			
15	14	13	12	11	10	9	8			
MRSET	RESERVED	AUTOPR	LATI	ENCY	NCY Reserved					
7	6	5	4	3	2	1	0			
СОМРВК	MPBK DBWD			UMN	SIZE					

Bits	Descriptions											
[31:19]	BASADDR	The start a SDRAM bas	Base Address Pointer of SDRAM Bank O The start address is calculated as SDRAM bank 0 base pointer << 18. The SDRAM base address pointer together with the "SIZE" bits constitutes the whole address range of each SDRAM bank.									
[15]	MRSET		SDRAM Mode Register Set Command for SDRAM Bank 0 This bit set will issue a mode register set command to SDRAM.									
[13]	AUTOPR	Enable the a 0 = Auto pr	Auto Pre-charge Mode of SDRAM for SDRAM Bank 0 Enable the auto pre-charge function of external SDRAM bank 0 D = Auto pre-charge L = No auto pre-charge									
hand a				<b>DRAM Bank 0</b> of external SDRAM b	ank_0							
22		LATENCY	' [12:11]	MCLK								
[12:11]	LATENCY	0	0	1								
[12.11]	LATENCT	0	1	2								
	C. P.	1	0	3								
	C 2	1	1	REVERSED								
[7]	СОМРВК	Indicates th bank 0. 0 = 2 banks	Number of Component Bank in SDRAM Bank 0 Indicates the number of component bank (2 or 4 banks) in external SDRAM bank 0. 0 = 2 banks 1 = 4 banks									

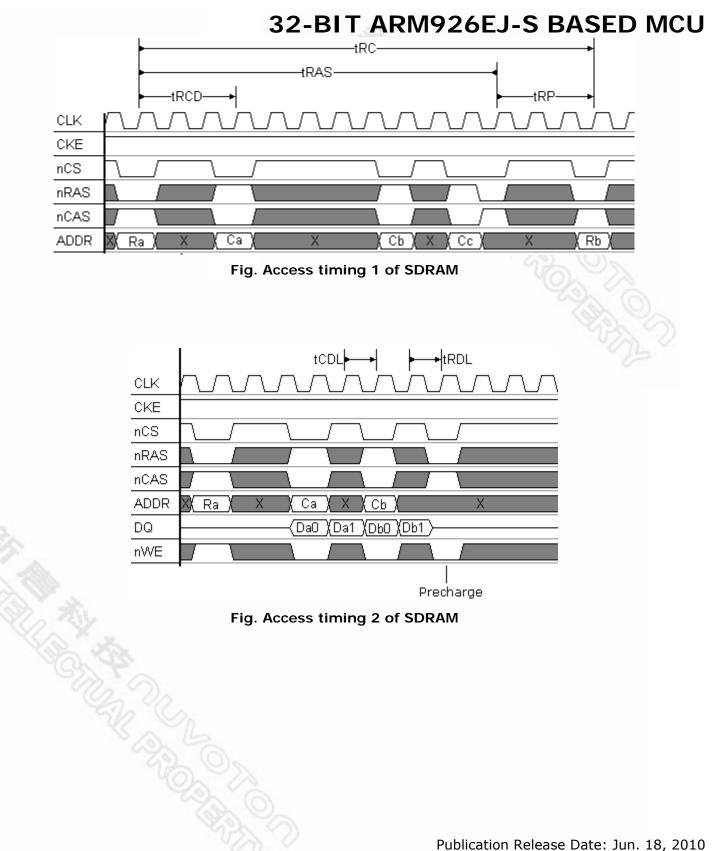
				32	-BIT ARM926E	J-S BASED MCU
		Indic	ates th	e exterr	or SDRAM Bank 0 al data bus width connect wit assigned SDRAM access signa	th SDRAM bank 0 al is not generated i.e. disable.
		D	BWD	6:5]	Bits	
[6:5]	DBWD		0	0	Bank disable	
			0	1	8-bit (byte)	
			1	0	16-bit (half-word)	
			1	1	RESERVED	200
		-			n Address bits in SDRAM B er of column address bits in e	
		COLUMN		N [4:3]	Bits	32 Or
[4:3]	COLUMN	0 0		0	8	- Qa - Ca
[1.5]	00LONIN		0	1	9	- CO 605-
			1	0	10	
			1	1	11	15
				RAM Ba e memo	<b>nk 0</b> ory size of external SDRAM ba	nk 0
			SIZE [	2:0]	Size of SDRAM (Byte)	
		(	) 0	0	Bank disable	
		(	) 0	1	2M	
[2:0]	SIZE	(	) 1	0	4M	
36		(	) 1	1	8M	
		1	L 0	0	16M	
h			L 0	1	32M	
220	8		L 1	0	64M	
Sto.	20.	1	L 1	1	128M	

Publication Release Date: Jun. 18, 2010 Revision: A5



#### SDRAM Timing Control Register (SDTIMEO)

Register	Address	R/W	Description	Reset Value
SDTIME0	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000


					A						
31	30	29	28	27	26	25	24				
			rved	Yah 45	N						
23	22	21	20	19	18	17	16				
Reserved											
15	14	13	12	11	10	9	8				
		Reserved			tRCD						
7	6	5	4	3	2	1	0				
tR	DL		tRP			tRAS	2				

Bits	Descriptio	ons				
		SDRAM	/I Bank	0, nRA	S to nCAS Delay	102A 0
		tR	CD [10	):8]	MCLK	- 15
		0	0	0	1	
		0	0	1	2	
		0	1	0	3	
[10:8]	tRCD	0	1	1	4	
		1	0	0	5	
		1	0	1	6	
		1	1	0	7	
		1	1	1	8	
5		SDRAN	/I Bank	0, Last	Data in to Pre-charge Con	nmand
	32	tR	2DL [7:	:6]	MCLK	
17.61		0	0         0           0         1           1         0		1	
[7:6]	tRDL				2	
	CS T				3	
	° On	1		1	4	
					Publication	n Release Date: Jun. 18, 201

		SDRAN	/I Bank	0, Rov	v Pre-charge Time	
		t	RP [5:3	3]	MCLK	
		0	0	0	1	
		0	0	1	2	
		0	1	0	3	
[5:3]	tRP	0	1	1	4	
		1	0	0	5	$\mathcal{O}_{\wedge}$
		1	0	1	6	N Con
		1	1	0	7 🔊	AL
		1	1	1	8	XI (0"
		SDRAN	/I Bank	0, Rov	v Active Time	92.02
		tRAS [2:0]			MCLK	So do
		0	0	0	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		0	0	1	2	25
<b>FO 0</b> ]		0	1	0	3	
[2:0]	tRAS	0	1	1	4	
		1	0	0	5	
		1	0	1	6	
		1	1	0	7	
		1	1	1	8	

Revision: A5

# nuvoTon

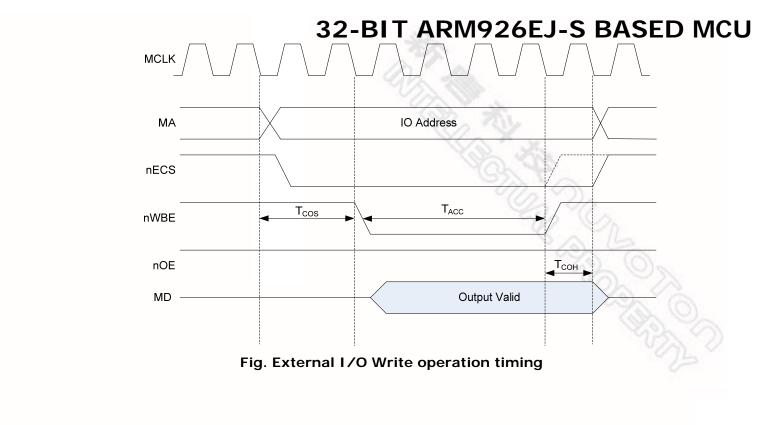


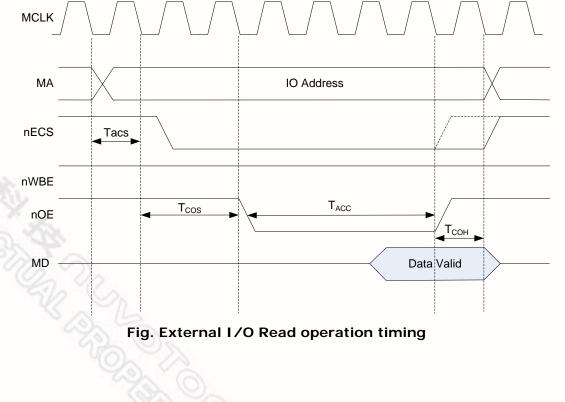


#### External I/O Control Registers (EXTOCON)

Register	Address	R/W	Description	Reset Value
EXT0CON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000

31	30	29	28	27	26	25	24	
			BASA	ADDR	Cy T			
23	22	21	20	19	18	17	16	
		2	SIZE					
15	14	13	12	11	10	9	8	
ADRS		tA	сс		tCOH			
7	6	5	4	3	2	1	0	
	tACS			tCOS		DB	WD	


Bits	Description	ns									
[31:19]	BASADDR	The sta pointer	ase Address Pointer of External I/O Bank O he start address of each external I/O bank is calculated as "BASADDR" base ointer << 18. Each external I/O bank base address pointer together with the SIZE" bits constitutes the whole address range of each external I/O bank.								
		The Siz	e of t	ne Exte	rnal I/O Bank 0						
		SIZ	E [18:	16]	Byte						
		0	0	0	256K						
		0	0	1	512K						
110010		0	1	0	1M						
[18:16]	SIZE	0	1	1	2M						
57 4		1	0	0	4M						
12	2	1	0	1	8M						
" (S)"	No.	1	1	0	Reserved						
~~	X.	1	1	1	Reserved						
X	18 6										
[15]	ADRS		DRS is	s set, EB	ent for External I I bus is alignment t	<b>/O Bank O</b> to byte address format, and ignores					


Bits	Descriptions										
		Access	Cycles	s (nOE	e or nS	WE active ti	me) fo	r Exter	mal I/	O Ban	k 0
			tACC[	14:11		MCLK		tACC[	14:11]		MCLK
		0	0	0	0	Reversed	1	0	0	0	9
		0	0	0	1	1	1	0	0	1	11
[14:11]	tACC	0	0	1 1	0	2 3	1	0	1 1	0	<u>13</u> 15
		0	1	0	1	4	1	1	0	0	15
		0	1	0	1	5	1	1	0	1	19
		0	1	1	0	6	1	510	<u>_1</u>	0	21
		0	1	1	1	7	1	1	1	1	23
		Chip S	electio	n Hold	-On Tir	me on nOE o	r nWBl	E for Ex	xternal	I I / O E	Bank O
		tCC	DH [10	:8]		MCLK					
[10:8]		0	0	0		0					5
		0	0	1		1					5
	10011	0	1	0		2		20			
	tCOH	0	1	1		3					
		1	0	0		4					
		1	0	1		5					
		1	1	0		6					
		1	1	1		7					
		Addres	s Set-	up Bef	ore nE(	CS for Extern	ernal I/O bank 0				
1.10277.1		tA	CS [7:	5]		MCLK					
×		0	0	0		0					
n A		0	0	1		1					
[7.5]	tACS	0	1	0		2					
[7:5]	IACS	0	1	1		3					
X	X	1	0	0		4					
X	A. C.	1	0	1		5					
	CO. CO	1	1	0		6					
		1	1	1		7					

Bits	Descriptions					
		When th before t	e bank ne nOE	is con or ne	figured, the access t w signal is activated.	nWBE for External I/O Bank 0 o its bank stretches chip selection time
		tCC	DS [4:2	2]	MCLK	Y
		0	0	0	0	1. 2. A.
		0	0	1	1 6	
[4:2]	tCOS	0	1	0	2	Con Vo
		0	1	1	3	Sh Sh
		1	0	0	4	NO CO
		1	0	1	5	52 O 2
		1	1	0	6	
		1	1	1	7	CH O
		Program	nmabl	e Dat	a Bus Width for Ex	ternal I/O Bank 0
		DBWI	D [1:0]	W	/idth of Data Bus	Q
		0	0		Disable bus	
[1:0]	DBWD	0	1		8-bit	
		1	0		16-bit	
		1	1		Reserved	

## NUC945ADN

# nuvoTon





## 32-BIT ARM926EJ-S BASED MCU

#### Clock Skew Control Register (CKSKEW)

Register	r Address R/W		Description	Reset Value
CKSKEW	0xB000_102C	R/W	Clock Skew Control Register	0xXXXX_0048

31	30	29	28	27	26	25	24					
			Rese	rved	So CI	5						
23	22	21	20	19	18	17	16					
	Reserved											
15	14	13	12	11	10	9	8					
			Reserved		X	Sall	SWPON					
7	6	5	4	3	2	1	0					
	DLH_CL	K_SKEW			MCLK	(_O_D	No.					

Bits	Descriptions	
[8]	SWPON	SDRAM Initialization by Software Trigger Set this bit will issue a SDRAM power on default setting command, this bit will be auto-clear by hardware
[7:4]	DLH_CLK_SKEW	Data Latch Clock Skew Adjustment
[3:0]	MCLK_O_D	MCLK Output Delay Adjustment



## 32-BIT ARM926EJ-S BASED MCU

## 6.5 Ethernet MAC Controller

#### **Overview**

This chip provides an Ethernet MAC Controller (EMC) for WAN/LAN application. This EMC has its DMA controller, transmit FIFO, and receive FIFO.

The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal CAM function for Ethernet MAC address recognition; Transmit-FIFO, Receive-FIFO, TX/RX state machine controller and status controller. The EMC only supports RMII (Reduced MII) interface to connect with PHY operating on 50MHz REF_CLK.

#### Features

- Supports IEEE Std. 802.3 CSMA/CD protocol.
- Supports both half and full duplex for 10M/100M bps operation.
- Supports RMII interface.
- Supports MII Management function.
- Supports pause and remote pause function for flow control.
- Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes) reception.
- Supports 16 entries CAM function for Ethernet MAC address recognition.
- Supports internal loop back mode for diagnostic.
- Supports 256 bytes embedded transmit and receive FIFO.
- Supports DMA function.



## 32-BIT ARM926EJ-S BASED MCU

#### 6.5.1 EMC Descriptors

A link-list data structure named as descriptor is used to keep the control, status and data information of each frame. Through the descriptor, CPU and EMC exchange the information for frame reception and transmission.

Two different descriptors are defined in NUC945. One named as Rx descriptor for frame reception and the other names as Tx descriptor for frame transmission. Each Rx descriptor consists of four words. There is much information kept in the descriptors and details are described as below.

#### 6.5.1.1 Rx Buffer Descriptor

3 3 2	1	1		
109	6	5	200	0
0	Rx Status	Rece	ive Byte Count	(c)
	Receive Buffer Sta	rting Address		BO
	Rese	erved	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(O)
	Next Rx Descripto	r Starting Addres	s	10

#### **Rx Descriptor Word 0**

31	30	29	28	27	26	25	24	
Ow	ner	Reserved						
23	22	21	20	19	18	17	16	
Reserved	RP	ALIE	RXGD	PTLE	Reserved	CRCE	RXINTR	
15	14	13	12	11	10	9	8	
RBC								
7	6	5	4	3	2	1	0	
	RBC							

	Descriptions						
[31:30]	Owner	Ownership The ownership field defines which one, the CPU or EMC, is the owner of each Rx descriptor. Only the owner has right to modify the Rx descriptor and the others can read the Rx descriptor only. 00: The owner is CPU 01: Undefined 10: The owner is EMC 11: Undefined If the O=2'b10 indicates the EMC RxDMA is the owner of Rx descriptor and the Rx descriptor is available for frame reception. After the frame reception completed, if the frame needed NAT translation, EMC RxDMA modify ownership field to 2'b11. Otherwise, the ownership field will be modified to 2'b00. If the O=2'b00 indicates the CPU is the owner of Rx descriptor. After the CPU completes processing the frame, it modifies the ownership field to 2'b10 and releases the Rx descriptor to EMC RxDMA.					
[29:23]	Rx Status	<b>Receive Status</b> This field keeps the status for frame reception. All status bits ar updated by EMC. In the receive status, bits 29 to 23 are undefined an reserved for the future.					
[22]	RP	Runt Packet The RP indicates the frame stored in the data buffer pointed by Rx descriptor is a short frame (frame length is less than 64 bytes). 1'b0: The frame is not a short frame. 1'b1: The frame is a short frame.					
[21]	ALIE	Alignment Error The ALIE indicates the frame stored in the data buffer pointed by Rx descriptor is not a multiple of byte. 1'b0: The frame is a multiple of byte. 1'b1: The frame is not a multiple of byte.					
[20]	RXGD	Frame Reception Complete The RXGD indicates the frame reception has completed and stored in the data buffer pointed by Rx descriptor. 1'b0: The frame reception not complete yet. 1'b1: The frame reception completed.					
[19]	PTLE	Packet Too Long The PTLE indicates the frame stored in the data buffer pointed by Rx descriptor is a long frame (frame length is greater than 1518 bytes). 1'b0: The frame is not a long frame. 1'b1: The frame is a long frame.					



Bits	Descriptions	
[17]	CRCE	CRC Error The CRCE indicates the frame stored in the data buffer pointed by Rx descriptor incurred CRC error. 1'b0: The frame doesn't incur CRC error. 1'b1: The frame incurred CRC error.
[16]	RXINTR	Receive Interrupt The RXINTR indicates the frame stored in the data buffer pointed by Rx descriptor caused an interrupt condition. 1'b0: The frame doesn't cause an interrupt. 1'b1: The frame caused an interrupt.
[15:0]	RBC	<b>Receive Byte Count</b> The RBC indicates the byte count of the frame stored in the data buffer pointed by Rx descriptor. The four bytes CRC field is also included in the receive byte count. But if the SPCRC of register MCMDR is enabled, the four bytes CRC field will be excluded from the receive byte count.

#### **Rx Descriptor Word 1**

30	29	28	27	26	25	24		
RXBSA								
22	21	20	19	18	17	16		
RXBSA								
14	13	12	11	10	9	8		
RXBSA								
6	5	4	3	2	1	0		
RXBSA				В	0			
	22 14	22     21       14     13       6     5	RXI 22 21 20 RXI 14 13 12 RXI 6 5 4	RXBSA           22         21         20         19           RXBSA           14         13         12         11           RXBSA           6         5         4         3	RXBSA       22     21     20     19     18       RXBSA       14     13     12     11     10       RXBSA       6     5     4     3     2	RXBSA       22     21     20     19     18     17       RXBSA       14     13     12     11     10     9       RXBSA       6     5     4     3     2     1		

Bits	Descriptions	
[31:2]	RXBSA	<b>Receive Buffer Starting Address</b> The RXBSA indicates the starting address of the receive frame buffer The RXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the receive frame buffer always located a word boundary.
[1:0]	во	Byte Offset The BO indicates the byte offset from RXBSA where the received fram begins to store. If the BO is 2'b01, the starting address where the received frame begins to store is RXBSA+2'b01, and so on.



#### **Rx Descriptor Word 2**

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
	Reserved							

The Rx descriptor word 2 keeps obsolete information for MAC translation. Therefore, these information bits are undefined and should be ignored.

#### **Rx Descriptor Word 3**

							100	
31	30	29	28	27	26	25	24	
NRXDSA								
23	22	21	20	19	18	17	16	
	NRXDSA							
15	14	13	12	11	10	9	8	
	NRXDSA							
7	6	5	4	3	2	1	0	
	NRXDSA							

Bits	Descriptions		
[31:0]	NRXDSA	used to keep the starting add	Address data structure. Consequently, NRXDSA is ress of the next Rx descriptor. The bits So, all Rx descriptor must locate at word
×4		boundary memory address.	
			Publication Release Date: Jun. 18, 2010



### 6.5.1.2 Tx Buffer Descriptor

3 3		1 1		
10		6 5	3 2	2 1 0
0		Reserved		CP
	Transmit Bu	Iffer Starting Address		BO
	Tx Status	Transmi	t Byte Count	
	Next Tx De	escriptor Starting Address		

#### **Tx Descriptor Word 0**

31	30	29	28	27	26	25	24	
Owner		Reserved						
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved				IntEn	CRCApp	PadEn		

Bits	Descriptions				
[31]	Owner	Ownership The ownership field defines which one, the CPU or EMC, is the owner of each Tx descriptor. Only the owner has right to modify the Tx descriptor and the other can read the Tx descriptor only. 0: The owner is CPU 1: The owner is EMC If the O=1'b1 indicates the EMC TxDMA is the owner of Tx descriptor and the Tx descriptor is available for frame transmission. After the frame transmission completed, EMC TxDMA modify ownership field to 1'b0 and return the ownership of Tx descriptor to CPU. If the O=1'b0 indicates the CPU is the owner of Tx descriptor. After the CPU prepares new frame to wait transmission, it modifies the ownership field to 1'b1 and releases the Tx descriptor to EMC TxDMA.			
[2]	IntEn	Transmit Interrupt Enable The IntEn controls the interrupt trigger circuit after the frame transmission completed. If the IntEn are enabled, the EMC will trigger interrupt after frame transmission completed. Otherwise, the interrupt doesn't be triggered. 1'b0: Frame transmission interrupt is masked. 1'b1: Frame transmission interrupt is enabled.			

Bits	Descriptions			
[1]	CRCApp	CRC Append The CRCApp control the CRC append during frame transmission. If CRCApp is enabled, the 4-bytes CRC checksum will be appended to frame at the end of frame transmission. 1'b0: 4-bytes CRC appending is disabled. 1'b1: 4-bytes CRC appending is enabled.		
[0]	PadEN	Padding Enable The PadEN control the PAD bits appending while the length of transmission frame is less than 60 bytes. If PadEN is enabled, EMC does the padding automatically. 1'b0: PAD bits appending is disabled. 1'b1: PAD bits appending is enabled.		

Tx D	escriptor	Word 1						
	31	30	29	28	27	26	25	24
				ТХЕ	BSA			P
	23	22	21	20	19	18	17	16
				TXE	BSA			
	15	14	13	12	11	10	9	8
	TXBSA							
	7	6	5	4	3	2	1	0
	TXBSA							0

Bits	Descriptions	
[31:2]	TXBSA	<b>Transmit Buffer Starting Address</b> The TXBSA indicates the starting address of the transmit frame buffer. The TXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the transmit frame buffer always located at word boundary.
[1:0]	во	<b>Byte Offset</b> The BO indicates the byte offset from TXBSA where the transmit frame begins to read. If the BO is 2'b01, the starting address where the transmit frame begins to read is TXBSA+2'b01, and so on.
[1:0]	BO	begins to read. If the BO is 2'b01, the starting address where the
		Publication Release Date: Jun. 18, 2010 70 Revision: A5



#### **Tx Descriptor Word 2**

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
31	30	29	28	27	26	25	24
	CC	NT		Reserved	SQE	PAU	TXHA
23	22	21	20	19	18	17	16
LC	TXABT	NCS	EXDEF	ТХСР	Reserved	DEF	TXINTR
15	14	13	12	11	10	9	8
	TBC						
7	6	5	4	3	2	1	0
	TBC						

Bits	Descriptions					
[31:28]	CCNT	<b>Collision Count</b> The CCNT indicates how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.				
[26]	SQE	SQE Error The SQE indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode. 1'b0: No SQE error found at end of packet transmission. 1'b0: SQE error found at end of packet transmission.				
[25]	PAU	Transmission Paused The PAU indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out. 1'b0: Next normal packet transmission process will go on. 1'b1: Next normal packet transmission process will be paused.				
[24]	тхна	P Transmission Halted The TXHA indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W. 1'b0: Next normal packet transmission process will go on. 1'b1: Next normal packet transmission process will be halted.				
[23]	LC	Late Collision The LC indicates the collision occurred in the outside of 64 bytes collision window. This means after the 64 bytes of a frame has transmitted out to the network, the collision still occurred. The late collision check will only be done while EMC is operating on half-duplex mode. 1'b0: No collision occurred in the outside of 64 bytes collision window. 1'b1: Collision occurred in the outside of 64 bytes collision window.				

Bits	Descriptions						
[22]	ТХАВТ	Transmission Abort The TXABT indicates the packet incurred 16 consecutive collisions during transmission, and then the transmission process for this packet is aborted. The transmission abort is only available while EMC is operating on half-duplex mode. 1'b0: Packet doesn't incur 16 consecutive collisions during transmission. 1'b1: Packet incurred 16 consecutive collisions during transmission.					
[21]	NCS	<ul> <li>No Carrier Sense</li> <li>The NCS indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode.</li> <li>1'b0: CRS signal actives correctly.</li> <li>1'b1: CRS signal doesn't active at the start of or during the packet transmission.</li> </ul>					
[20]	EXDEF	Defer ExceedThe EXDEF indicates the frame waiting for transmission has deferredover 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. Thedeferral exceed check will only be done while bit NDEF of MCMDR isdisabled, and EMC is operating on half-duplex mode.1'b0: Frame waiting for transmission has not deferred over 0.32768ms(100Mbps) or 3.2768ms (10Mbps).1'b1: Frame waiting for transmission has deferred over 0.32768ms(100Mbps) or 3.2768ms (10Mbps).					
[19]	ТХСР	<b>Transmission Complete</b> The TXCP indicates the packet transmission has completed correctly. 1'b0: The packet transmission doesn't complete. 1'b1: The packet transmission has completed.					
[17]	DEF	Transmission DeferredThe DEF indicates the packet transmission has deferred once. The DEF isonly available while EMC is operating on half-duplex mode.1'b0: Packet transmission doesn't defer.1'b1: Packet transmission has deferred once.					
[16]	TXINTR	<b>Transmit Interrupt</b> The TXINTR indicates the packet transmission caused an interrupt condition. 1'b0: The packet transmission doesn't cause an interrupt. 1'b1: The packet transmission caused an interrupt.					
[15:0]	твс	<b>Transmit Byte Count</b> The TBC indicates the byte count of the frame stored in the data buffer pointed by Tx descriptor for transmission.					
	- The second sec	Publication Release Date: Jun. 18, 2010 72 Revision: A					

# nuvoTon

# 32-BIT ARM926EJ-S BASED MCU

### **Tx Descriptor Word 3**

31	30	29	28	27	26	25	24	
NTXDSA								
23	22	21	20	19	18	17	16	
	NTXDSA							
15	14	13	12	11	10	9	8	
			NTX	DSA	02	00		
7	6	5	4	3	2	1	0	
	NTXDSA							

Bits	Descriptions	
[31:0]	NTXDSA	Next Tx Descriptor Starting Address The Tx descriptor is a link-list data structure. Consequently, NTXDSA is used to keep the starting address of the next Tx descriptor. The bits [1:0] will be ignored by EMC. So, all Tx descriptor must locate at word boundary memory address.



# 6.5.2 EMC Register Mapping

The EMC implements many registers and the registers are separated into three types, the control registers, the status registers and diagnostic registers. The control registers are used by S/W to pass control information to EMC. The status registers are used to keep EMC operation status for S/W.

EMC Registe	ers		COX -				
Register	Address	R/W	Description	Reset Value			
EMC_BA =	EMC_BA = 0xB000_3000						
Control Reg	jisters (44)		Salla				
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000			
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000			
САМОМ	0xB000_3008	R/W	CAM0 Most Significant Word Register	0x0000_0000			
CAMOL	0xB000_300C	R/W	CAM0 Least Significant Word Register	0x0000_0000			
CAM1M	0xB000_3010	R/W	CAM1 Most Significant Word Register	0x0000_0000			
CAM1L	0xB000_3014	R/W	CAM1 Least Significant Word Register	0x0000_0000			
CAM2M	0xB000_3018	R/W	CAM2 Most Significant Word Register	0x0000_0000			
CAM2L	0xB000_301C	R/W	CAM2 Least Significant Word Register	0x0000_0000			
САМЗМ	0xB000_3020	R/W	CAM3 Most Significant Word Register	0x0000_0000			
CAM3L	0xB000_3024	R/W	CAM3 Least Significant Word Register	0x0000_0000			
CAM4M	0xB000_3028	R/W	CAM4 Most Significant Word Register	0x0000_0000			
CAM4L	0xB000_302C	R/W	CAM4 Least Significant Word Register	0x0000_0000			
CAM5M	0xB000_3030	R/W	CAM5 Most Significant Word Register	0x0000_0000			
CAM5L	0xB000_3034	R/W	CAM5 Least Significant Word Register	0x0000_0000			
CAM6M	0xB000_3038	R/W	CAM6 Most Significant Word Register	0x0000_0000			
CAM6L	0xB000_303C	R/W	CAM6 Least Significant Word Register	0x0000_0000			
CAM7M	0xB000_3040	R/W	CAM7 Most Significant Word Register	0x0000_0000			
CAM7L	0xB000_3044	R/W	CAM7 Least Significant Word Register	0x0000_0000			
CAM8M	0xB000_3048	R/W	CAM8 Most Significant Word Register	0x0000_0000			
CAM8L	0xB000_304C	R/W	CAM8 Least Significant Word Register	0x0000_0000			
CAM9M	0xB000_3050	R/W	CAM9 Most Significant Word Register	0x0000_0000			
CAM9L	0xB000_3054	R/W	CAM9 Least Significant Word Register	0x0000_0000			
CAM10M	0xB000_3058	R/W	CAM10 Most Significant Word Register	0x0000_0000			
CAM10L	0xB000_305C	R/W	CAM10 Least Significant Word Register	0x0000_0000			
CAM11M	0xB000_3060	R/W	CAM11 Most Significant Word Register	0x0000_0000			
CAM11L	0xB000_3064	R/W	CAM11 Least Significant Word Register	0x0000_0000			
CAM12M	0xB000_3068	R/W	CAM12 Most Significant Word Register	0x0000_0000			
CAM12L	0xB000_306C	R/W	CAM12 Least Significant Word Register	0x0000_0000			
CAM13M	0xB000_3070	R/W	CAM13 Most Significant Word Register	0x0000_0000			
CAM13L	0xB000_3074	R/W	CAM13 Least Significant Word Register	0x0000_0000			
CAM14M	0xB000_3078	R/W	CAM14 Most Significant Word Register	0x0000_0000			
CAM14L	0xB000_307C	R/W	CAM14 Least Significant Word Register	0x0000_0000			
CAM15M	0xB000_3080	R/W	CAM15 Most Significant Word Register	0x0000_0000			
CAM15L	0xB000_3084	R/W	CAM15 Least Significant Word Register	0x0000_0000			
TXDLSA	0xB000_3088	R/W	Transmit Descriptor Link List Start Address Register	0xFFFF_FFC			

# nuvoTon

Register	Address	R/W	Description	Reset Value
RXDLSA	0xB000_308C	R/W	Receive Descriptor Link List Start Address Reg.	0xFFFF_FFFC
MCMDR	0xB000_3090	R/W	MAC Command Register	0x0000_0000
MIID	0xB000_3094	R/W	MII Management Data Register	0x0000_0000
MIIDA	0xB000_3098	R/W	MII Management Control and Address Register	0x0090_0000
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined
DMARFC	0xB000_30A8	R/W	Maximum Receive Frame Control Register	0x0000_0800
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000
Status Regi	sters (11)			
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000
MPCNT	0xB000_30B8	R/W	Missed Packet Count Register	0x0000_7FFF
MRPC	0xB000_30BC	R	MAC Receive Pause Count Register	0x0000_0000
MRPCC	0xB000_30C0	R	MAC Receive Pause Current Count Register	0x0000_0000
MREPC	0xB000_30C4	R	MAC Remote Pause Count Register	0x0000_0000
DMARFS	0xB000_30C8	R/W	DMA Receive Frame Status Register	0x0000_0000
CTXDSA	0xB000_30CC	R	Current Transmit Descriptor Start Address Reg.	0x0000_0000
CTXBSA	0xB000_30D0	R	Current Transmit Buffer Start Address Register	0x0000_0000
CRXDSA	0xB000_30D4	R	Current Receive Descriptor Start Address Reg. 0x0000	
CRXBSA	0xB000_30D8	R	Current Receive Buffer Start Address Register	0x0000_0000



# 6.5.3 EMC Register Details

#### CAM Command Register (CAMCMR)

The EMC of NUC945 supports CAM function for destination MAC address recognition. The CAMCMR control the CAM comparison function, and unicast, multicast, and broadcast packet reception.

Register	Address R/W		Description	Reset Value	
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000	

					100 C		
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	rved		"(O)	$\sim$
15	14	13	12	11	10	9	8
			Rese	rved		S	
7	6	5	4	3	2	1	0
Rese	erved	RMII	ECMP	ССАМ	ABP	AMP	AUP

Bits	Descrip	Descriptions								
[5]	RMH	Enable RMII Input Data Sampled by Negative Edge of REFCLK 1'b0: PHY_CRSDV and PHY_RXD[1:0] are sampled by the positive edge of REFCLK 1'b1: PHY_CRSDV and PHY_RxD[1:0] are sampled by the negative edge of REFCLK								
[4]	ECMP	<ul> <li>Enable CAM Compare</li> <li>The ECMP controls the enable of CAM comparison function for destination MAC address recognition. If S/W wants to receive a packet with specific destination MAC address, configures the MAC address into anyone of 16 CAM entries, then enables that CAM entry and set ECMP to 1.</li> <li>1'b0: Disable CAM comparison function for destination MAC address recognition.</li> <li>1'b1: Enable CAM comparison function for destination MAC address recognition.</li> </ul>								
[3]	ССАМ	<b>Complement CAM Compare</b> The CCAM controls the complement of the CAM comparison result. If the ECMP and CCAM are both enabled, the incoming packet with specific destination MAC address configured in CAM entry will be dropped. And the incoming packet with destination MAC address doesn't configured in any CAM entry will be received. 1'b0: The CAM comparison result doesn't be complemented. 1'b1: The CAM comparison result will be complemented.								
[2]	АВР	Accept Broadcast Packet The ABP controls the broadcast packet reception. If ABP is enabled, EMC receives all incoming packet its destination MAC address is a broadcast address. 1'b0: EMC receives packet depends on the CAM comparison result. 1'b1: EMC receives all broadcast packets.								



Bits	Descripti	Descriptions						
[1]	AMP	Accept Multicast Packet The AMP controls the multicast packet reception. If AMP is enabled, EMC receives all incoming packet its destination MAC address is a multicast address. 1'b0: EMC receives packet depends on the CAM comparison result. 1'b1: EMC receives all multicast packets.						
[0]	AUP	Accept Unicast Packet The AUP controls the unicast packet reception. If AUP is enabled, EMC receives all incoming packet its destination MAC address is a unicast address. 1'b0: EMC receives packet depends on the CAM comparison result. 1'b1: EMC receives all unicast packets.						

#### **CAMCMR Setting and Comparison Result**

The following table is the address recognition result in different CAMCMR configuration. The column Result shows the incoming packet type that can pass the address recognition in specific CAM configuration. The C, U, M and B represents the:

*C*: It indicates the destination MAC address of incoming packet has been configured in CAM entry.

*U*: It indicates the incoming packet is a unicast packet.

*M*: It indicates the incoming packet is a multicast packet.

*B*: It indicates the incoming packet is a broadcast packet.





			· · / 20. 0	Conception of the second se				
ECMP	CCAM	AUP	AMP	ABP	Re	sult		
0	0	0	0	0	No	Pac	cket	
0	0	0	0	S1 5	В			
0	0	0	1	0	М			
0	0	0	1	11	М	В		
0	0	1	0	0	C	U		
0	0	1	0	1	С	U	В	
0	0	1	1	0	С	U	М	Σ.
0	0	1	1	1	С	U	М	В
0	1	0	0	0	С	U	М	В
0	1	0	0	1	С	U	М	В
0	1	0	1	0	С	U	М	В
0	1	0	1	1	С	U	М	В
0	1	1	0	0	С	U	М	В
0	1	1	0	1	С	U	М	В
0	1	1	1	0	С	U	М	В
0	1	1	1	1	С	U	М	В
1	0	0	0	0	С			
1	0	0	0	1	С	В		
1	0	0	1	0	С	М		
1	0	0	1	1	С	Ν	В	
1	0	1	0	0	С	U		
1	0	1	0	1	С	U	В	
1	0	1	1	0	С	U	М	
1	0	1	1	1	С	U	Μ	В
1	1	0	0	0	U	Μ	В	
1	1	0	0	1	U	Μ	В	
1	1	0	1	0	U	Μ	В	
1	1	0	1	1	U	М	В	
1	1	1	0	0	С	U	М	В
1	1	1	0	1	С	U	Μ	В
1	1	1	1	0	С	U	М	В
1	1	1	1	1	С	U	М	В



#### CAM Enable Register (CAMEN)

The CAMEN controls the validation of each CAM entry. Each CAM entry must be enabled first before it can participate in the destination MAC address recognition.

Register	Address	R/W	Description	Reset Value
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000

					1.331	Contract of the second s		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved		AN CE	A	
15	14	13	12	11	10	9	8	
CAM15EN	CAM14EN	CAM13EN	CAM12EN	CAM11EN	CAM10EN	CAM9EN	<b>CAM8EN</b>	
7	6	5	4	3	2	1	0	
CAM7EN	CAM6EN	CAM5EN	CAM4EN	<b>CAM3EN</b>	CAM2EN	CAM1EN	CAMOEN	

Bits	Descriptio	Descriptions						
[x]	CAMxEN	<b>CAM Entry x Enable</b> The CAMxEN controls the validation of CAM entry x. The x can be 0 to 15. The CAM entry 13, 14 and 15 are for PAUSE control frame transmission. If S/W wants to transmit a PAUSE control frame out to network, the enable bits of these three CAM entries all must be enabled first. 1'b0: CAM entry x is disabled. 1'b1: CAM entry x is enabled.						



# nuvoTon

### 32-BIT ARM926EJS-BASED MCU

#### CAM Entry Registers (CAMxx)

In the EMC of NUC945, there are 16 CAM entries. In these 16 CAM entries, 13 entries (entry 0~12) are to keep destination MAC address for packet recognition, and the other 3 entries (entry 13~15) are for PAUSE control frame transmission. Each CAM entry consists of 6 bytes. Consequently, 2 register ports are needed for each CAM entry.

For packet recognition, a register pair {CAMxM, CAMxL} represents a CAM entry and can keep a destination MAC address. The corresponding CAM enable bit CAMxEN of CAMEN register is also needed be enabled. The x can be the 0 to 12.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, enable the bit SDPZ of MCMDR register.

Register	Address	R/W	Description	Reset Value
CAM0M	0xB000_3008		CAM0 Most Significant Word Register	0x0000_0000
CAMOL	0xB000_300C		CAM0 Least Significant Word Register	0x0000_0000
:	:	R/W	:	
CAM15M	0xB000_3080		CAM15 Most Significant Word Register	0x0000_0000
CAM15L	0xB000_3084		CAM15 Least Significant Word Register	0x0000_0000

#### CAMxM

31	30	29	28	27	26	25	24						
	MAC Address Byte 5 (MSB)												
23	22	21	20	19	18	17	16						
			MAC Addr	ess Byte 4									
15	14	13	12	11	10	9	8						
dia.			MAC Addr	ess Byte 3									
7	6	5	4	3	2	1	0						
A A			MAC Addr	ess Byte 2									

Bits	Descriptio	Descriptions								
[31:0]	САМхМ	CAMx Most Significant Word The CAMxM keeps the bit 47~16 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32'h0050_BA33 and CAM1L is 32'hBA44_0000.								



#### CAMxL

31	30	29	28	27	26	25	24					
MAC Address Byte 1												
23	22	21	20	19	18	17	16					
		M	AC Address	Byte 0 (LS	B)							
15	14	13	12	11	10	9	8					
			Rese	erved	-12 ·							
7	6	5	4	3	2	1	0					
			Rese	erved	54	2 5						

Bits	Descriptio	Descriptions							
[31:0]	CAMxL	<b>CAMx Least Significant Word</b> The CAMxL keeps the bit 15~0 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32'h0050_BA33 and CAM1L is 32'hBA44_0000.							

### CAM15M

31	30	29	28	27	26	25	24					
Length/Type (MSB)												
23	22	21	20	19	18	17	16					
			Length	∩∕Туре								
15	14	13	12	11	10	9	8					
			OP-Cod	e (MSB)								
7	6	5	4	3	2	1	0					
00			OP-0	Code								

Bits	Descriptions	
[31:16]	Length/Type	<b>Length/Type Field of PAUSE Control Frame</b> In the PAUSE control frame, a length/type field is defined and will be 16'h8808.
[15:0]	OP-Code	<b>OP Code Field of PAUSE Control Frame</b> In the PAUSE control frame, an op code field is defined and will be 16'h0001.
	~ Q	56.



### CAM15L

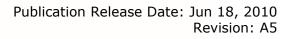
				Y/AA N					
31	30	29	28	27	26	25	24		
			Operan	d (MSB)	No.				
23	22	21	20	19	18	17	16		
			Оре	rand	Va. SI	S			
15	14	13	12	11	10	9	8		
			Rese	erved	~ (O)	Da			
7	6	5	4	3	2	1	0		
Reserved									
						2	2		

Bits	Descriptions	
[31:16]	Operand	<b>Pause Parameter</b> In the PAUSE control frame, an operand field is defined and controls how much time the destination Ethernet MAC Controller is paused. The unit of the operand is the slot time, the 512 bits time.





### 32-BIT ARM926EJS-BASED MCU


#### Transmit Descriptor Link List Start Address Register (TXDLSA)

The Tx descriptor defined in EMC is a link-list data structure. The TXDLSA keeps the starting address of this link-list. In other words, the TXDLSA keeps the starting address of the 1st Tx descriptor. S/W must configure TXDLSA before enable bit TXON of MCMDR register.

					1.1	A			
Reg	Register Address		R/W	Description				Reset Value	
TXD	TXDLSA 0xB000_3088		3 R/W	Transmit De	scriptor Link l	ist Start Add	ress Register	0xFFFF_FFF	-C
	_					ma	5		
	31	30	29	28	27	26	25	24	
				TXI	DLSA	24			
	23	22	21	20	19	18	17	16	
				ТХІ	DLSA		20) (0		
	15	14	13	12	11	10	9	8	
	TXDLSA							NO.	

**TXDLSA** 

Bits	Descriptions	
[31:0]	TXDLSA	<b>Transmit Descriptor Link-List Start Address</b> The TXDLSA keeps the start address of transmit descriptor link-list. If the S/W enables the bit TXON of MCMDR register, the content of TXDLSA will be loaded into the current transmit descriptor start address register (CTXDSA). The TXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of TXDLSA. This means that each Tx descriptor always must locate at word boundary memory address.





#### Receive Descriptor Link List Start Address Register (RXDLSA)

The Rx descriptor defined in EMC is a link-list data structure. The RXDLSA keeps the starting address of this link-list. In other words, the RXDLSA keeps the starting address of the 1st Rx descriptor. S/W must configure RXDLSA before enable bit RXON of MCMDR register.

							A State State				
Regi	ister		Address	R/W	/W Description				Reset Value		
RXD	LSA	0×	(B000_308C	R/W	Receive Descriptor Link List Start Address Register				0xFFFF_FFC		
							ma	5			
	31		30	29	28	27	26	25	24		
		RXDLSA									

23	22	21	20	19	18	17	16
			RXD	ISA		20) (05	0
15	14	13	12	11	10	9	8
			RXD	ISA		Yo.	L'A
7	6	5	4	3	2	1	0
			RXD	ISA			SHY S

Bits	Descriptions	
[31:0]	RTXDLSA	<b>Receive Descriptor Link-List Start Address</b> The RXDLSA keeps the start address of receive descriptor link-list. If the S/W enables the bit RXON of MCMDR register, the content of RXDLSA will be loaded into the current receive descriptor start address register (CRXDSA). The RXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of RXDLSA. This means that each Rx descriptor always must locate at word boundary memory address.



#### MAC Command Register (MCMDR)

The MCMDR provides the control information for EMC. Some command settings affect both frame transmission and reception, such as bit FDUP, the full/half duplex mode selection, or bit OPMOD, the 100/10M bps mode selection. Some command settings control frame transmission and reception separately, likes bit TXON and RXON.

R	Register		Address	R/W	Description				Reset Value	÷
	MCMDR	0>	(B000_3090	R/W	MAC Comma	nd Register	-m-	5	0x0000_0000	)
-							ý.	90		
	31		30	29	28	27	26	25	24	
					Reserved		0	AL	SWR	
	23	3	22	21	20	19	18	17	16	
		Rese	erved	LBK	OPMOD	EnMDC	FDUP	EnSQE	SDPZ	
	15	5	14	13	12	11	10	9	8	
		Res						NDEF 🧹	TXON	
	7		6	5	4	3	2	1	0	
		Reserved		SPCRC	AEP	ACP	ARP	ALP	RXON	

Bits	Description	15				
[24]	SWR	<ul> <li>Software Reset         The SWR implements a reset function to make the EMC return default state.         The SWR is a self-clear bit. This means after the software reset finished, the         SWR will be cleared automatically. Enable SWR can also reset all control and         status registers, exclusive of these two bits EnRMII and OPMOD of MCMDR         register.         The EMC re-initial is needed after the software reset completed.         1'b0: Software reset completed.         1'b1: Enable software reset.     </li> </ul>				
[21]	LBK	Internal Loop Back Select The LBK enables the EMC operating on internal loop-back mode. If the LBK is enabled, the packet transmitted out will be loop-backed to Rx. If the EMC is operating on internal loop-back mode, it also means the EMC is operating on full-duplex mode and the value of FDUP of MCMDR register is ignored. Besides, the LBK doesn't be affected by SWR bit. 1'b0: The EMC operates in normal mode. 1'b1: The EMC operates in internal loop-back mode.				
[20]	OPMOD	Operation Mode Select The OPMOD defines the EMC is operating on 10M or 100M bps mode. The OPMOD doesn't be affected by SWR bit. 1'b0: The EMC operates on 10Mbps mode.				
		1'b0: The EMC operates on 10Mbps mode. 1'b1: The EMC operates on 100Mbps mode. Publication Release Date: Jun 18, 85 Revisio				



Bits	Descriptions	
[19]	EnMDC	Enable MDC Clock Generation The EnMDC controls the MDC clock generation for MII Management Interface. If the EnMDC is set to 1, the MDC clock generation is enabled. Otherwise, the MDC clock generation is disabled. Consequently, if S/W wants to access the registers of external PHY through MII Management Interface, the EnMDC must be set to high. 1'b0: Disable MDC clock generation. 1'b1: Enable MDC clock generation.
[18]	FDUP	Full Duplex Mode Select The FDUP controls that EMC is operating on full or half duplex mode. 1'b0: The EMC operates on half duplex mode. 1'b1: The EMC operates on full duplex mode.
[17]	EnSQE	<ul> <li>Enable SQE Checking</li> <li>The EnSQE controls the enable of SQE checking. The SQE checking is only available while EMC is operating on 10M bps and half duplex mode. In other words, the EnSQE cannot affect EMC operation, if the EMC is operating on 100M bps or full duplex mode.</li> <li>1'b0: Disable SQE checking while EMC is operating on 10Mbps and half duplex mode.</li> <li>1'b1: Enable SQE checking while EMC is operating on 10Mbps and half duplex mode.</li> </ul>
[16]	SDPZ	<ul> <li>Send PAUSE Frame The SDPZ controls the PAUSE control frame transmission. If S/W wants to send a PAUSE control frame out, the CAM entry 13, 14 and 15 must be configured first and the corresponding CAM enable bit of CAMEN register also must be set. Then, set SDPZ to 1 enables the PAUSE control frame transmission. The SDPZ is a self-clear bit. This means after the PAUSE control frame transmission has completed, the SDPZ will be cleared automatically. It is recommended that only enables SPDZ while EMC is operating on full duplex mode. 1'b0: The PAUSE control frame transmission has completed. 1'b1: Enable EMC to transmit a PAUSE control frame out.</li></ul>
[9]	NDEF	No Defer The NDEF controls the enable of deferral exceed counter. If NDEF is set to high, the deferral exceed counter is disabled. The NDEF is only useful while EMC is operating on half duplex mode. 1'b0: The deferral exceed counter is enabled. 1'b1: The deferral exceed counter is disabled.
		Publication Release Date: Jun 18, 2010 86 Revision: A5



Bits	Descriptions	
[8]	TXON	<ul> <li>Frame Transmission ON</li> <li>The TXON controls the normal packet transmission of EMC. If the TXON is set to high, the EMC starts the packet transmission process, including the Tx descriptor fetching, packet transmission and Tx descriptor modification. It is must to finish EMC initial sequence before enable TXON. Otherwise, the EMC operation is undefined.</li> <li>If the TXON is disabled during EMC is transmitting a packet out, the EMC stops the packet transmission process after the current packet transmission finished.</li> <li>1'b0: The EMC stops packet transmission process.</li> <li>1'b1: The EMC starts packet transmission process.</li> </ul>
[5]	SPCRC	Strip CRC ChecksumThe SPCRC controls if the length of incoming packet is calculated with 4bytes CRC checksum. If the SPCRC is set to high, 4 bytes CRC checksum isexcluded from length calculation of incoming packet.1'b0: The 4 bytes CRC checksum is included in packet length calculation.1'b1: The 4 bytes CRC checksum is excluded in packet length calculation.
[4]	AEP	Accept CRC Error Packet The AEP controls the EMC accepts or drops the CRC error packet. If the AEP is set to high, the incoming packet with CRC error will be received by EMC as a good packet. 1'b0: The CRC error packet will be dropped by EMC. 1'b1: The CRC error packet will be accepted by EMC.
[3]	АСР	Accept Control Packet The ACP controls the control frame reception. If the ACP is set to high, the EMC will accept the control frame. Otherwise, the control frame will be dropped. It is recommended that S/W only enable AEP while EMC is operating on full duplex mode. 1'b0: The control frame will be dropped by EMC. 1'b1: The control frame will be accepted by EMC.
[2]	ARP	Accept Runt Packet The ARP controls the runt packet, which length is less than 64 bytes, reception. If the ARP is set to high, the EMC will accept the runt packet. Otherwise, the runt packet will be dropped. 1'b0: The runt packet will be dropped by EMC. 1'b1: The runt packet will be accepted by EMC.
[1]	ALP	Accept Long Packet The ALP controls the long packet, which packet length is greater than 1518 bytes, reception. If the ALP is set to high, the EMC will accept the long packet. Otherwise, the long packet will be dropped. 1'b0: The long packet will be dropped by EMC. 1'b1: The long packet will be accepted by EMC.



Bits	Descriptions	
[0]	RXON	Frame Reception ON The RXON controls the normal packet reception of EMC. If the RXON is set to high, the EMC starts the packet reception process, including the Rx descriptor fetching, packet reception and Rx descriptor modification. It is must to finish EMC initial sequence before enable RXON. Otherwise, the EMC operation is undefined. If the RXON is disabled during EMC is receiving an incoming packet, the EMC stops the packet reception process after the current packet reception finished. 1'b0: The EMC stops packet reception process. 1'b1: The EMC starts packet reception process.
	•	





#### MII Management Data Register (MIID)

The EMC provides MII management function to access the control and status registers of the external PHY. The MIID register is used to store the data that will be written into the registers of external PHY for write command or the data that is read from the registers of external PHY for read command.

Reg	ister Address		R/W	Description				Reset Value	
MI	ID	0x	B000_3094	R/W	MII Manage	ement Data R	egister	1. a	0x0000_0000
							ma	5	
	31		30	29	28	27	26	25	24
	Reserved								
	23		22	21	20	19	18	17	16
					Rese	erved		20	(0)
	15		14	13	12	11	10	9	8
	MIIData								
	7		6	5	4	3	2	1	0
					MII	Data			SHY SO
									an v

Bits	Descriptions	
[15:0]	MIIData	<b>MII Management Data</b> The MIIData is the 16 bits data that will be written into the registers of external PHY for MII Management write command or the data from the registers of external PHY for MII Management read command.





#### **MII Management Control and Address Register (MIIDA)**

The EMC provides MII management function to access the control and status registers of the external PHY. The MIIDA register is used to keep the MII management command information, like the register address, external PHY address, MDC clocking rate, read/write etc.

Reg	ister	Address		R/W	Descriptio	Reset Value				
MI	IDA	0>	kB000_3098	R/W	MII Manage	MII Management Control and Address Register				000
							ma	5		_
	31		30	29	28	27	26	25	24	
					Res	erved	24	2 Sh		
	23	5	22	21	20	19	18	17	16	
			MD	CCR		MDCON	PreSP	BUSY	Write	
	15		14	13	12	11	10	9	8	
		Reserved					PHYAD	43	h a	
	7		6	5	4	3	2	1	0	
	Reserved						PHYRAD		MAR V	





Bits	Descriptions					
		The MI Depen MDC s 2.5MH Consec genera The fo	d on the IEEE Std hall be 400ns. In z. The MDC is quently, for differ ite appropriate MDC illowing table show	1DC clock rating for MI . 802.3 clause 22.2.2 other words, the max divided from the A ent HCLKs the differ C clock. vs relationship betwe	I Management I/F. 11, the minimum period for kimum frequency for MDC is HB bus clock, the HCLK. rent ratios are required to en HCLK and MDC clock in tes the period of HCLK.	
			MDCCR [23:20]	MDC Clock Period	MDC Clock Frequency	
			4′b0000	4 x T _{HCLK}	HCLK/4	
			4′b0001	6 x T _{HCLK}	HCLK/6	
[23:20]	MDCCR		4′b0010	8 x T _{HCLK}	HCLK/8	
[]			4′b0011	12 x T _{HCLK}	HCLK/12	
			4′b0100	16 x T _{HCLK}	HCLK/16	
			4′b0101	20 x T _{HCLK}	HCLK/20	
			4′b0110	24 x T _{HCLK}	HCLK/24	
			4′b0111	28 x T _{HCLK}	HCLK/28	
			4′b1000	30 x T _{HCLK}	HCLK/30	
			4′b1001	32 x T _{HCLK}	HCLK/32	
			4′b1010	36 x T _{HCLK}	HCLK/36	
			4′b1010	40 x T _{HCLK}	HCLK/40	
			4′b1100	44 x T _{HCLK}	HCLK/44	
			4′b1100	48 x T _{HCLK}	HCLK/48	
			4′b1110	54 x T _{HCLK}	HCLK/54	
			4′b1111	60 x T _{HCLK}	HCLK/60	
[19]	MDCON	MDC Clock ON Always         The MDC controls the MDC clock generation. If the MDCON is set to high, the MDC clock actives always. Otherwise, the MDC will only active while S/W issues a MII management command.         1'b0: The MDC clock will only active while S/W issues a MII management command.         1'b1: The MDC clock actives always.				
[18]	PreSP	Preamble Suppress The PreSP controls the preamble field generation of MII management frame. If the PreSP is set to high, the preamble field generation of MII management frame is skipped. 1'b0: Preamble field generation of MII management frame is not skipped. 1'b1: Preamble field generation of MII management frame is skipped.				
			9		ion Release Date: Jun 18, 2010 Revision: A5	



Bits	Descriptions			
[17]	BUSY	<b>Busy Bit</b> The BUSY controls the enable of the MII management frame generation. If S/W wants to access registers of external PHY, it set BUSY to high and EMC generates the MII management frame to external PHY through MII Management I/F. The BUSY is a self-clear bit. This means the BUSY will be cleared automatically after the MII management command finished. 1'b0: The MII management has finished. 1'b1: Enable EMC to generate a MII management command to external PHY.		
[16]	Write Write Command The Write defines the MII management command is a read or write. 1'b0: The MII management command is a read command. 1'b1: The MII management command is a write command.			
[12:8]	PHYAD	<b>PHY Address</b> The PHYAD keeps the address to differentiate which external PHY is the target of the MII management command.		
[4:0]	PHYRADPHY Register AddressThe PHYRAD keeps the address to indicate which register of external F the target of the MII management command.			





#### **MII Management Function Frame Format**

In IEEE Std. 802.3 clause 22.2.4, the MII management function is defined. The MII management function is used for the purpose of controlling the PHY and gathering status from the PHY. The MII management frame format is shown as follow.

	Management frame fields							
	PRE	ST	OP	PHYAD	REGAD	TA	DATA	IDLE
READ	11	01	10	ΑΑΑΑΑ	RRRRR	ZO	DDDDDDDDDDDDDD	Z
WRITE	11	01	01	ΑΑΑΑΑ	RRRRR	10	DDDDDDDDDDDDDD	Z

**MII Management Function Configure Sequence** 

	Read		Write
1.	Set appropriate MDCCR.	1.	Write data to MIID register
2.	Set PHYAD and PHYRAD.	2.	Set appropriate MDCCR.
3.	Set Write to 1'b0	3.	Set PHYAD and PHYRAD.
4.	Set bit BUSY to 1'b1 to send a MII	4.	Set Write to 1'b1
	management frame out.	5.	Set bit BUSY to 1'b1 to send a
5.	Wait BUSY to become 1'b0.		MII management frame out.
6.	Read data from MIID register.	6.	Wait BUSY to become 1'b0.
7.	Finish the read command.	7.	Finish the write command.





#### FIFO Threshold Control Register (FFTCR)

The FFTCR defines the high and low threshold of internal FIFOs, including TxFIFO and RxFIFO. The threshold of internal FIFOs is related to EMC request generation and when the frame transmission starts. The FFTCR also defines the burst length of AHB bus cycle for system memory access.

Register	Address	R/W	Description	Reset Value
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101

					XIIA	YAJI	
31	30	29	28	27	26	25	24
			Rese	rved	24	S Sh	
23	22	21	20	19	18	17	16
Reserved BLength			Reserved				
15	14	13	12	11	10	9	8
Reserved						ТхТ	HD
7	6	5	4	3	2	1	0
Reserved					Rx	THD	

Bits	Descriptions	
[21:20]	Blength	DMA Burst Length The Blength defines the burst length of AHB bus cycle while EMC accesses system memory. 2'b00: 4 words 2'b01: 8 words 2'b10: 16 words 2'b11: 16 words
[9:8]	TxTHD	<b>TxFIFO Low Threshold</b> Default Value: 2'b01 The TxTHD controls when TxDMA requests internal arbiter for data transfer between system memory and TxFIFO. The TxTHD defines not only the low threshold of TxFIFO, but also the high threshold. The high threshold is the twice of low threshold always. During the packet transmission, if the TxFIFO reaches the high threshold, the TxDMA stops generate request to transfer frame data from system memory to TxFIFO. If the frame data in TxFIFO is less than low threshold, TxDMA starts to transfer frame data from system memory to TxFIFO. The TxTHD also defines when the TxMAC starts to transmit frame out to network. The TxMAC starts to transmit the frame out while the TxFIFO first time reaches the high threshold during the transmission of the frame. If the frame data length is less than TxFIFO high threshold, the TxMAC starts to transmit the frame out after the frame data are all inside the TxFIFO. 2'b00: Undefined. 2'b10: TxFIFO low threshold is 64B and high threshold is 128B. 2'b10: TxFIFO low threshold is 96B and high threshold is 192B.



Bits	Descriptions	
[1:0]	RxTHD	<ul> <li>RxFIFO High Threshold</li> <li>Default Value: 2'b01</li> <li>The RxTHD controls when RxDMA requests internal arbiter for data transfer between RxFIFO and system memory. The RxTHD defines not only the high threshold of RxFIFO, but also the low threshold. The low threshold is the half of high threshold always. During the packet reception, if the RxFIFO reaches the high threshold, the RxDMA starts to transfer frame data from RxFIFO to system memory. If the frame data in RxFIFO is less than low threshold, RxDMA stops to transfer the frame data to system memory.</li> <li>2'b00: Depend on the burst length setting. If the burst length is 8 words, high threshold is 8 words, too.</li> <li>2'b01: RxFIFO high threshold is 64B and low threshold is 32B.</li> <li>2'b10: RxFIFO high threshold is 128B and low threshold is 64B.</li> <li>2'b11: RxFIFO high threshold is 192B and low threshold is 96B.</li> </ul>



# nuvoTon

### 32-BIT ARM926EJS-BASED MCU

#### Transmit Start Demand Register (TSDR)

If the Tx descriptor is not available for use of TxDMA after the TXON of MCMDR register is enabled, the FSM (Finite State Machine) of TxDMA enters the Halt state and the frame transmission is halted. After the S/W has prepared the new Tx descriptor for frame transmission, it must issue a write command to TSDR register to make TxDMA leave Halt state and contiguous frame transmission. The TSDR is a write only register and read from this register is undefined. The write to TSDR register has took effect only while TxDMA stayed at Halt state.

Register	Address	R/W	Description	<b>Reset Value</b>
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined

31	30	29	28	27	26	25	24
			т	SD		Ma.	S.
23	22	21	20	19	18	17	16
			т	SD		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0
15	14	13	12	11	10	9	8
			TS	SD.			100
7	6	5	4	3	2	1	0
			TS	SD			

Bits	Descriptions	
[31:0]	TSD	Transmit Start Demand



# nuvoTon

### 32-BIT ARM926EJS-BASED MCU

#### **Receive Start Demand Register (RSDR)**

If the Rx descriptor is not available for use of RxDMA after the RXON of MCMDR register is enabled, the FSM (Finite State Machine) of RxDMA enters the Halt state and the frame reception is halted. After the S/W has prepared the new Rx descriptor for frame reception, it must issue a write command to RSDR register to make RxDMA leave Halt state and contiguous frame reception. The RSDR is a write only register and read from this register is undefined. The write to RSDR register has took effect only while RxDMA stayed at Halt state.

Register	Address	R/W	Description	<b>Reset Value</b>
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined

31	30	29	28	27	26	25	24
			R	SD		Ma.	S.
23	22	21	20	19	18	17	16
			RS	SD		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 6
15	14	13	12	11	10	9	8
			RS	SD			VA.
7	6	5	4	3	2	1	0
			R	SD			

Bits	Descriptions	
[31:0]	RSD	Receive Start Demand





#### Maximum Receive Frame Control Register (DMARFC)

The DMARFC defines the maximum frame length for a received frame that can be stored in the system memory. It is recommend that only use this register while S/W wants to receive a frame which length is greater than 1518 bytes.

Register Address		R/W	Descripti	on	Reset Value	e			
DMA	MARFC 0xB000_30A8 R/W Maximum Receive Frame Control Register		Register	0x0000_0800	0				
						ma	5		
	31	30	29	28	27	26	25	24	
				Rese	erved	24	S Sh		
	23	22	21	20	19	18	17	16	
				Rese	erved		65	(0)	
	15	14	13	12	11	10	9	8	
				RX	MS		Y'	en a	
	7	6	5	4	3	2	1	0	
	RXMS								

Bits	Descriptions	
[15:0]	RXMS	Maximum Receive Frame Length Default Value: 16'h0800 The RXMS defines the maximum frame length for received frame. If the frame length of received frame is greater than RXMS, and bit EnDFO of MIEN register is also enabled, the bit DFOI of MISTA register is set and the Rx interrupt is triggered. It is recommended that only use RXMS to qualify the length of received frame while S/W wants to receive a frame which length is greater than 1518 bytes.
N.A.		
		Publication Release Date: Jun 18, 2010 98 Revision: A5



#### MAC Interrupt Enable Register (MIEN)

The MIEN controls the enable of EMC interrupt status to generate interrupt. Two interrupts, RXINTR for frame reception and TXINTR for frame transmission, are generated from EMC to CPU.

Register	Address	R/W	Description	Reset Value
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000
			TOUR "See	

				921		
30	29	28	27	26	25	24
Reserved						
22	21	20	19	18	17	16
EnLC	EnTXABT	EnNCS	EnEXDEF	EnTXCP	EnTXEMP	EnTXINTR
14	13	12	11	10	9	8
EnCFR	Rese	erved	EnRxBErr	EnRDU	EnDEN	EnDFO
6	5	4	3	2	1	0
EnRP	EnALIE	EnRXGD	EnPTLE	EnRXOV	EnCRCE	EnRXINTR
	22 EnLC 14 EnCFR 6	2221EnLCEnTXABT1413EnCFRRese65	Reserved222120EnLCEnTXABTEnNCS141312EnCFRReserved654	Reserved22212019EnLCEnTXABTEnNCSEnEXDEF14131211EnCFRReservedEnRxBErr6543	Reserved2221201918EnLCEnTXABTEnNCSEnEXDEFEnTXCP1413121110EnCFRReservedEnRxBErrEnRDU65432	Reserved222120191817EnLCEnTXABTEnNCSEnEXDEFEnTXCPEnTXEMP14131211109EnCFRReservedEnRxBErrEnRDUEnDEN654321

Bits	Descriptions	
[24]	EnTxBErr	<ul> <li>Enable Transmit Bus Error Interrupt</li> <li>The EnTxBErr controls the TxBErr interrupt generation. If TxBErr of MISTA register is set, and both EnTxBErr and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTxBErr or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TxBErr of MISTA register is set.</li> <li>1'b0: TxBErr of MISTA register is masked from Tx interrupt generation.</li> <li>1'b1: TxBErr of MISTA register can participate in Tx interrupt generation.</li> </ul>
[23]	EnTDU	<ul> <li>Enable Transmit Descriptor Unavailable Interrupt</li> <li>The EnTDU controls the TDU interrupt generation. If TDU of MISTA register is set, and both EnTDU and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTDU or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TDU of MISTA register is set.</li> <li>1'b0: TDU of MISTA register is masked from Tx interrupt generation.</li> <li>1'b1: TDU of MISTA register can participate in Tx interrupt generation.</li> </ul>
[22]	EnLC	Enable Late Collision Interrupt The EnLC controls the LC interrupt generation. If LC of MISTA register is set, and both EnLC and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnLC or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the LC of MISTA register is set. 1'b0: LC of MISTA register is masked from Tx interrupt generation. 1'b1: LC of MISTA register can participate in Tx interrupt generation.
		Publication Release Date: Jun 18, 2010 99 Revision: A5



Bits	Descriptions	
[21]	EnTXABT	<ul> <li>Enable Transmit Abort Interrupt</li> <li>The EnTXABT controls the TXABT interrupt generation. If TXABT of MISTA register is set, and both EnTXABT and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXABT or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXABT of MISTA register is set.</li> <li>1'b0: TXABT of MISTA register is masked from Tx interrupt generation.</li> <li>1'b1: TXABT of MISTA register can participate in Tx interrupt generation.</li> </ul>
[20]	EnNCS	<ul> <li>Enable No Carrier Sense Interrupt</li> <li>The EnNCS controls the NCS interrupt generation. If NCS of MISTA register is set, and both EnNCS and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnNCS or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the NCS of MISTA register is set.</li> <li>1'b0: NCS of MISTA register is masked from Tx interrupt generation.</li> <li>1'b1: NCS of MISTA register can participate in Tx interrupt generation.</li> </ul>
[19]	EnEXDEF	Enable Defer Exceed Interrupt The EnEXDEF controls the EXDEF interrupt generation. If EXDEF of MISTA register is set, and both EnEXDEF and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnEXDEF or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the EXDEF of MISTA register is set. 1'b0: EXDEF of MISTA register is masked from Tx interrupt generation. 1'b1: EXDEF of MISTA register can participate in Tx interrupt generation.
[18]	EnTXCP	Enable Transmit Completion Interrupt The EnTXCP controls the TXCP interrupt generation. If TXCP of MISTA register is set, and both EnTXCP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXCP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXCP of MISTA register is set. 1'b0: TXCP of MISTA register is masked from Tx interrupt generation. 1'b1: TXCP of MISTA register can participate in Tx interrupt generation.
[17]	EnTXEMP	<b>Enable Transmit FIFO Underflow Interrupt</b> The EnTXEMP controls the TXEMP interrupt generation. If TXEMP of MISTA register is set, and both EnTXEMP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXEMP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXEMP of MISTA register is set. 1'b0: TXEMP of MISTA register is masked from Tx interrupt generation. 1'b1: TXEMP of MISTA register can participate in Tx interrupt generation.
		Publication Release Date: Jun 18, 2010 100 Revision: A5




	Descriptions	
[16]	EnTXINTR	<ul> <li>Enable Transmit Interrupt The EnTXINTR controls the Tx interrupt generation. If EnTXINTR is enabled and TXINTR of MISTA register is high, EMC generates the Tx interrupt to CPU. If EnTXINTR is disabled, no Tx interrupt is generated to CPU even the status bits 17~24 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Tx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Tx interrupt from EMC, disables this bit. 1'b0: TXINTR of MISTA register is masked and Tx interrupt generation is disabled. 1'b1: TXINTR of MISTA register is unmasked and Tx interrupt generation is enabled.</li></ul>
[14]	EnCFR	<ul> <li>Enable Control Frame Receive Interrupt</li> <li>The EnCFR controls the CFR interrupt generation. If CFR of MISTA register is set, and both EnCFR and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCFR or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CFR of MISTA register is set.</li> <li>1'b0: CFR of MISTA register is masked from Rx interrupt generation.</li> <li>1'b1: CFR of MISTA register can participate in Rx interrupt generation.</li> </ul>
[11]	EnRxBErr	Enable Receive Bus Error InterruptThe EnRxBErr controls the RxBerr interrupt generation. If RxBErr of MISTAregister is set, and both EnRxBErr and EnTXINTR are enabled, the EMCgenerates the Rx interrupt to CPU. If EnRxBErr or EnTXINTR is disabled, noRx interrupt is generated to CPU even the RxBErr of MISTA register is set.1'b0: RxBErr of MISTA register is masked from Rx interrupt generation.1'b1: RxBErr of MISTA register can participate in Rx interrupt generation.
[10]	EnRDU	<b>Enable Receive Descriptor Unavailable Interrupt</b> The EnRDU controls the RDU interrupt generation. If RDU of MISTA register is set, and both EnRDU and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRDU or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RDU of MISTA register is set. 1'b0: RDU of MISTA register is masked from Rx interrupt generation. 1'b1: RDU of MISTA register can participate in Rx interrupt generation.
[9]	EnDEN	<b>Enable DMA Early Notification Interrupt</b> The EnDEN controls the DENI interrupt generation. If DENI of MISTA register is set, and both EnDEN and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDEN or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DENI of MISTA register is set. 1'b0: DENI of MISTA register is masked from Rx interrupt generation. 1'b1: DENI of MISTA register can participate in Rx interrupt generation.



Bits	Description	s
[8]	EnDFO	<ul> <li>Enable Maximum Frame Length Interrupt</li> <li>The EnDFO controls the DFOI interrupt generation. If DFOI of MISTA register is set, and both EnDFO and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDFO or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DFOI of MISTA register is set.</li> <li>1'b0: DFOI of MISTA register is masked from Rx interrupt generation.</li> <li>1'b1: DFOI of MISTA register can participate in Rx interrupt generation.</li> </ul>
[7]	EnMMP	<ul> <li>Enable More Missed Packet Interrupt</li> <li>The EnMMP controls the MMP interrupt generation. If MMP of MISTA register is set, and both EnMMP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnMMP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the MMP of MISTA register is set.</li> <li>1'b0: MMP of MISTA register is masked from Rx interrupt generation.</li> <li>1'b1: MMP of MISTA register can participate in Rx interrupt generation.</li> </ul>
[6]	EnRP	Enable Runt Packet Interrupt The EnRP controls the RP interrupt generation. If RP of MISTA register is set, and both EnRP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RP of MISTA register is set. 1'b0: RP of MISTA register is masked from Rx interrupt generation. 1'b1: RP of MISTA register can participate in Rx interrupt generation.
[5]	EnALIE	<ul> <li>Enable Alignment Error Interrupt</li> <li>The EnALIE controls the ALIE interrupt generation. If ALIE of MISTA register is set, and both EnALIE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnALIE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the ALIE of MISTA register is set.</li> <li>1'b0: ALIE of MISTA register is masked from Rx interrupt generation.</li> <li>1'b1: ALIE of MISTA register can participate in Rx interrupt generation.</li> </ul>
[4]	EnRXGD	<b>Enable Receive Good Interrupt</b> The EnRXGD controls the RXGD interrupt generation. If RXGD of MISTA register is set, and both EnRXGD and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXGD or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXGD of MISTA register is set. 1'b0: RXGD of MISTA register is masked from Rx interrupt generation. 1'b1: RXGD of MISTA register can participate in Rx interrupt generation.
[3]	EnPTLE	<b>Enable Packet Too Long Interrupt</b> The EnPTLE controls the PTLE interrupt generation. If PTLE of MISTA register is set, and both EnPTLE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnPTLE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the PTLE of MISTA register is set. 1'b0: PTLE of MISTA register is masked from Rx interrupt generation. 1'b1: PTLE of MISTA register can participate in Rx interrupt generation.



Bits	Descriptions	
[2]	EnRXOV	<b>Enable Receive FIFO Overflow Interrupt</b> The EnRXOV controls the RXOV interrupt generation. If RXOV of MISTA register is set, and both EnRXOV and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXOV or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXOV of MISTA register is set. 1'b0: RXOV of MISTA register is masked from Rx interrupt generation. 1'b1: RXOV of MISTA register can participate in Rx interrupt generation.
[1]	EnCRCE	<b>Enable CRC Error Interrupt</b> The EnCRCE controls the CRCE interrupt generation. If CRCE of MISTA register is set, and both EnCRCE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCRCE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CRCE of MISTA register is set. 1'b0: CRCE of MISTA register is masked from Rx interrupt generation. 1'b1: CRCE of MISTA register can participate in Rx interrupt generation.
[0]	EnRXINTR	<ul> <li>Enable Receive Interrupt</li> <li>The EnRXINTR controls the Rx interrupt generation.</li> <li>If EnRXINTR is enabled and RXINTR of MISTA register is high, EMC generates the Rx interrupt to CPU. If EnRXINTR is disabled, no Rx interrupt is generated to CPU even the status bits 1~14 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Rx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Rx interrupt from EMC, disables this bit.</li> <li>1'b0: RXINTR of MISTA register is masked and Rx interrupt generation is disabled.</li> <li>1'b1: RXINTR of MISTA register is unmasked and Rx interrupt generation is enabled.</li> </ul>



# nuvoTon

### 32-BIT ARM926EJS-BASED MCU

#### MAC Interrupt Status Register (MISTA)

The MISTA keeps much EMC statuses, like frame transmission and reception status, internal FIFO status and also NATA processing status. The statuses kept in MISTA will trigger the reception or transmission interrupt. The MISTA is a write clear register and write 1 to corresponding bit clears the status and also clears the interrupt.

Register	Address	R/W	Description	Reset Value
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000
-				

31	30	29	28	27	26	25	24
Reserved							TxBErr
23	22	21	20	19	18	17	16
TDU	LC	TXABT	NCS	EXDEF	ТХСР	TXEMP	TXINTR
15	14	13	12	11	10	9	8
Reserved	CFR	Rese	erved	RxBErr	RDU	DENI	DFOI
7	6	5	4	3	2	1	0
MMP	RP	ALIE	RXGD	PTLE	RXOV	CRCE	RXINTR

Bits	Description	S
[24]	TxBErr	<ul> <li>Transmit Bus Error Interrupt The TxBErr high indicates the memory controller replies ERROR response while EMC access system memory through TxDMA during packet transmission process. Reset EMC is recommended while TxBErr status is high. If the TxBErr is high and EnTxBErr of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TxBErr status. 1'b0: No ERROR response is received. 1'b1: ERROR response is received.</li></ul>
[23]	TDU	Transmit Descriptor Unavailable InterruptThe TDU high indicates that there is no available Tx descriptor for packettransmission and TxDMA will stay at Halt state. Once, the TxDMA enters theHalt state, S/W must issues a write command to TSDR register to makeTxDMA leave Halt state while new Tx descriptor is available.If the TDU is high and EnTDU of MIEN register is enabled, the TxINTR will behigh. Write 1 to this bit clears the TDU status.1'b0: Tx descriptor is available.1'b1: Tx descriptor is unavailable.
		Publication Release Date: Jun 18, 2010 104 Revision: A5



Bits	Descriptions	5
[22]	LC	Late Collision InterruptThe LC high indicates the collision occurred in the outside of 64 bytescollision window. This means after the 64 bytes of a frame has transmittedout to the network, the collision still occurred. The late collision check willonly be done while EMC is operating on half-duplex mode. If the LC is highand EnLC of MIEN register is enabled, the TxINTR will be high. Write 1 to thisbit clears the LC status.1'b0: No collision occurred in the outside of 64 bytes collision window.1'b1: Collision occurred in the outside of 64 bytes collision window.
[21]	ТХАВТ	Transmit Abort InterruptThe TXABT high indicates the packet incurred 16 consecutive collisions during transmission, and then the transmission process for this packet is aborted. The transmission abort is only available while EMC is operating on half-duplex mode.If the TXABT is high and EnTXABT of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXABT status.1'b0: Packet doesn't incur 16 consecutive collisions during transmission.1'b1: Packet incurred 16 consecutive collisions during transmission.
[20]	NCS	<ul> <li>No Carrier Sense Interrupt The NCS high indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode. If the NCS is high and EnNCS of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the NCS status. 1'b0: CRS signal actives correctly. 1'b1: CRS signal doesn't active at the start of or during the packet transmission.</li></ul>
[19]	EXDEF	Defer Exceed InterruptThe EXDEF high indicates the frame waiting for transmission has deferredover 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. Thedeferral exceed check will only be done while bit NDEF of MCMDR is disabled,and EMC is operating on half-duplex mode.If the EXDEF is high and EnEXDEF of MIEN register is enabled, the TxINTRwill be high. Write 1 to this bit clears the EXDEF status.1'b0: Frame waiting for transmission has not deferred over 0.32768ms(100Mbps) or 3.2768ms (10Mbps).1'b1: Frame waiting for transmission has deferred over 0.32768ms(100Mbps) or 3.2768ms (10Mbps).
[18]	ТХСР	Transmit Completion InterruptThe TXCP indicates the packet transmission has completed correctly.If the TXCP is high and EnTXCP of MIEN register is enabled, the TxINTR willbe high. Write 1 to this bit clears the TXCP status.1'b0: The packet transmission doesn't complete.1'b1: The packet transmission has completed.



[17] T		<b>Transmit FIFO Underflow Interrupt</b> The TXEMP high indicates the TxFIFO underflow occurred during packet transmission. While the TxFIFO underflow occurred, the EMC will retransmit the packet automatically without S/W intervention. If the TxFIFO underflow
	XEMP	occurred often, it is recommended that modify TxFIFO threshold control, the TxTHD of FFTCR register, to higher level. If the TXEMP is high and EnTXEMP of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXEMP status. 1'b0: No TxFIFO underflow occurred during packet transmission. 1'b0: TxFIFO underflow occurred during packet transmission.
[16] TX	XINTR	<ul> <li>Transmit Interrupt The TXINTR indicates the Tx interrupt status. If TXINTR high and its corresponding enable bit, EnTXINTR of MISTA register, is also high indicates the EMC generates Tx interrupt to CPU. If TXINTR is high but EnTXINTR of MISTA is disabled, no Tx interrupt is generated. The TXINTR is logic OR result of the bits 17~24 in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits 17~24 in MISTA register is high and its corresponding enable bit in MIEN register is also enabled, the TXINTR will be high. Because the TXINTR is a logic OR result, clears bits 17~24 of MISTA register makes TXINTR be cleared, too. 1'b0: No status of bits 17~24 in MISTA is set or no enable of bits 17~24 in MIEN is turned on. 1'b1: At least one status of bits 17~24 in MISTA is set and its corresponding enable bit is turned on.</li></ul>
[14] CI	FR	Control Frame Receive Interrupt The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode. If the CFR is high and EnCFR of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CFR status. 1'b0: The EMC doesn't receive the flow control frame. 1'b1: The EMC receives a flow control frame.
[11] R	xBErr	Receive Bus Error Interrupt The RxBErr high indicates the memory controller replies ERROR response while EMC access system memory through RxDMA during packet reception process. Reset EMC is recommended while RxBErr status is high. If the RxBErr is high and EnRxBErr of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RxBErr status. 1'b0: No ERROR response is received. 1'b1: ERROR response is received.



Bits	Descriptions	
[10]	RDU	<ul> <li>Receive Descriptor Unavailable Interrupt</li> <li>The RDU high indicates that there is no available Rx descriptor for packet reception and RxDMA will stay at Halt state. Once, the RxDMA enters the Halt state, S/W must issues a write command to RSDR register to make RxDMA leave Halt state while new Rx descriptor is available.</li> <li>If the RDU is high and EnRDU of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RDU status.</li> <li>1'b0: Rx descriptor is available.</li> <li>1'b1: Rx descriptor is unavailable.</li> </ul>
[9]	DENI	<ul> <li>DMA Early Notification Interrupt</li> <li>The DENI high indicates the EMC has received the Length/Type field of the incoming packet.</li> <li>If the DENI is high and EnDENI of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DENI status.</li> <li>1'b0: The Length/Type field of incoming packet has not received yet.</li> <li>1'b1: The Length/Type field of incoming packet has received.</li> </ul>
[8]	DFOI	<ul> <li>Maximum Frame Length Interrupt The DFOI high indicates the length of the incoming packet has exceeded the length limitation configured in DMARFC register and the incoming packet is dropped. If the DFOI is high and EnDFO of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DFOI status. 1'b0: The length of the incoming packet doesn't exceed the length limitation configured in DMARFC. 1'b1: The length of the incoming packet has exceeded the length limitation configured in DMARFC.</li></ul>
[7]	MMP	More Missed Packet Interrupt The MMP high indicates the MPCNT, Missed Packet Count, has overflow. If the MMP is high and EnMMP of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the MMP status. 1'b0: The MPCNT has not rolled over yet. 1'b1: The MPCNT has rolled over yet.
[6]	RP	Runt Packet InterruptThe RP high indicates the length of the incoming packet is less than 64 bytesand the packet are dropped. If the ARP of MCMDR register is set, the shortpacket is regarded as a good packet and RP will not be set.If the RP is high and EnRP of MIEN register is enabled, the RxINTR will behigh. Write 1 to this bit clears the RP status.1'b0: The incoming frame is not a short frame or S/W wants to receive a1'b1: The incoming frame is a short frame and dropped.



Bits	Descriptio	ns
[5]	ALIE	Alignment Error Interrupt The ALIE high indicates the length of the incoming frame is not a multiple of byte. If the ALIE is high and EnALIE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the ALIE status. 1'b0: The frame length is a multiple of byte. 1'b1: The frame length is not a multiple of byte.
[4]	RXGD	Receive Good InterruptThe RXGD high indicates the frame reception has completed.If the RXGD is high and EnRXGD of MIEN register is enabled, the RxINTR willbe high. Write 1 to this bit clears the RXGD status.1'b0: The frame reception has not complete yet.1'b1: The frame reception has completed.
[3]	PTLE	<ul> <li>Packet Too Long Interrupt</li> <li>The PTLE high indicates the length of the incoming packet is greater than 1518 bytes and the incoming packet is dropped. If the ALP of MCMDR register is set, the long packet will be regarded as a good packet and PTLE will not be set.</li> <li>If the PTLE is high and EnPTLE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the PTLE status.</li> <li>1'b0: The incoming frame is not a long frame or S/W wants to receive a long frame.</li> <li>1'b1: The incoming frame is a long frame and dropped.</li> </ul>
[2]	RXOV	Receive FIFO Overflow Interrupt         The RXOV high indicates the RxFIFO overflow occurred during packet reception. While the RxFIFO overflow occurred, the EMC drops the current receiving packer. If the RxFIFO overflow occurred often, it is recommended that modify RxFIFO threshold control, the RxTHD of FFTCR register, to higher level.         If the RXOV is high and EnRXOV of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RXOV status.         1'b0: No RxFIFO overflow occurred during packet reception.         1'b0: RxFIFO overflow occurred during packet reception.
[1]	CRCE	CRC Error Interrupt The CRCE high indicates the incoming packet incurred the CRC error and the packet is dropped. If the AEP of MCMDR register is set, the CRC error packet will be regarded as a good packet and CRCE will not be set. If the CRCE is high and EnCRCE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CRCE status. 1'b0: The frame doesn't incur CRC error. 1'b1: The frame incurred CRC error.



Bits	Descriptions	
[0]	RXINTR	<ul> <li>Receive Interrupt The RXINTR indicates the Rx interrupt status. If RXINTR high and its corresponding enable bit, EnRXINTR of MISTA register, is also high indicates the EMC generates Rx interrupt to CPU. If RXINTR is high but EnRXINTR of MISTA is disabled, no Rx interrupt is generated. The RXINTR is logic OR result of the bits 1~14 in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits 1~14 in MISTA register is also enabled, the RXINTR will be high. Because the RXINTR is a logic OR result, clears bits 1~14 of MISTA register makes RXINTR be cleared, too. 1'b0: No status of bits 1~14 in MISTA is set or no enable of bits 1~14 in MIEN is turned on. 1'b1: At least one status of bits 1~14 in MISTA is set and its corresponding enable bit is turned on.</li></ul>



#### MAC General Status Register (MGSTA)

The MGSTA also keeps the statuses of EMC. But the statuses in the MGSTA will not trigger any interrupt. The MGSTA is a write clear register and write 1 to corresponding bit clears the status.

Register	Address	R/W	Description	Reset Value
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000

					1. 1.00	Contract of the second s						
31	30	29	28	27	26	25	24					
Reserved												
23	22	21	20	19	18	17	16					
			Rese	erved		101 19	1					
15	14	13	12	11	10	9	8					
	Rese	rved		TXHA	SQE	PAU	DEF					
7	6	5	4	3	2	1	0					
	CC	NT		Reserved	RFFull	RXHA 🤇	CFR					

	Bits	Descriptions	
[11]	[11]	ТХНА	<b>Transmission Halted</b> Default Value: 1'b0 The TXHA high indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W. 1'b0: Next normal packet transmission process will go on. 1'b1: Next normal packet transmission process will be halted.
10	[10]	SQE	Signal Quality Error Default Value: 1'b0 The SQE high indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode. 1'b0: No SQE error found at end of packet transmission. 1'b0: SQE error found at end of packet transmission.
	[9]	PAU	<b>Transmission Paused</b> Default Value: 1'b0 The PAU high indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out. 1'b0: Next normal packet transmission process will go on. 1'b1: Next normal packet transmission process will be paused.
	[8]	DEF	Deferred Transmission Default Value: 1'b0 The DEF high indicates the packet transmission has deferred once. The DEF is only available while EMC is operating on half-duplex mode. 1'b0: Packet transmission doesn't defer. 1'b1: Packet transmission has deferred once.



Bits	Descriptions	
[7:4]	CCNT	<b>Collision Count</b> Default Value: 4'h0 The CCNT indicates how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.
[2]	RFFull	<b>RxFIFO Full</b> Default Value: 1'b0The RFFull indicates the RxFIFO is full due to four 64-byte packets are kept inRxFIFO and the following incoming packet will be dropped.1'b0: The RxFIFO is not full.1'b1: The RxFIFO is full and the following incoming packet will be dropped.
[1]	RXHA	Receive Halted Default Value: 1'b0 The RXHA high indicates the next normal packet reception process will be halted because the bit RXON of MCMDR is disabled be S/W. 1'b0: Next normal packet reception process will go on. 1'b1: Next normal packet reception process will be halted.
[0]	CFR	Control Frame Received Default Value: 1'b0 The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode. 1'b0: The EMC doesn't receive the flow control frame. 1'b1: The EMC receives a flow control frame.





#### Missed Packet Count Register (MPCNT)

The MPCNT keeps the number of packets that were dropped due to various types of receive errors. The MPCNT is a read clear register. In addition, S/W also can write an initial value to MPCNT and the missed packet counter will start counting from that initial value. If the missed packet counter is overflow, the MMP of MISTA will be set.

Reg	egister Address			Address R/W Description					Reset Value	
MP	CNT	0×	(B000_30B8	R/W	Missed Pa	cket Count	Register	5	0x0000_7FFF	
-							S.	40		
	31		30	29	28	27	26	25	24	
	23 22			Rese	erved	- N	000			
			23 22		22	21	20 19 18	18	17	16
					Rese	Reserved				
	15		14	13	12	11	10	9	8	
	MPC								COL ON	
	7		6	5	4	3	2	1	0	
					M	PC			" and "	

Bits	Descriptions	
[15:0]	МРС	<ul> <li>Miss Packet Count Default Value: 16'h7FFF The MPC indicates the number of packets that were dropped due to various types of receive errors. The following type of receiving error makes missed packet counter increase: <ul> <li>Incoming packet is incurred RxFIFO overflow.</li> <li>Incoming packet is dropped due to RXON is disabled.</li> </ul> </li> <li>Incoming packet is incurred CRC error.</li> </ul>
		Publication Release Date: Jun 18, 2010 112 Revision: A5

## 32-BIT ARM926EJS-BASED MCU

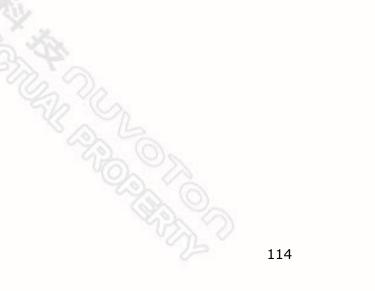
#### MAC Receive Pause Count Register (MRPC)

The EMC of NUC945 supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored in the MRPC register. The MRPC register will keep the same while Tx of EMC is pausing due to the PAUSE control frame is received. The MRPC is read only and write to this register has no effect.

Reg	RegisterAddressMRPC0xB000_30BC		R/W	Descript		Reset Value					
MF			0xB000_30BC		MAC Rece	MAC Receive Pause Count Register					
							S.	40			
	31		30	29	28	27	26	25	24		
					Res	AL	16-2				
	23		23		22	21	20	19	18	17	16
					Res	erved		Ja.			
	15		14	13	12	11	10	9	8		
					M	RPC			Car Con		
	7		6	5	4	3	2	1	0		
					M	RPC			" And "		

Bits	Descriptions	
[15:0]	MRPC	MAC Receive Pause Count Default Value: 16'h0 The MRPC keeps the operand field of the PAUSE control frame. It indicates how many slot time (512 bit time) the Tx of EMC will be paused.




## 32-BIT ARM926EJS-BASED MCU

#### MAC Receive Pause Current Count Register (MRPCC)

The EMC of NUC945 supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored into a down count timer. The MRPCC shows the current value of that down count timer for S/W to know how long the Tx of EMC will be paused. The MRPCC is read only and write to this register has no effect.

Reg	Register Address			R/W	Descriptio	n			Reset Value
MR	MRPCC 0xB0		B000_30C0	R	MAC Receiv	/e Pause Cur	rrent Count	Register	0x0000_0000
-							S.	40	
	31		30	29	28	27	26	25	24
					Rese	AL	6		
	23		22	21	20	19	18	17	16
					Rese	erved		10	
	15		14	13	12	11	10	9	8
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	7		6	5	4	3	2	1	0
					MR	PCC			" AL

Bits	Descriptions	
[15:0]	MRPCC	MAC Receive Pause Current Count Default Value: 16'h0 The MRPCC shows the current value of that down count timer. If a new PAUSE control frame is received before the timer count down to zero, the new operand of the PAUSE control frame will be stored into the down count timer and the timer starts count down from the new value.

32-BIT ARM926EJS-BASED MCU

MAC Remote Pause Count Register (MREPC)

The EMC of NUC945 supports the PAUSE control frame transmission. After the PAUSE control frame is transmitted out completely, a timer starts to count down from the value of operand of the transmitted PAUSE control frame. The MREPC shows the current value of this down count timer. The MREPC is read only and write to this register has no effect.

Reg	Register Address			R/W	Descriptio		Reset Value			
MR	MREPC 0xB000_30		B000_30C4	R	MAC Remo	te Pause Cou	unt Register	5	0x0000_00	00
							S.	40		
	31		30	29	28	27	26	25	24	
					Rese	erved	20	AU		
	23		22	21	20	19	18	17	16	
					Rese	erved		6		
	15		14	13	12	11	10	9	8	
	MREPC									
	7		6	5	4	3	2	1	0	
					MR	EPC			"and "	

Bits	Descriptions	
[15:0]	MREPC	MAC Remote Pause Count Default Value: 16'h0 The MREPC shows the current value of the down count timer that starts to count down from the value of operand of the transmitted PAUSE control frame.

DMA Receive Frame Status Register (DMARFS)

The DMARFS is used to keep the Length/Type field of each incoming Ethernet packet. This register is writing clear and writes 1 to corresponding bit clears the bit.

Register	Address	R/W	Description	Reset Value
DMARFS	0xB000_30C8	R/W	DMA Receive Frame Status Register	0x0000_0000

					521	Contraction of the second	
31	30	29	28	27	26	25	24
			Rese	rved	S.	- 4Q -	
23	22	21	20	19	18	17	16
			Rese	rved		(a) 5	X.
15	14	13	12	11	10	9	8
			RXI	FLT		(O)	12
7	6	5	4	3	2	1	0
			RX	FLT		5	8 C
							TATE L

Bits	Descriptions	
[15:0]	RXFLT	Receive Frame Length/Type Default Value: 16'h0 The RXFLT keeps the Length/Type field of each incoming Ethernet packet. If the bit EnDEN of MIEN is enabled and the Length/Type field of incoming packet has received, the bit DENI of MISTA will be set and trigger interrupt. And, the content of Length/Type field will be stored in RXFLT.

Current Transmit Descriptor Start Address Register (CTXDSA)

Reg	ister		Address	R/W	Descriptio	Description					
CTX	DSA	0x	(B000_30CC	R	Current Tra	insmit Descr	riptor Start A	ddress Regi	ister 0x0000	_0000	
						X	A F M				
	31		30	29	28	27	26	25	24		
					СТХ	(DSA	Ch L	0			
	23		22	21	20	19	18	17	16		
					СТХ	(DSA	50	o "Co			
	15		14	13	12	11	10	9	8		
					СТХ	(DSA		202 57			
	7		6	5	4	3	2	1	0		
					СТХ	(DSA		"Oh			
								100	h (2)		

Bits	Descriptions	
		Current Transmit Descriptor Start Address Default Value: 32'h0
[31:0]	CTXDSA	The CTXDSA keeps the start address of Tx descriptor that is used by TxDMA currently. The CTXDSA is read only and write to this register has no effect.

Current Transmit Buffer Start Address Register (CTXBSA)

Regi	jister Address R/W Description					Reset Value				
CTX	TXBSA 0xB000_30D0 R Current Transmit Buffer Start Address Register					0x0000_0	000			
						X	A Par			
	31		30	29	28	27	26	25	24	
					СТХ	BSA	CS I	0		
	23		22	21	20	19	18	17	16	
					СТХ	BSA	51	o Co		
	15		14	13	12	11	10	9	8	
	CTXBSA									
	7		6	5	4	3	2	1	0	
					СТХ	BSA		NOV.	2	
								1.91		

Bits	Descriptions	
[31:0]	CTXBSA	Current Transmit Buffer Start Address Default Value: 32'h0 The CTXDSA keeps the start address of Tx frame buffer that is used by
		TxDMA currently. The CTXBSA is read only and write to this register has no effect.

Current Receive Descriptor Start Address Register (CRXDSA)

	egister Address R/W Description							Reset Value	
CRX	DSA	0xB000_30D4	R	Current F Register				0x0000_0000	
[31	30	29	28	27	26	25	24	
				CR	XDSA	90n	$\langle \rangle$		
	23	22	21	20	19	18	17	16	
ſ				CR	XDSA				
	15	14	13	12	11	10	9	8	
ſ				CR	XDSA		252 6	2)~	
	7	6	5	4	3	2	1	0	
				CR	XDSA		20	10	

Bits	Descriptions	
		Current Receive Descriptor Start Address Default Value: 32'h0
[31:0]	CRXDSA	The CRXDSA keeps the start address of Rx descriptor that is used by RxDMA currently. The CRXDSA is read only and write to this register has no effect.

Current Receive Buffer Start Address Register (CRXBSA)

Reg	Register Address F			R/W	Descriptio	Description					
CRX	CRXBSA 0xB000_30D8 R				Current Re	ceive Buffer	Start Addres	ss Register	0x0000	0x0000_0000	
	_					X	A Mark				
	31		30	29	28	27	26	25	24		
					CR)	KBSA	CS I	0			
	23	5	22	21	20	19	18	17	16		
					CR)	KBSA	SI	o Co			
	15		14	13	12	11	10	9	8		
					CR)	KBSA		62 50	S		
	7		6	5	4	3	2	1	0		
					CR	KBSA		JOh	(A)		
								14. CA. CA.	600	_	

Bits	Descriptions	
		Current Receive Buffer Start Address Default Value: 32'h0
[31:0]	CRXBSA	The CRXBSA keeps the start address of Rx frame buffer that is used by RxDMA currently. The CRXBSA is read only and write to this register has no effect.

6.5.4 **Operation Notes**

MII Management Interface

The operation mode between EMC and external PHY must be identically. Consequently, S/W has to access control register of external PHY through MII management interface to get operation information of PHY. To issue MII management command to access external PHY, the MIID and MIIDA registers can be used. And, while using MII management interface, the EnMDC of MCMDR register must be set to high.

EMC Initial

If S/W wants to enable EMC for packet transmission and reception, the TXON and RXON of MCMDR register must be enabled. But, before enabling TXON and RXON, the following issues must be noted.

For packet transmission, the Tx descriptor link list and Tx frame buffer must be prepared and TXDLSA must be configured.

For incoming packets destination MAC address recognition, the CAMCMR, CAMEN, CAMXM and CAMXL registers must be configured. For incoming packet's buffering, the Rx descriptor link list and Rx frame buffer must be prepared and RXDLSA register must be configured.

Besides, the interrupt status that S/W wants to know must be enabled through MIEN register.

Finally, the EMC operation mode control bits of MCMDR must be configured and TXON and RXON must be enabled.

MAC Interrupt Status Register (MISTA)

The MISTA register keeps the status of EMC operation. It is recommended that S/W must enable four interrupt statuses at least. They are TxBErr, RxBErr, TDU and RDU.

While EMC accesses memory, it reports the memory error through TxBErr or TxBErr status. If any of them actives, the reset EMC is recommended.

For packet transmission, a valid Tx descriptor is required, and for packet reception, a valid Rx one is. If EMC cannot find a valid Tx or Rx descriptor, it sets TDU or RDU to high respectively. After S/W releases a valid Tx or Rx descriptor to EMC, writing TSDR or RSDR register to enable packet transmission and reception again is needed.

Pause Control Frame Transmission

The EMC supports the PAUSE control frame transmission for flow control while EMC is operating on fullduplex mode. The register CAM13M, CAM13L, CAM14M, CAM14L, CAM15M and CAM15L are designed for this purpose.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, set bit SDPZ of MCMDR register to high to enable PAUSE control frame transmission. After the PAUSE control frame transmission completed, the SDPZ will be cleared automatically.

Internal Loop-back

If the LBK of MCMDR register is set, the EMC operates on internal loop-back mode. While EMC operates on internal loop-back mode, it also means EMC operates on full-duplex mode, and the value of FDUP of MCMDR register is ignored. No 10

6.6 **GDMA** Controller

6.6.1 **Overview & Features**

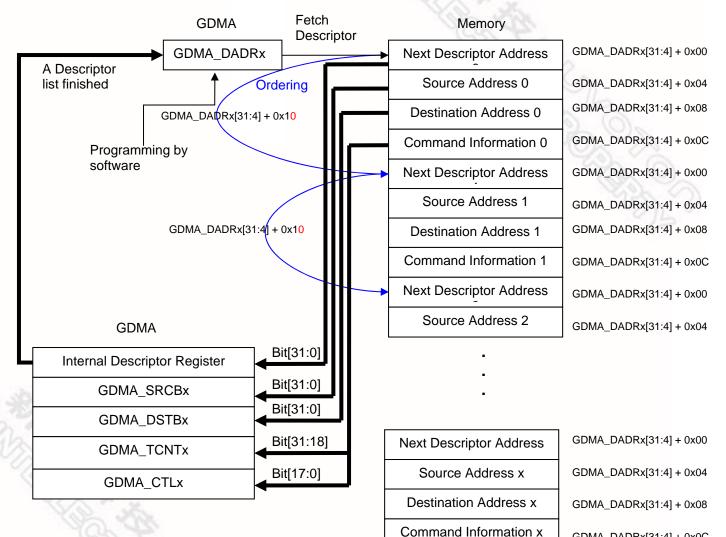
The chip has a two-channel general DMA controller with or without descriptor fetch operation, called the GDMA. The two-channel GDMA performs the Memory-to-Memory data transfers without the CPU intervention.

The on-chip GDMA can be started by the software. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increment source or destination address, decrement them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

6.6.2 **GDMA Non-Descriptor Functional Description**

The GDMA directly transfers data between source and destination. The GDMA starts to transfer data after it receives service requests from software. When the entire data have been transferred completely, the GDMA becomes idle. Nevertheless, if another transfer is needed, then the GDMA must be programmed again.

6.6.3 **GDMA Descriptor Functional Description**


The descriptor-fetch function works when run-bit (bit-3) is set and non-dsptrmode-bit (bit-2) is cleared in Descriptor Register (GDMA DADRx) and the GDMA CTLx bit setting as following table. The Non-descriptorfetch function works when software triggers the [softreq] bit (bit-16) and the [gdmaen] bit (bit-0) in GDMA_CTLx Register. If the [softreq] set to zero and the [GDMAMS] (bit2-3) set as 01 or 10 will start the I/O to memory function. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increase source or destination address, decrease them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

Operation Mode	Enable bit
Non-Descriptor Mode with SW Enable	GDMA_CTLx : gdmaen[0] softreq[16] gdmams[3:2]
Non-Descriptor Mode with I/O Enable	GDMA_CTLx : gdmaen[0] gdmams[3:2]
Descriptor Mode with SW Enable	GDMA_DADRx : run[3] non-dsptrmode[2]; GDMA_CTLx in Descriptor List : gdmaen[0] gdmams[3:2]
Descriptor Mode with I/O Enable	GDMA_DADRx : run[3] non-dsptrmode[2]; GDMA_CTLx in Descriptor List : gdmaen[0] gdmams[3:2]
	Publication Release Date: Jun 18, 2010

32-BIT ARM926EJS-BASED MCU

Descriptor Fetch Function 6.6.3.1

The Illustration of Descriptor list fetches:

Single Channel Docorintor

GDMA_DADRx[31:4] + 0x0C

32-BIT ARM926EJS-BASED MCU

Descriptor-based function (GDMA_DADRx[NON_DSPTRMODE] = 0) operate in the following condition:

Memory to Memory

- 1. Software can write a value 0x04 to current GDMA_DADRx register to reset the register and disable Descriptor based function first.
- 2. Then software can program the bits of [Descriptor Address], [RUN], [NON_DSPTRMODE] and [ORDEN] to the GDMA_DADRx register to enable Descriptor based function. (The Descriptor can only work when the [RUN][3] is set and [NON_DSPTRMODE][2] bit is cleared properly.)
- 3. After sets current GDMA_DADRx register, the GDMA will fetch four-word information from memory immediately which contains the next Descriptor address, Source Address, Destination Address and Command information. (Command information consists of control and counter registers)
- NOTE: GDMA will read the descriptor list from memory such the diagram above and write back to GDMA internal register (next GDMA_DADRx), GDMA_SRCBx, GDMA_DSTBx, GDMA_CTLx and GDMA_TCNTx registers. The most important one of write back is command information, which will separate some bits of command information into control and counter registers respectively. The first fourteen bits of the MSB of the Command information in Descriptor list will be written back to GDMA_TCNTx register, and the others bits of the Command information will be written back to GDMA_CTLx register. The control register part of the Command information will update the GDMA_CTLx register during every descriptor fetch. The allocation of command information is described at GDMA Register Descriptions.

31	30	29	28	27	26	25	24	
	GDMA_TCNTx[13:6] ← Command Info[31:24]							
23	23 22 21 20 19 18					17	16	
	GDMA_TCNTx[5:0] ← Command Info[23:18]						SOFTREQ	
15	14	13 12 11 10				9	8	
TV	TWS RESERVED			D_INTS	D_INTS	RESE	RVED	
7	6	5	5 4 3		2	1	0	
SAFIX	DAFIX	SADIR	SADIR DADIR GDMAMS		BME	GDMAEN		

The Allocation of Command Information in Descriptor List:

4. GDMA will depend on the information to request a bus ownership and start the data transfer when GDMA has gotten a bus grant from the arbiter, otherwise, it will wait until get bus grant. The data transfer direction is dependent on the Control register.

5. The GDMA transfers data and releases bus at every burst transfer. The GDMA will stop transfer for current descriptor when the counter is decreased to zero. The current GDMA_DADRx will be updated by next GDMA_DADRx at end of each descriptor transfer.

6. The GDMA is running consecutively unless the next GDMA_DADRx[RUN] bit is zero or interrupt status bit of GDMA_INTCS register is cleared. The CPU can recognize the completion of a GDMA descriptor fetch operation by polling the current GDMA_DADRx[NON_DSPTRMODE] bit or set the GDMA_CTLx[D_INTS] to receive a interrupt from GDMA.(Note: The recommendation is the [NON_DSPTRMODE] bit in list is set at the same time)

7. When an error occurs in the descriptor operation, GDMA will clear [RUN] bit and stop channel operation immediately. Software can reset the channel, and sets the current GDMA_DADRx[RUN] register to start again.

32-BIT ARM926EJS-BASED MCU

Memory to I/O and I/O to Memory

- 1. Software must set the [REQ_ATV], [ACK_ATV] and [GDMAMS] bits in GDMA_CTLx register corresponding to I/O pin with pull high or pull low properly first, and then set the current GDMA_DADRx to start the I/O to Memory with descriptor fetch transfer.
- 2. The descriptor lists stop transfer until the RUN bit was zero in descriptor list when external I/O request triggered once. The RUN bit can be set when external I/O request triggered again under the NON_DSPTRMODE bit was zero in descriptor list. The trigger period of the external I/O has a timing limitation whatever the GDMA was in single or burst mode, and the periodic trigger of the external I/O must be less than 38 MCLK.
- 3. Each GDMA lists can operate after clearing interrupt status. The descriptor lists stop transfer until the RUN bit was zero or interrupt status was set.
- 4. The next Descriptor address, Source Address, Destination Address and Command information must be set properly in every Descriptor list. Especially, every bit of the Command information will update the GDMA_CTLx and GDMA_TCNTx registers at every initiation of descriptor list.

NOTE: The [BLOCK] bit of GDMA_CTLx register is disabled when the descriptor mode of the I/O to memory is enabled.

NOTE: GDMA can change mode with following description:

Descriptor-fetch of each channel can be stopped until the current transfer list done. Software can change Descriptor mode to Non-Descritpor mode by writing 0x04 to GDMA_DADRx register during the current descriptor transfer operating.

Non-Descriptor fetch can be stopped until current transfer count finished when software programs the GDMA_CTLx register with gdmaen bit cleared or softreq cleared.

NOTE: Once software programs the current GDMA_DADRx register, GDMA will fetch the descriptor list from memory and fill the data to next GDMA_DADRx, current GDMA_SRCBx, current GDMA_DSTBx, current GDMA_CTLx and current GDMA_TCNTx registers automatically. The fourth word in descriptor list includes the information for GDMA_CTLx and GDMA_TCNTx registers.

NOTE: The descriptor fetch function only occurs when current GDMA_DADRx[RUN] bit is set and GDMA_DADRx[NON_DSPTRMODE] is cleared. The current GDMA_DADRx will be updated by next GDMA_DADRx at every descriptor stops.

6.6.3.2 Ordering function in Descriptor fetch mode

This function determines the source of next descriptor address. If [ORDEN] is set, the GDMA controller fetches the next descriptor from current GDMA_DADRx[Descriptor Address] + 16 bytes.

If this bit is cleared, GDMA fetches the next descriptor from the current $GDMA_DADRx[Descriptor Address]$.

GDMA_DADRx[ORDEN] is only relevant to descriptor-fetch function (GDMA_DADRx[NON_DSPTRMODE] = 0).

6.6.3.3 Channel Reset

The Channel reset is turned on when the bit-0 of GDMA_DADRx is set. This function will clear all status and stop the descriptor based function relative to individual channel. The GDMA_DADRx register value is 0x05h when reset bit is set.

6.6.3.4 Non-Descriptor Fetch Function

The non-descriptor-fetch function will take place when current GDMA_DADRx[NON_DSPTRMODE] is set and the GDMA_DADRx register will have no any intention for the GDMA controller.

The default value of GDMA_DADRx is 0x04. Software can clear GDMA_DADRx with value 0x04 as well. In this mode, software should write a valid source address to the GDMA_SRCBx register, a destination address to the GDMA_DSTBx register, and a transfer count to the GDMA_TCNTx register. Next, the GDMA_CTLx of [gdmaen] and [softreq] bits must be set. A non-descriptor fetch is performed when bus granted. After transferring a number of bytes or words correspond with burst mode or not, the channel either waits for the next request or continues with the data transfer until the GDMA_CTCNTx reaches zero. When GDMA_CTCNTx reaches zero, the channel stops operation.

When an error occurs during the GDMA operation, the channel stops unless software clears the error condition and sets the GDMA_CTLx of [gdmaen] and [softreq] bits field to start again.

6.6.4 GDMA Register Map

R: read only, **W**: write only, **R/W**: both read and write, **C**: Only value 0 can be written

Register	Address	R/W	Description	Reset Value
GDMA_BA = 0xB0				
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000
GDMA_SRCB0	0xB000_4004	R/W	Channel 0 Source Base Address Register	0x0000_0000
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000
GDMA_TCNTO	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNTO	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000
GDMA_DADR0	0xB000_401C	R/W	Channel 0 Descriptor Address Register	0x0000_0004
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000

32-BIT ARM926EJS-BASED MCU

Register	Address	R/W	Description	Reset Value
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Descriptor Address Register	0x0000_0004
GDMA_INTBUF0	0xB000_4080	R	GDMA Internal Buffer Word 0	0x0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0x0000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0x0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0x0000_0000
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Channels)	0x0000_0000

Channel 0/1 Control Register (GDMA_CTL0, GDMA_CTL1)

Register	Address	R/W	Description	Reset Value
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000

The control registers has two formats for descriptor fetch and non-descriptor fetch function respectively. The functionality of each control bit is described in following table.

1. Non-Descriptor fetches Mode

31	30	29	28	27	26	25	24
	RESERVED						
23	22	21	20	19	18	17	16
RESERVED	SABNDERR	DABNDERR	RESERVED	AUTOIEN	RESERVED	BLOCK	SOFTREQ
15	14	13	12	11	10	9	8
RESERVED	RESERVED	тν	vs		RESE	RVED	12°
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR DADIR		GDM	IAMS	BME	GDMAEN

2. Descriptor fetches Mode

31	30	29	28	27	26	25	24
	RESERVED						RESERVED
23	22	21 20		19	18	17	16
RESERVED	SABNDERR	DABNDERR	RESERVED		BLOCK	SOFTREQ	
15	14	13	12	11	10	9	8
RESE	RESERVED T\		s	RESERVED	D_INTS	RESE	RVED
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR	DADIR GDMAMS		BME	GDMAEN	

NOTE:

The bit [REQ_ATV] and [ACK_ATV] must be set first before using I/O to Memory mode with Descriptor fetch transfer. These two bits cannot do any setup in command information within descriptor list configuration. The [SABNDERR],[DABNDERR],[GDMAERR] can also be read at descriptor fetch mode.

Regardless of GDMA operate in descriptor mode or non-descriptor mode, when transfer width is 16bit (half word) and the address with decrement function enable for starting source address or destination address or both are used should set the least two bit of addresses is 0xF.

Control Register of Non-Descriptor fetches Mode:

Bits	Descriptions	
[22]	SABNDERR	 Source Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00 If TWS [13:12]=01, GDMA_SRCB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_SRCB is on the boundary alignment. 1 = the GDMA_SRCB not on the boundary alignment The SABNDERR register bits just can be read only.
[21]	DABNDERR	 Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[19]	AUTOIEN	Auto initialization Enable 0 = Disables auto initialization 1 = Enables auto initialization, the GDMA_CSRC0/1,GDMA_CDST0/1,and GDMA_CTCNT0/1 registers are updated by the GDMA_SRC0/1, GDMA_DST0/1, and GDMA_TCNT0/1 registers automatically when transfer is complete. GDMA will start another transfer when SOFTREQ set again.
[17]	BLOCK	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer
[16]	SOFTREQ	Software Triggered GDMA Request Software can request the GDMA transfer service by setting this bit to 1. This bit is automatically cleared by hardware when the transfer is completed. This bit is available only while GDMAMS [3:2] register bits are set on software mode.
[13:12]	TWS	Transfer Width Select00 = One byte (8 bits) is transferred for every GDMA operation01 = One half-word (16 bits) is transferred for every GDMA operation10 = One word (32 bits) is transferred for every GDMA operation11 = ReservedThe GDMA_SCRB and GDMA_DSTB should be alignment under the TWSselection

Bits	Descriptions	
[7]	SAFIX	 Source Address Fixed 0 = Source address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.
[6]	DAFIX	 Destination Address Fixed 0 = Destination address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.
[5]	DADIR	Source Address Direction 0 = Source address is incremented successively 1 = Source address is decremented successively
[4]	DADIR	Destination Address Direction 0 = Destination address is incremented successively 1 = Destination address is decremented successively
[3:2]	GDMAMS	GDMA Mode Select 00 = Software mode 01 = Reserved 10 = Reserved 11 = Reserved
[1]	BME	Burst Mode Enable 0 = Disables the 8-data burst mode 1 = Enables the 8-data burst mode If there are 8 words to be transferred, and the BME [1]=1, the GDMA_TCNTx should be 0x01. However, if BME [1]=0, the GDMA_TCNTx should be 0x08. It has to set BME[1] = 0 for I/O device access.
[0]	GDMAEN	GDMA Enable0 = Disables the GDMA operation1 = Enables the GDMA operation; this bit will be clear automatically whenthe transfer is complete on AUTOIEN [19] register bit is on Disable mode.Note:When operate in Non-Descriptor mode, this bit is determined the Memory-to Memory operation or not.When operate in Descriptor mode, this bit is determined in descriptor list.Note: Channel reset will clear this bit.
		Publication Release Date: Jun 18, 2010 130 Revision: A5

Descriptor fetches mode of Control Register:

Bits	Descriptions	
[22]	SABNDERR	Source Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00 If TWS [13:12]=01, GDMA_SRCB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_SRCB is on the boundary alignment. 1 = the GDMA_SRCB not on the boundary alignment The SABNDERR register bits just can be read only.
[21]	DABNDERR	Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the DADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[17]	BLOCK	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer
[13:12]	TWS	Transfer Width Select 00 = One byte (8 bits) is transferred for every GDMA operation 01 = One half-word (16 bits) is transferred for every GDMA operation 10 = One word (32 bits) is transferred for every GDMA operation 11 = Reserved The GDMA_SCRB and GDMA_DSTB should be alignment under the TWS selection
[10]	D_INTS	Descriptor Fetch Mode Interrupt Select 0 = The interrupt will take place at every end of descriptor fetch transfer. 1 = The interrupt only take place at the last descriptor fetch transfer. NOTE: this bit is only available in descriptor mode and lists intention.
[7]	SAFIX	Source Address Fixed 0 = Source address is changed during the GDMA operation 1 = Do not change the source address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.
[6]	DAFIX	Destination Address Fixed 0 = Destination address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.
[5]	SADIR	Source Address Direction 0 = Source address is incremented successively 1 = Source address is decremented successively Publication Release Date: Jun 18, 2010

Bits	Descriptions	
[4]	DADIR	Destination Address Direction 0 = Destination address is incremented successively 1 = Destination address is decremented successively
[3:2]	GDMAMS	GDMA Mode Select 00 = Software mode 01 = Reserved 10 = Reserved 11 = Reserved
[1]	BME	Burst Mode Enable 0 = Disables the 8-data burst mode 1 = Enables the 8-data burst mode If there are 8 words to be transferred, and the BME [1]=1, the GDMA_TCNTx should be 0x01. However, if BME [1]=0, the GDMA_TCNTx should be 0x08. It has to set BME[1] = 0 for I/O device access.
[0]	GDMAEN	GDMA Enable 0 = Disables the GDMA operation 1 = Enables the GDMA operation; this bit will be clear automatically when the transfer is complete on AUTOIEN [19] register bit is on Disable mode. When operate in Non-Descriptor mode, this bit is determined the Memory- to-Memory operation or not. When operate in Descriptor mode, this bit is determined in descriptor list. Note: Channel reset will clear this bit.

Channel 0/1 Source Base Address Register (GDMA_SRCB0, GDMA_SRCB1)

Register	Address	R/W	Description	Reset Value
GDMA_SRCB0	0xB000_4004	R/W	Channel 0 Source Base Address Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000

						and the second sec			
31	30	29	28	27	26	25	24		
SRC_BASE_ADDR [31:24]									
23	22	21	20	19	18	17	16		
	SRC_BASE_ADDR [23:16]								
15	14	13	12	11	10	9	8		
SRC_BASE_ADDR [15:8]									
7	6	5	4	3	2	1	0		
	SRC_BASE_ADDR [7:0]								

Bits	Descriptions	
[31:0]	SRC_BASE_ADDR	32-bit Source Base Address The GDMA channel starts reading its data from the source address as defined in this source base address register.

Channel 0/1 Destination Base Address Register (GDMA_DSTB0, GDMA_DSTB1)

Register	Address	R/W	Description	Reset Value
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000

						~ *(// ···				
31	30	29	28	27	26	25	24			
DST_BASE_ADDR [31:24]										
23	22	21	20	19	18	17	16			
	DST_BASE_ADDR [23:16]									
15	14	13	12	11	10	9	8			
DST_BASE_ADDR [15:8]										
7	6	5	4	3	2	1	0			
DST_BASE_ADDR [7:0]										

Bits	Descriptions								
[31:0]	DST_BASE_ADDR	32-bit Destination Base Address The GDMA channel starts writing its data to the destination address as defined in this destination base address register. During a block transfer the GDMA determines successive destination addresses by adding to or subtracting from the destination base address.							
2									
		Publication Release Date: Jun 18, 2010 134 Revision: A5							

Channel 0/1 Transfer Count Register (GDMA_TCNT0, GDMA_TCNT1)

Register	Address	R/W	Description	Reset Value
GDMA_TCNT0	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
TFR_CNT [23:16]									
15	14	13	12	11	10	9	8		
TFR_CNT [15:8]									
7	6	5	4	3	2	1	0		
	TFR_CNT [7:0]								

Bits	Descriptions	
[23:0]	TFR_CNT	Transfer Count Non-Descriptor Mode:24-bit TFR_CNT [23:0] The TFR_CNT represents the required number of GDMA transfers. The maximum transfer count is 16M –1. Descriptor Mode: 14-bit TFR_CNT [13:0] The TFR_CNT represents the required number of GDMA transfers. The
1252		maximum transfer count is $16K - 1$.
		Publication Release Date: Jun 18, 2010 135 Revision: A5

00

Channel 0/1 Current Source Register (GDMA_CSRC0, GDMA_CSRC1)

Register	Address	R/W	Description	Reset Value
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
CURRENT_SRC_ADDR [31:24]									
23	22	21	20	19	18	17	16		
CURRENT_SRC_ADDR [23:16]									
15	14	13	12	11	10	9	8		
CURRENT_SRC_ADDR [15:8]									
7	6	5	4	3	2	1	0		
	CURRENT_SRC_ADDR [7:0]								

Bits	Descriptions							
[31:0]	CURRENT_SRC_ADDR	32-bit Current Source Address The CURRENT_SRC_ADDR indicates the source address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive source addresses by adding to or subtracting from the source base address. Depending on the settings you make to the control register, the current source address will remain the same or will be incremented or decremented.						
[31:0]	CURRENT_SRC_ADDR	The CURRENT_SRC_ADDR indicates the source address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive source addresses by adding or subtracting from the source base address. Depending on the settings you make to the control register, the current source address will remain the same or will be incremented						

Channel 0/1 Current Destination Register (GDMA_CDST0, GDMA_CDST1)

Register	jister Address R/W		Description	Reset Value
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Register	0x0000_0000

31	30	29	28	27	26	25	24	
	CURRENT_DST_ADDR [31:24]							
23	22	21	20	19	18	17	16	
	CURRENT_DST_ADDR [23:16]							
15	14	13	12	11	10	9	8	
CURRENT_DST_ADDR [15:8]								
7	6	5	4	3	2	1	0	
	CURRENT_DST_ADDR [7:0]						SP.	

Bits	Descriptions	
[31:0]	CURRENT_DST_ADDR	32-bit Current Destination Address The CURRENT_DST_ADDR indicates the destination address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive destination addresses by adding to or subtracting from the destination base address. Depending on the settings you make to the control register, the current destination address will remain the same or will be incremented or decremented.

Channel 0/1 Current Transfer Count Register (GDMA_CTCNT0, GDMA_CTCNT1)

Register	Address	R/W	Description	Reset Value			
GDMA_CTCNT0	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000			
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000			

						6 A 3 A 100		
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	CURENT_TFR_CNT [23:16]							
15	14	13	12	11	10	9	8	
CURRENT_TFR_CNT [15:8]								
7	6	5	4	3	2	1	0	
	CURRENT_TFR_CNT [7:0]							

Bits	Descriptions					
[23:0]	CURRENT_TFR_CNT	Current Transfer CountThe Current transfer count register indicates the number of transferbeing performed.Non-Descriptor Mode : 24-bit CURENT_TFR_CNT [23:0]Descriptor Mode : 14-bit CURENT_TFR_CNT [13:0]				
h a		Descriptor Mode : 14-bit CURENT_TFR_CNT [13:0]				
		Publication Release Date: Jun 18, 2010 138 Revision: A5				

Channel 0/1 Descriptor Register (GDMA_DADR0/1)

	Address	R/W	Description	Reset Value
GDMA_DADRO	0xB000_401C	R/W	Channel 0 Control Register	0x0000_0004
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Control Register	0x0000_0004

					162		
31	30	29	28	27	26	25	24
Descriptor Address[31:24]							
23	22	21	20	19	18	17	16
			Descrip	tor Addres	s[23:16]	2.0.	5.
15	14	13	12	11	10	9	8
Descriptor Address[15:8]							
7	6	5	4	3	2	1	0
Descriptor Address[7:4]			RUN	NON_DSPTRMODE	ORDEN	RESET	

Bits	Descriptions					
[31:4]	Descriptor Address	Descriptor Address Contains address of next descriptor.				
[3]	RUN	Run The RUN bit can be cleared during descriptor data transfer, and set RUN bit to starts the stopped channel under [Descriptor Address] and [Non- DSPTRMODE] bits are set properly. When RUN bit is cleared and the NON_DSPTRMODE bit is set that non-descriptor fetch occurs whether a valid descriptor address is written to register GDMA_DADRx or not. This bit will reset automatically when each descriptor transfer stopped or the bit in descriptor list is zero. The Descriptor interrupt is determined by bit-10 of the GDMA_CTLx Register. 0 = Stops the channel. 1 = Starts the channel. Note: must co-operate to [NON_DSPTRMODE] to start the channel with Descriptor fetch function.				
[2]	NON_DSPTRMODE	Non-Descriptor-Fetch When NON_DSPTRMODE is set, the channel is considered as a channel with no descriptors. In this mode, the GDMA does not initiate descriptor fetching and software can program the SCRBx, DSTBx,CTRx and TCNTx registers to transfer data until the TCNTx reaches zero. The GDMA_DADRx register is not used in non-descriptor mode. If NON_DSPTRMDOE is cleared under [RUN] and [Descriptor Address] are set properly, GDMA controller initiates descriptor-fetching. The descriptor fetch transfer stops when the counter for the current transfer reaches zero, [RUN] bit is cleared and [NON_DSPTRMODE] is set base on the bits of the descriptor list. 0 = Descriptor-fetch transfer				

Bits	Descriptions	
		1 = NON-descriptor-fetch transfer Note: this bit = 1 will disable Descriptor function regardless of the RUN bit is 1 or not.
[1]	ORDEN	Enable Ordering Execution for Descriptor List The GDMA_DADRx[ORDEN] determine which the next descriptor address will be fetched. If [ORDEN] is set, the GDMA controller fetches the next descriptor from Current GDMA_DADRx[Descriptor Address] + 16 bytes. If this bit is cleared, GDMA fetches the next descriptor address from the current GDMA_DADRx[Descriptor Address] register. GDMA_DADRx[ORDEN] is relevant only for descriptor-fetch function (GDMA_DADRx[NON_DSPTRMODE] = 0). 0 = Disable descriptor ordering. Fetch the next descriptor from register GDMA_DADRx[Descriptor Address]. 1 = Enable descriptor ordering.
[0]	RESET	Reset Channel 0 = Disable channel reset. 1 = Enable channel status reset and disable descriptor based function.

Channel 0/1 GDMA Internal Buffer Register (GDMA_INTBUF0/1)

Software can set the [17-16] bit of GDMA_INTCS to select channels and watch the value which has read from memory.

Register	Address	R/W	Description	Reset Value
GDMA_INTBUFO	0xB000_4080	R	GDMA Internal Buffer Word 0	0x0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0x000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0x0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0x0000_0000

31	30	29	28	27	26	25	24	
	DATA_BUFFER [31:24]							
23	22	21	20	19	18	17	16	
	DATA_BUFFER [23:16]							
15	14	13	12	11	10	9	8	
	DATA_BUFFER [15:8]							
7	6	5	4	3	2	1	0	
100			DATA_BU	FFER [7:0]				

Bits	Descriptions		
[31:0]	DATA_BUFFER	[17-16] bit of GDMA_INTCS mapping to GDMA_INTBUF	~7 are available when burst mode used,
		141	Publication Release Date: Jun 18, 2010 Revision: A5

Channel 0/1 GDMA Interrupt Control and Status Register (GDMA_INTCS)

Register	Address	R/W	Description	Reset Value
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Chs)	0x0000_0000

				1.201.0	and the second sec		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
RESERVED					BUF_RD_SEL		
15	14	13	12	11	10	9	8
RESERVED				TERR1F	TC1F	TERROF	TCOF
7	6	5	4	3	2	1	0
RESERVED			TERR1EN	TC1EN	TERROEN	TCOEN	

Bits	Descriptions	
[17:16]	BUF_RD_SEL	Internal Buffer Read Select 00 = Read Internal Buffer for Channel 0 01 = Read Internal Buffer for Channel 1 10 = RESERVED 11 = RESERVED
[11]	TERR1F	Channel 1 Transfer Error O = No error occurs 1 = Hardware sets this bit on a GDMA transfer failure This bit will be cleared when write logic 1. Transfer error will generate GDMA interrupt
[10]	TC1F	Channel 1 Terminal Count 0 = Channel does not expire 1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1. TC1 is the GDMA interrupt flag. TC1 or GDMATERR1 will generate interrupt
[9]	TERROF	Channel O Transfer Error O = No error occurs 1 = Hardware sets this bit on a GDMA transfer failure This bit will be cleared when write logic 1. Transfer error will generate GDMA interrupt
	NG.	Publication Release Date: Jun 18, 20 142

Bits	Descriptions	
[8]	TCOF	Channel O Terminal Count 0 = Channel does not expire 1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1. TC0 is the GDMA interrupt flag. TC0 or GDMATERR0 will generate interrupt
[3]	TEER1EN	Channel 1 Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[2]	TC1EN	Channel 1 Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt
[1]	TEEROEN	Channel O Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[0]	TCOEN	Channel O Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt

32-BIT ARM926EJS-BASED MCU

6.7 USB Host Controller (USBH)

The **Universal Serial Bus (USB)** is a fast, bi-directional, isochronous, low-cost, dynamically attachable serial interface standard intended for USB devices. The USB is a 4-wire serial cable bus that supports serial data exchange between a Host Controller and a network of peripheral devices. The attached peripherals share USB bandwidth through a host-scheduled, token-based protocol. Peripherals may be attached, configured, used, and detached, while the host and other peripherals continue operation (i.e. hot plug and unplug is supported).

A major design goal of the USB standard was to allow flexible, plug-and-play networks of USB devices. In any USB network, there will be only one host, but there can be many devices and hubs.

The USB Host Controller includes the following features

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Integrated a port routing logic to route full/low speed device to OHCI controller.
- Built-in DMA for real-time data transfer.

Register	Offset	R/W	Description	Reset Value		
Capability Registers (USBH_BA = 0xB000_5000)						
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020		
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012		
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000		
Operational	Operational Registers					
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000		
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1004		
UIENR	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000		
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000		
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000		
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000		
UASSTR	0xB000_503C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6		
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000		
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000		

6.7.1 Register Mapping

nuvoTon

	ous Registers	- 0.1		
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060
	sters (USBO_BA			
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000
HcComSts	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_000
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_000
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_000
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_000
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_000
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_000
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2ED
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_000
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_000
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_000
HcLSTH	0xB000_7044	R/W	Host Controller Low Speed Threshold Register	0x0000_062
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_000
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_000
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_000
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_000
HcRhPrt2	0xB000_7058	R/W	Host Controller Root Hub Port Status [2]	0x0000_000
OHCI USB (Configuration R	egister	1 	
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_000

6.7.2 Register Details

EHCI Version Number Register (EHCVNR)

Register	Address	R/W	Description	Reset Value
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020

31 30 29 28 27 26 25 24 Version 23 22 21 20 19 18 17 16 Version 15 14 13 12 11 10 9 8 Reserved 7 6 5 4 3 2 1 0							1 / J / M	
23 22 21 20 19 18 17 16 Version 15 14 13 12 11 10 9 8 Reserved 7 6 5 4 3 2 1 0	31	30	29	28	27	26	25	24
Version 15 14 13 12 11 10 9 8 Reserved 7 6 5 4 3 2 1 0				Ver	sion			
15141312111098Reserved76543210	23	22	21	20	19	18	17	16
Reserved 7 6 5 4 3 2 1 0				Ver	sion		22	Or.
7 6 5 4 3 2 1 0	15	14	13	12	11	10	9	8
7 8 5 4 5 Z I 0				Rese	erved		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0
CR_Length	7	6	5	4	3	2	1	0
				CR_L	ength			2m

Bits	Descriptions	
[31:16]	Version	Host Controller Interface Version Number This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host controller. The most significant byte of this register represents a major revision and the least significant byte is the minor revision.
[7:0]	CR_Length	Capability Registers Length This register is used as an offset to add to register base to find the beginning of the Operational Register Space.

Publication Release Date: Jun 18, 2010 Revision: A5

XIN M. M.

EHCI Structural Parameters Register (EHCSPR)

Register	Address	R/W	Description	Reset Value
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012

31	30	29	28	27	26	25	24
			Rese	rved	CYL T	0	
23	22	21	20	19	18	17	16
			Rese	rved	SI	2 Con	
15	14	13	12	11	10	9	8
	N_	<u>_</u> CC			N_I	PCC	0
7	6	5	4	3	2	1	0
Reserved			PPC		N_PO	ORTS	L V C

Bits	Descripti	ons
[15:12]	N_CC	 Number of Companion Controller This field indicates the number of companion controllers associated with this USB 2.0 host controller. A zero in this field indicates there are no companion host controllers. Portownership hand-off is not supported. Only high-speed devices are supported on the host controller root ports. A value larger than zero in this field indicates there are companion USB 1.1 host controller(s). Port-ownership hand-offs are supported. High, Full- and Low-speed devices are supported on the host controller root ports.
[11:8]	N_PCC	 Number of Ports per Companion Controller This field indicates the number of ports supported per companion host controller. It is used to indicate the port routing configuration to system software. For example, if N_PORTS has a value of 6 and N_CC has a value of 2 then N_PCC could have a value of 3. The convention is that the first N_PCC ports are assumed to be routed to companion controller 1, the next N_PCC ports to companion controller 2, etc. In the previous example, the N_PCC could have been 4, where the first 4 are routed to companion controller 1 and the last two are routed to companion controller 2. The number in this field must be consistent with N_PORTS and N_CC.
[4]	PPC	Port Power Control This field indicates whether the host controller implementation includes port power control. A one in this bit indicates the ports have port power switches. A zero in this bit indicates the port do not have port power stitches. The value of this field affects the functionality of the <i>Port Power</i> field in each port status and control register.
		Publication Release Date: Jun 18, 2010 147 Revision: A5

nuvoTon

[3:0]	N_PORT S	Number of Physical Downstream Ports This field specifies the number of physical downstream ports implemented on this host controller. The value of this field determines how many port registers are addressable in the Operational Register Space. Valid values are in the range of 1H to FH. A zero in this field is undefined.
-------	-------------	--

EHCI Capability Parameters Register (EHCCPR)

Register	Address	R/W	Description	Reset Value
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000

31	30	29	28	27	26	25	24
			Res	erved	972	1	
23	22	21	20	19	18	17	16
			Res	erved	5	2 00	
15	14	13	12	11	10	9	8
			E	ECP		20 (2
7	6	5	4	3	2	1	0
	ISO S	СН_ТН		Reserved	ASPC	PFList	64B

Bits	Descriptions	
[15:8]	EECP	EHCI Extended Capabilities Pointer (EECP) 8'h0: No extended capabilities are implemented.
[7:4]	ISO_SCH_TH	Isochronous Scheduling Threshold
[2]	ASPC	Asynchronous Schedule Park Capability 1'b0: This EHCI host controller doesn't support park feature of high-speed queue heads in the Asynchronous Schedule.
[1]	PFList	Programmable Frame List Flag 1'b0: System software must use a frame list length of 1024 elements with this EHCI host controller.
[0]	64B	64-bit Addressing Capability 1'b0: Data structure using 32-bit address memory pointers.
		Publication Release Date: Jun 18, 2010 149 Revision: A5

USB Command Register (UCMDR)

Register	Address	R/W	Description	Reset Value
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000

31	30	29	28	27	26	25	24
			Rese	erved	972	A	
23	22	21	20	19	18	17	16
			INT_T	H_CTL	5	b Sh	
15	14	13	12	11	10	9	8
			Rese	erved		20	0
7	6	5	4	3	2	1	0
Reserved	AsynADB	ASEN	PSEN	FLS	Size	HCRESET	RunStop

Bits	Descriptions	
[23:16]	INT_TH_CTL	Interrupt Threshold Control (R/W) This field is used by system software to select the maximum rate at which the host controller will issue interrupts. The only valid values are defined below. If software writes an invalid value to this register, the results are undefined. Value Maximum Interrupt Interval 00h Reserved 01h 1 micro-frame 02h 2 micro-frames 04h 4 micro-frames (default, equates to 1 ms) 10h 16 micro-frames (2 ms) 20h 32 micro-frames (4 ms) 40h 64 micro-frames (8 ms) Any other value in this register yields undefined results. Software modifications to this bit while HCHalted bit is equal to zero results in undefined behavior.
[6]	AsynADB	Interrupt on Async Advance Doorbell (R/W) This bit is used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell. When the host controller has evicted all appropriate cached schedule state, it sets the <i>Interrupt on Async Advance</i> status bit in the USBSTS register. If the <i>Interrupt on Async Advance Enable</i> bit in the USBINTR register is a one then the host controller will assert an interrupt at the next interrupt threshold. The host controller sets this bit to a zero after it has set the <i>Interrupt on Async Advance</i> status bit in the USBSTS register to a one. Software should not write a one to this bit when the asynchronous schedule is disabled. Doing so will yield undefined results.

Bits	Descriptions	5
[5]	ASEN	Asynchronous Schedule Enable (R/W) This bit controls whether the host controller skips processing the Asynchronous Schedule. Values mean: Ob Do not process the Asynchronous Schedule 1b Use the ASYNCLISTADDR register to access the Asynchro-nous Schedule
[4]	PSEN	Periodic Schedule Enable (R/W)This bit controls whether the host controller skips processing the PeriodicSchedule. Values mean:Ob Do not process the Periodic Schedule1b Use the PERIODICLISTBASE register to access the Periodic Schedule
[3:2]	FLSize	Frame List Size (R/W or RO)This field is R/W only if Programmable Frame List Flag in the HCCPARAMSregisters is set to a one. This field specifies the size of the frame list. The sizethe frame list controls which bits in the Frame Index Register should be usedfor the Frame List Current index. Values mean:00b 1024 elements (4096 bytes) Default value01b 512 elements (2048 bytes)10b 256 elements (1024 bytes) – for resource-constrained environment11b Reserved
[1]	HCRESET	 Host Controller Reset (HCRESET) (R/W) This control bit is used by software to reset the host controller. The effects of this on Root Hub registers are similar to a Chip Hardware Reset. When software writes a one to this bit, the Host Controller resets its internal pipelines, timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports. All operational registers, including port registers and port state machines are set to their initial values. Port ownership reverts to the companion host controller(s), with the side effects. Software must reinitialize the host controller in order to return the host controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register. Software should not set this bit to a one when the HCHalted bit in the USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior.
		Publication Release Date: Jun 18, 2010 151 Revision: A5

Bits	Descriptions	
[0]	RunStop	Run/Stop (R/W) 1=Run. 0=Stop. When set to a 1, the Host Controller proceeds with execution of the schedule. The Host Controller continues execution as long as this bit is set to a 1. When this bit is set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears the Run bit. The HC Halted bit in the status register indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the host controller is in the Halted state (i.e. HCHalted in the USBSTS register is a one). Doing so will yield undefined results.

USB Status Register (USTSR)

Register	Address	R/W	Description	Reset Value
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1000

					19 Mar 19 Mar				
31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
ASSTS	PSSTS	RECLA	HCHalted		Rese	rved	0		
7	6	5	4	3	2	1	0		
Rese	erved	IntAsynA	HSERR	FLROVER	PortCHG	UERRINT	USBINT		

Bits	Descriptions	
[15]	ASSTS	Asynchronous Schedule Status (RO) The bit reports the current real status of the Asynchronous Schedule. If this bit is a zero then the status of them Asynchronous Schedule is disabled. If this bit is a one then the status of the Asynchronous Schedule is enabled. The Host Controller is not required to <i>immediately</i> disable or enable the Asynchronous Schedule when software transitions the <i>Asynchronous</i> <i>Schedule Enable</i> bit in the USBCMD register. When this bit and the <i>Asynchronous Schedule Enable</i> bit are the same value, the Asynchronous Schedule is either r enabled (1) or disabled (0).
[14]	PSSTS	Periodic Schedule Status (RO) The bit reports the current real status of the Periodic Schedule. If this bit is a zero then the status of the Periodic Schedule is disabled. If this bit is a one then the status of the Periodic Schedule is enabled. The Host Controller is not required to <i>immediately</i> disable or enable the Periodic Schedule when software transitions the <i>Periodic Schedule Enable</i> bit in the USBCMD register. When this bit and the <i>Periodic Schedule Enable</i> bit are the same value, the Periodic Schedule is either enabled (1) or disabled (0).
[13]	RECLA	Reclamation (RO) This is a read-only status bit, which is used to detect an empty asynchronous schedule.
[12]	HCHalted	HCHalted (RO) This bit is a zero whenever the Run/Stop bit is a one. The Host Controller sets this bit to one after it has stopped executing as a result of the Run/Stop bit being set to 0, either by software or by the Host Controller hardware (e.g. internal error).
		Publication Release Date: Jun 18, 2010 153 Revision: A5

Bits	Descriptions	
[5]	IntAsynA	Interrupt on Async Advance (R/WC) System software can force the host controller to issue an interrupt the next time the host controller advances the asynchronous schedule by writing a one to the <i>Interrupt on Async Advance Doorbell</i> bit in the USBCMD register. This status bit indicates the assertion of that interrupt source.
[4]	HSERR	Host System Error (R/WC) The Host Controller sets this bit to 1 when a serious error occurs during a host system access involving the Host Controller module.
[3]	FLROVER	Frame List Rollover (R/WC) The Host Controller sets this bit to a one when the <i>Frame List Index</i> rolls over from its maximum value to zero. The exact value at which the rollover occurs depends on the frame list size. For example, if the frame list size (as programmed in the <i>Frame List Size</i> field of the USBCMD register) is 1024, the <i>Frame Index Register</i> rolls over every time FRINDEX[13] toggles. Similarly, if the size is 512, the Host Controller sets this bit to a one every time FRINDEX[12] toggles.
[2]	PortCHG	 Port Change Detect (R/WC) The Host Controller sets this bit to a one when any port for which the Port Owner bit is set to zero has a change bit transition from a zero to a one or a Force Port Resume bit transition from a zero to a one as a result of a J-K transition detected on a suspended port. This bit will also be set as a result of the Connect Status Change being set to a one after system software has relinquished ownership of a connected port by writing a one to a port's Port Owner bit. This bit is allowed to be maintained in the Auxiliary power well. Alternatively, it is also acceptable that on a D3 to D0 transition of the EHCI HC device, this bit is loaded with the OR of all of the PORTSC change bits (including: Force port resume, over-current change, enable/disable change and connect status change).
[1]	UERRINT	USB Error Interrupt (USBERRINT) (R/WC) The Host Controller sets this bit to 1 when completion of a USB transaction results in an error condition (e.g., error counter underflow). If the TD on which the error interrupt occurred also had its IOC bit set, both this bit and USBINT bit are set.
[0]	USBINT	USB Interrupt (USBINT) (R/WC) The Host Controller sets this bit to 1 on the completion of a USB transaction, which results in the retirement of a Transfer Descriptor that had its IOC bit set. The Host Controller also sets this bit to 1 when a short packet is detected (actual number of bytes received was less than the expected number of bytes).

USB Interrupt Enable Register (UIENR)

Regist	er Address	R/W	Description	Reset Value
UIEN	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved						2 00		
15	14	13	12	11	10	9	8	
			Rese	rved		20 (0	
7	6	5	4	3	2	1	0	
Rese	erved	AsynAEN	HSERREN	FLREN	PCHGEN	UERREN	USBIEN	
		•			•	S	No V	

Bits	Descriptions	
[5]	AsynAEN	Interrupt on Async Advance Enable When this bit is a one, and the <i>Interrupt on Async Advance</i> bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the <i>Interrupt on Async Advance</i> bit.
[4]	HSERREN	Host System Error Enable When this bit is a one, and the Host System Error Status bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Host System Error bit.
[3]	FLREN	Frame List Rollover Enable When this bit is a one, and the Frame List Rollover bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Frame List Rollover bit.
[2]	PCHGEN	Port Change Interrupt Enable When this bit is a one, and the Port Change Detect bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Port Change Detect bit.
[1]	UERREN	USB Error Interrupt Enable When this bit is a one, and the USBERRINT bit in the USBSTS register is a one, the host t controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBERRINT bit.
[0]	USBIEN	USB Interrupt Enable When this bit is a one, and the USBINT bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBINT bit.

USB Frame Index Register (UFINDR)

Register	Address	R/W	Description	Reset Value
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000

30	29	28	27	26	25	24
		Rese	erved	972		
22	21	20	19	18	17	16
		Rese	erved	S	2 00	
14	13	12	11	10	9	8
erved			Fram	eIND	Xo (0
6	5	4	3	2	1	0
		Fram	eIND		ye.	L'G
	22 14 rved	22 21 14 13 rved	Rese 22 21 20 Rese Rese 14 13 12 erved 6 5 4	Reserved22212019Reserved14131211rvedFram	Reserved 22 21 20 19 18 Reserved 14 13 12 11 10 erved FrameIND 6 5 4 3 2	Reserved 22 21 20 19 18 17 Reserved 14 13 12 11 10 9 erved FrameI ND 6 5 4 3 2 1

Bits	Descriptions	
[13:0]	FrameIND	Frame Index The value in this register increment at the end of each time frame (e.g. micro-frame). Bits [N:3] are used for the Frame List current index. This means that each location of the frame list is accessed 8 times (frames or micro-frames) before moving to the next index. The following illustrates values of N based on the value of the Frame List Size field in the USBCMD register.

USB Periodic Frame List Base Address Register (UPFLBAR)

Register	Address	R/W	Description	Reset Value
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000

					- S				
31	30	29	28	27	26	25	24		
			BAD	DDR	972				
23	22	21	20	19	18	17	16		
	BADDR								
15	14	13	12	11	10	9	8		
	BAD	DDR		Reserved					
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptions	
[31:12]	BADDR	Base Address (Low) These bits correspond to memory address signals [31:12], respectively.

USB Current Asynchronous List Address Register (UCALAR)

Register	Address	R/W	Description	Reset Value
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000

					Y.S. Mark		
31	30	29	28	27	26	25	24
			LF	PL	972	20	
23	22	21	20	19	18	17	16
			LI	PL	50	Sh	
15	14	13	12	11	10	9	8
			LI	PL	2	20 6	2)-
7	6	5	4	3	2	1	0
	LPL				Reserved	No.	Y G

Bits	Descriptions	
[31:5]	LPL	Link Pointer Low (LPL) These bits correspond to memory address signals [31:5], respectively. This field may only reference a Queue Head (QH).

USB Asynchronous Schedule Sleep Timer Register

Register	Address	R/W	Description	Reset Value
UASSTR	0xB000_503C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6

31 30 29 28 27 26 25 24 Reserved 23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8 Reserved ASTMR 7 6 5 4 3 2 1 0						19 Mar 19 Mar						
23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8 Reserved ASTMR 7 6 5 4 3 2 1 0	31	30	29	28	27	26	25	24				
Reserved 15 14 13 12 11 10 9 8 Reserved ASTMR 7 6 5 4 3 2 1 0		Reserved										
15 14 13 12 11 10 9 8 Reserved ASTMR 7 6 5 4 3 2 1 0	23	22	21	20	19	18	17	16				
Reserved ASTMR 7 6 5 4 3 2 1 0		Reserved										
7 6 5 4 3 2 1 0	15	14	13	12	11	10	9	8				
		Rese	erved			AST	MR	0				
ASTMR	7	6	5	4	3	2	1	0				
		ASTMR										

Bits	Descriptions	
[11:0]	ASSTMR	Asynchronous Schedule Sleep Timer This field defines the AsyncSchedSleepTime of EHCI spec. The asynchronous schedule sleep timer is used to control how often the host controller fetches asynchronous schedule list from system memory while the asynchronous schedule is empty. The default value of this timer is 12'hBD6. Because this timer is implemented in UTMI clock (30MHz) domain, the default sleeping time will be about 100us.

USB Configure Flag Register (UCFGR)

Register	Address	R/W	Description	Reset Value
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- N		
30	29	28	27	26	25	24
		Rese	rved	972		
22	21	20	19	18	17	16
Reserved						
14	13	12	11	10	9	8
Reserved						0
6	5	4	3	2	1	0
Reserved						CF
	22 14	22 21 14 13	Rese           22         21         20           Rese         14         13         12           Rese         6         5         4	Reserved           22         21         20         19           Reserved           14         13         12         11           Reserved           6         5         4         3	Reserved           22         21         20         19         18           Reserved           14         13         12         11         10           Reserved           6         5         4         3         2	Reserved       22     21     20     19     18     17       Reserved       14     13     12     11     10     9       Reserved       6     5     4     3     2     1

Bits	Descriptions	
[0]	CF	<ul> <li>Configure Flag (CF)</li> <li>Host software sets this bit as the last action in its process of configuring the Host Controller. This bit controls the default port-routing control logic. Bit values and side-effects are listed below.</li> <li>Ob Port routing control logic default-routes each port to an implementation dependent classic host controller.</li> <li>1b Port routing control logic default-routes all ports to this host controller.</li> </ul>





#### USB Port 0 Status and Control Register (UPSCR0)

Register	Address	R/W	Description	Reset Value
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000

31	30	29	28	27	26	25	24
			Rese	erved	972	A	
23	22	21	20	19	18	17	16
			Rese	erved	5	bion	
15	14	13	12	11	10	9	8
Rese	erved	PO	PP	LSta	atus	Reserved	PRST
7	6	5	4	3	2	1	0
Suspend	FPResum	OCCHG	OCACT	PENCHG	PEN	CSCHG	CSTS

Bits	Descriptions						
[13]	PO	<ul> <li>Port Owner (R/W)         This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero.         PO         System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port.     </li> </ul>					
[12]	PP	<b>Port Power (PP)</b> Host controller has port power control switches. This bit represents the Current setting of the switch $(0 = off, 1 = on)$ . When power is not available on a port (i.e. <i>PP</i> equals a 0), the port is nonfunctional and will not report attaches, detaches, etc. When an over-current condition is detected on a powered port and <i>PPC</i> is a one, the <i>PP</i> bit in each affected port may be transitioned by the host controller from a 1 to 0 (removing power from the port).					
[11:10]	LStatus	Line Status (RO) These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bits[11:10] USB State Interpretation 00b SE0 Not Low-speed device, perform EHCI reset 10b J-state Not Low-speed device, perform EHCI reset 01b K-state Low-speed device, release ownership of port 11b Undefined Not Low-speed device, perform EHCI reset. This value of this field is undefined if Port Power is zero.					



Bits	Description	s
[8]	PRST	<ul> <li>Port Reset (R/W)</li> <li>1=Port is in Reset. 0=Port is not in Reset. Default = 0. When software writes a one to this bit (from a zero), the bus reset sequence as defined in the USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate the bus reset sequence. Software must keep this bit at a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: when software writes this bit to a one, it must also write a zero to the Port Enable bit.</li> <li>Note that when software writes a zero to this bit there may be a delay before the bit status changes to a zero. The bit status will not read as a zero until after the reset has completed. If the port is in high-speed mode after reset is complete, the host controller will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller must terminate the reset and stabilize the state of the port within 2 milliseconds of software transitioning this bit from a one to a zero. For example: if the port detects that the attached device is high-speed during reset, then the host controller must have the port in the enabled state within 2ms of software writing this bit to a zero. The HCHalted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HCHalted bit is a one. This field is zero if Port Power is zero.</li> </ul>
[7]	Suspend	Suspend (R/W)         1=Port in suspend state. 0=Port not in suspend state. Default = 0. Port Enabled Bit and Suspend bit of this register define the port states as follows:         Bits [Port Enabled, Suspend] Port State         0X Disable         10 Enable         11 Suspend         When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB.         A write of zero to this bit is ignored by the host controller. The host controller will unconditionally set this bit to a zero when:         Software sets the Force Port Resume bit to a zero (from a one).         Software sets the Port Reset bit to a one (from a zero).         If host software sets this bit to a zero (the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.



Bits	Descriptions	
[6]	FPResum	<b>Force Port Resume (R/W)</b> 1 = Resume detected/driven on port. 0=No resume (Kstate) detected/driven on port. Default = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspended (Suspend and Enabled bits are a one) and software transitions this bit to a one, then the effects on the bus are undefined. Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit to a one, the host controller must not set the Port Change Detect bit. Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero. This field is zero if Port Power is zero.
[5]	OCCHG	<b>Over-current Change (R/WC)</b> Default = 0. 1=This bit gets set to a one when there is a change to Over- current Active. Software clears this bit by writing a one to this bit position.
[4]	OCACT	<b>Over-current Active (RO)</b> Default = 0. 1=This port currently has an over-current condition. 0=This port does not have an over-current condition. This bit will automatically transition from a one to a zero when the over current condition is removed.
[3]	PENCHG	Port Enable/Disable Change (R/WC) 1=Port enabled/disabled status has changed. 0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it. This field is zero if Port Power is zero.
		Publication Release Date: Jun 18, 2010 163



Bits	Descriptions	
[2]	PEN	Port Enabled/Disabled (R/W) 1=Enable. 0=Disable. Default = 0. Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high-speed device. Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events. When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset. This field is zero if Port Power is zero.
[1]	CSCHG	<b>Connect Status Change (R/W)</b> 1=Change in Current Connect Status. 0=No change. Default = 0. Indicates a change has occurred in the port's Current Connect Status. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be "setting" an already-set bit (i.e., the bit will remain set).Software sets this bit to 0 by writing a 1 to it. This field is zero if Port Power is zero.
[0]	CSTS	<b>Current Connect Status (RO)</b> 1=Device is present on port. 0=No device is present. Default = 0. This value reflects the current state of the port, and may not correspond directly to the event that caused the Connect Status Change bit (Bit 1) to be set. This field is zero if Port Power is zero.



### USB PHY 0 Control Register (USBPCR0)

Register	Address	R/W	Description	Reset Value
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060

					( N) NO		
31	30	29	28	27	26	25	24
			Rese	erved	972	A	
23	22	21	20	19	18	17	16
			Rese	erved	5	6 Sh	
15	14	13	12	11	10	9	8
Reserved			ClkValid	Res	erved	Suspend	
7	6	5	4	3	2	1	0
CLK48	REFCLK	REFCLK CLK_SEL			SIDDQ	Res	erved
							(V) ~

Bits	Description	S		
[11]	ClkValid UTMI Clock Valid This bit is a flag to indicate if the UTMI clock from USB 2.0 PHY is rea program must prevent to write other control registers before this UTI valid flag is active. 1'b0: UTMI clock is not valid 1'b1: UTMI clock is valid			
[8]	Suspend	<ul> <li>Suspend Assertion This bit controls the suspend mode of USB PHY 0. While PHY was suspended, all circuits of PHY were powered down and outputs are tri-state. This bit is 1'b0 in default. This means the USB PHY 0 is suspended in default. It is necessary to set this bit 1'b1 to make USB PHY 0 leave suspend mode before doing configuration of USB host. 1'b0: USB PHY 0 was suspended. 1'b1: USB PHY 0 was not suspended.</li></ul>		
[7]	CLK48	Digital Logic Clock Select This bit controls the input signal clk48m_sel of USB PHY 0. This signal selects Power-Save mode. 1'b0: Non-Power-Save mode. The PLL and the phase interpolator are powered up. The digital logic uses a 480MHz clock. Non-Power-Save mode is valid in all modes and speeds of operation. 1'b1: Power-Save mode. The PLL and the phase interpolator are powered down. The digital logic uses a 48MHz clock. Power-Save mode is valid for only FS-Only operation. The CLK_SEL should be set to 2'b10 (48MHz) when this bit is high.		
[6]	REFCLK	Reference Clock Source Select This bit has to set to 1.		



Bits	Descriptions	
[5:4]	CKL_SEL	Reference Clock Frequency Select This field has to set to 2'b10;
[3]	XO_ON	Force XO Block on During a Suspend This bit controls the input signal xo_on of USB PHY 0. 1'b0: If all ports are suspended, the XO block is powered up, and the test_clk48m signal is available. 1'b1: This bit is inactive, and the XO block is powered down when all ports are suspended.
[2]	SIDDQ	IDDQ Test Enable This bit controls the input signal siddq of USB PHY 0. This signal powers down all analog blocks. 1'b0: The analog blocks are in normal operation. 1'b1: The analog blocks are powered down.





#### Host Controller Revision Register (HcRev)

Register	Address	R/W	Description	Reset Value
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010

				~	10 . March		
31	30	29	28	27	26	25	24
			Rese	rved	3/2 ·		
23	22	21	20	19	18	17	16
			Rese	rved	SU	200	
15	14	13	12	11	10	9	8
			Rese	rved		20) (05	0)
7	6	5	4	3	2	1	0
			Re	ev		Ye.	66

Bits	Descriptions	
[7:0]	Rev	<b>Revision</b> Indicates the Open HCI Specification revision number implemented by the Hardware. Host Controller supports 1.0 specification. (X.Y = XYh)





### Host Controller Control Register (HcControl)

Register	Address	R/W	Description	Reset Value
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved					RWake	IntRoute	
7	6	5	4	3	2	1	0	
HcFunc		BlkEn	CtrlEn	ISOEn	PeriEn	CtrlBl	kRatio	

Bits	Descriptions						
[10]	RWakeEn	<b>Remote Wakeup Connected Enable</b> If a remote wakeup signal is supported, this bit enables that operation. Since there is no remote wakeup signal supported, this bit is ignored.					
[9]	RWake	<b>Remote Wakeup Connected</b> This bit indicated whether the HC supports a remote wakeup signal. This implementation does not support any such signal. The bit is hard-coded to `0.'					
[8]	IntRoute	Interrupt Routing This bit is used for interrupt routing: 0: Interrupts routed to normal interrupt mechanism (INT). 1: Interrupts routed to SMI.					
[7:6]	HcFunc	Host Controller Functional State This field sets the Host Controller state. The Controller may force a state change from USBSUSPEND to USBRESUME after detecting resume signaling from a downstream port. States are: 00: USBRESET 01: USBRESUME 10: USBOPERATIONAL 11: USBSUSPEND					
[5]	BlkEn	Bulk List Enable When set this bit enables processing of the Bulk list.					
[4]	CtrlEn	Control List Enable When set this bit enables processing of the Control list.					
[3]	ISOEn	<b>Isochronous List Enable</b> When clear, this bit disables the Isochronous List when the Periodic List is enabled (so Interrupt EDs may be serviced). While processing the Periodic List, the Host Controller will check this bit when it finds an isochronous ED.					



Bits	Descriptions	
[2]	PeriEn	<b>Periodic List Enable</b> When set, this bit enables processing of the Periodic (interrupt and isochronous) list. The Host Controller checks this bit prior to attempting any periodic transfers in a frame.
[1:0]	CtrIBlkRatio	<b>Control Bulk Service Ratio</b> Specifies the number of Control Endpoints serviced for every Bulk Endpoint. Encoding is N-1 where N is the number of Control Endpoints (i.e. ' $00' = 1$ Control Endpoint; ' $11' = 3$ Control Endpoints)



#### Host Controller Command Status Register (HcComSts)

Register	Address	R/W	Description	Reset Value
HcComSts	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_0000

31         30         29         28         27         26         25         24           Reserved           23         22         21         20         19         18         17         16           Reserved           SchOvrRun           15         14         13         12         11         10         9         8           Reserved           7         6         5         4         3         2         1         0           Reserved         OCReq         BlkFill         CtrlFill         HCReset								
23     22     21     20     19     18     17     16       Reserved     SchOverRun       15     14     13     12     11     10     9     8       Reserved       7     6     5     4     3     2     1     0	31	30	29	28	27	26	25	24
Reserved         SchOverRun           15         14         13         12         11         10         9         8           Reserved           7         6         5         4         3         2         1         0				Rese	erved	SIA		
15     14     13     12     11     10     9     8       Reserved       7     6     5     4     3     2     1     0	23	22	21	20	19	18	17	16
Reserved         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<			Rese	erved		S	SchOverRun	
7 6 5 4 3 2 1 0	15	14	13	12	11	10	9	8
				Rese	erved		20	0)
Reserved OCReq BlkFill CtrlFill HCReset	7	6	5	4	3	2	1	0
		Rese	erved		OCReq	BlkFill	CtrlFill	HCReset



#### Host Controller Interrupt Status Register (HcIntSts)

Register	Address	R/W	Description	Reset Value
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_0000

						and the second se	
31	30	29	28	27	26	25	24
Reserved	OC			Rese	rved	A	
23	22	21	20	19	18	17	16
			Rese	erved	5	200	
15	14	13	12	11	10	9	8
			Rese	erved		20) (05	2)~
7	6	5	4	3	2	1	0
Reserved	RHSC	FNOF	UnRecErr	Resume	SOF	WBDnHD	SchOR

Bits	Descriptions	S
[30]	ос	Ownership Change This bit is set when the OwnershipChangeRequest bit of <i>HcCommandStatus</i> is set.
[6]	RHSC	<b>Root Hub Status Change</b> This bit is set when the content of <i>HcRhStatus</i> or the content of any <i>HcRhPortStatus</i> register has changed.
[5]	FNOF	Frame Number Overflow Set when bit 15 of FrameNumber changes value.
[4]	UnRecErr	<b>Unrecoverable Error</b> This event is not implemented and is hard-coded to '0.' Writes are ignored.
[3]	Resume	<b>Resume Detected</b> Set when Host Controller detects resume signaling on a downstream port.
[2]	SOF	Start Of Frame Set when the Frame Management block signals a 'Start of Frame' event.
[1]	WBDnHD	Write Back Done Head Set after the Host Controller has written <i>HcDoneHead</i> to <i>HccaDoneHead</i> .
[0]	SchOR	Scheduling Overrun Set when the List Processor determines a Schedule Overrun has occurred.
		Publication Release Date: Jun 18, 201



#### Host Controller Interrupt Enable Register (HcIntEn)

Register	Address	R/W	Description	Reset Value
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
IntEn	OCEn			Rese	erved		
23	22	21	20	19	18	17	16
			Rese	erved	51	2 00	
15	14	13	12	11	10	9	8
			Rese	erved		20 (	0)~
7	6	5	4	3	2	1	0
Reserved	RHSCEn	FNOFEn	URErrEn	ResuEn	SOFEn	WBDHEn	SchOREn

Bits	Description	Descriptions							
[31]	IntEn	<b>Master Interrupt Enable</b> This bit is a global interrupt enable. A write of `1' allows interrupts to be enabled via the specific enable bits listed above.							
[30]	OCEn	Ownership Change Enable 0: Ignore 1: Enables interrupt generation due to Ownership Change.							
[6]	RHSCEn	Root Hub Status Change Enable 0: Ignore 1: Enables interrupt generation due to Root Hub Status Change.							
[5]	FNOFEn	Frame Number Overflow Enable 0: Ignore 1: Enables interrupt generation due to Frame Number Overflow.							
[4]	URErrEn	<b>Unrecoverable Error Enable</b> This event is not implemented. All writes to this bit are ignored.							
[3]	ResuEn	Resume Detected Enable 0: Ignore 1: Enables interrupt generation due to Resume Detected.							
[2]	SOFEn	Start Of Frame Enable 0: Ignore 1: Enables interrupt generation due to Start of Frame.							
[1]	WBDHEn	Write Back Done Head Enable 0: Ignore 1: Enables interrupt generation due to Write-back Done Head.							
[0]	SchOREn	Scheduling Overrun Enable 0: Ignore 1: Enables interrupt generation due to Scheduling Overrun.							



#### Host Controller Interrupt Disable Register (HcIntDis)

Register	Address	R/W	Description	Reset Value
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000

31	30	29	28	27	26	25	24
IntDis	OCDis			Rese	erved	A	
23	22	21	20	19	18	17	16
			Rese	erved	5	2 00	
15	14	13	12	11	10	9	8
			Rese	erved		20) (05	0)~
7	6	5	4	3	2	1	0
Reserved	RHSCDis	FNOFDis	URErrDis	ResuDis	SOFDis	WBDHDis	SchORDis

Bits	Descriptions						
[31]	IntDis	Master Interrupt Disable Clobal interrupts.					
[30]	OCDis	Ownership Change Disable 0: Ignore 1: Disables interrupt generation due to Ownership Change.					
[6]	RHSCDis	Root Hub Status Change Disable 0: Ignore 1: Disables interrupt generation due to Root Hub Status Change.					
[5]	FNOFDis	Frame Number Overflow Disable 0: Ignore 1: Disables interrupt generation due to Frame Number Overflow.					
[4]	URErrDis	<b>Unrecoverable Error Disable</b> This event is not implemented. All writes to this bit are ignored.					
[3]	ResuDis	Resume Detected Disable 0: Ignore 1: Disables interrupt generation due to Resume Detected.					
[2]	SOFDis	Start Of Frame Disable 0: Ignore 1: Disables interrupt generation due to Start of Frame.					
[1]	WBDHDis	Write Back Done Head Disable 0: Ignore 1: Disables interrupt generation due to Write-back Done Head.					
[0]	SchORDis	Scheduling Overrun Disable 0: Ignore 1: Disables interrupt generation due to Scheduling Overrun.					



#### Host Controller Communication Area Register (HcHCCA)

Register	Address	R/W	Description	Reset Value
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000

31	30	29	28	27	26	25	24
			HC	СА	SIA		
23	22	21	20	19	18	17	16
HCCA							
15	14	13	12	11	10	9	8
			HC	СА		20 (	$O)_{\alpha}$
7	6	5	4	3	2	1	0
	Reserved						20

Bits	Descriptions		
[31:7]	НССА	Host Controller Communication Area	

#### Host Controller Period Current ED Register (HcPerCED)

Register	Address	R/W	Description	Reset Value
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24			
VPr	PeriCED									
23	22	21	20	19	18	17	16			
a.v.	PeriCED									
15	14	13	12	11	10	9	8			
62	PeriCED									
7	6	5	4	3	2	1	0			
2	PeriCED				Rese	erved				

Bits	Descriptions	
[31:4]	PeriCED	Periodic Current ED Pointer to the current Periodic List ED.



#### Host Controller Control Head ED Register (HcCtrHED)

Register	Address	R/W	Description	Reset Value
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000

31 30	29	28	27	26	25	24
		Ctrl	HED	SIA		
23 22	21	20	19	18	17	16
		Ctrl	HED	SU	2 Sp	
15 14	13	12	11	10	9	8
		Ctrl	HED		20 (	0)
7 6	5	4	3	2	1	0
C	rIHED			Rese	erved	50
C	rIHED			Rese	erved	50

Bits	Descriptions	
[31:4]	CtrlHED	Control Head ED Pointer to the Control List Head ED.

#### Host Controller Control Current ED Register (HcCtrCED)

Register	Address	R/W	Description	Reset Value
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24
Jan .			Ctrl	CED			
23	22	21	20	19	18	17	16
ary.			Ctrl	CED			
15	14	13	12	11	10	9	8
65	To		Ctrl	CED			
7	6	5	4	3	2	1	0
20	Ctrl	CED			Rese	rved	

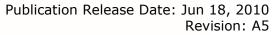
Bits	Descriptions	
[31:4]	CtrICED	Control Current Head ED Pointer to the current Control List Head ED.



#### Host Controller Bulk Head ED Register (HcBlkHED)

Register	Address	R/W	Description	Reset Value
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_0000

				× .			
31	30	29	28	27	26	25	24
			Blk	HED	SIA		
23	22	21	20	19	18	17	16
			Blk	HED	S	200	
15	14	13	12	11	10	9	8
			Blk	HED		20 (	0)
7	6	5	4	3	2	1	0
	Blkl	HED			Rese	erved	50
						( )	


Bits	Descriptions		
[31:4]	BIKHED	Bulk Head ED Pointer to the Bulk List Head ED.	15

#### Host Controller Bulk Current Head ED Register (HcBlkCED)

Register	Address	R/W	Description	Reset Value
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_0000

31	30	29	28	27	26	25	2
			Blk	CED			
23	22	21	20	19	18	17	1
200			Blk	CED			
15	14	13	12	11	10	9	8
No 1	290		Blk	CED			
7	6	5	4	3	2	1	C
10	Blk	CED			Rese	rved	

Bits	Descriptions	
[31:4]	BIKCED	Bulk Current Head ED Pointer to the current Bulk List Head ED.



#### Host Controller Done Head Register (HcDoneH)

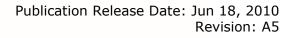
Register	Address	R/W	Description	Reset Value
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_0000

31	30	29	28	27	26	25	24			
DoneH										
23	22	21	20	19	18	17	16			
DoneH										
15	14	13	12	11	10	9	8			
DoneH										
7	6	5	4	3	2	1	0			
DoneH					Rese	rved	20			

Bits	Descriptions		
[31:4]	DoneH	Done Head Pointer to the current Done List Head ED.	



# ηυνοτοη




#### Host Controller Frame Interval Register (HcFmIntv)

Register	Address	R/W	Description	Reset Value
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2EDF

31	30	29	28	27	26	25	24		
FmIntvT		FSDPktCnt							
23	22	21	20	19	18	17	16		
	FSDPktCnt								
15	14	13	12	11	10	9	8		
Rese	Reserved			FmIn	20	0)~			
7	6	5	4	3	2	1	0		
			FmIn	terval		20)	50		

Bits	Descriptions	
[31]	FmIntvT	Frame Interval Toggle This bit is toggled by HCD when it loads a new value into FrameInterval.
[30: 16]	FSDPktCnt	<b>FS Largest Data Packet</b> This field specifies a value that is loaded into the Largest Data Packet Counter at the beginning of each frame.
[13:0]	FmInterval	<b>Frame Interval</b> This field specifies the length of a frame as (bit times - 1). For 12,000 bit times in a frame, a value of 11,999 is stored here.





CAP 32

#### Host Controller Frame Remaining Register (HcFmRem)

Register	Address	R/W	Description	Reset Value
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_0000

31	30	29	28	27	26	25	24		
FmRemT		Reserved							
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Rese	Reserved			FmRemain					
7	6	5	4	3	2	1	0		
			FmRe	emain		20)	50		

Bits	Descriptions	
[31]	FmRemT	Frame Remaining Toggle Loaded with FrameIntervalToggle when FrameRemaining is loaded.
[13:0]	FmRemain	<b>Frame Remaining</b> When the Host Controller is in the USBOPERATIONAL state, this 14-bit field decrements each 12 MHz clock period. When the count reaches 0, (end of frame) the counter reloads with <b>FrameInterval</b> . In addition, the counter loads when the Host Controller transitions into USBOPERATIONAL.





#### Host Controller Frame Number Register (HcFNum)

Register	Address	R/W	Description	Reset Value
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_0000

					A 10					
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
FmNum										
7	6	5	4	3	2	1	0			
FmNum										

Bits	Descriptions	
[15:0]	FmNum	Frame Number This 16-bit incrementing counter field is incremented coincident with the loading of FrameRemaining. The count rolls over from `FFFFh' to `0h.'

#### Host Controller Periodic Start Register (HcPerSt)

Register	Address	R/W	Description	Reset Value
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_0000

31	30	29	28	27	26	25	
			Rese	erved			
23	22	21	20	19	18	17	1
No.			Rese	erved			
15	14	13	12	11	10	9	
Reserved		PeriStart					
		5		2	2		

Bits	Descriptions	5
[13:0]	PeriStart	<b>Periodic Start</b> This field contains a value used by the List Processor to determine where in a frame the Periodic List processing must begin.



#### Host Controller Root Hub Descriptor A Register (HcRhDeA)

Register	Address	R/W	Description	Reset Value
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_0002

31	30	29	28	27	26	25	24		
PwrGDT									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
	Reserved		NOCP	OCPM	DevType	NPS	PSM		
7	6	5	4	3	2	1	0		
DPortNum									

Bits	Descriptions	
[31:24]	PwrGDT	<b>Power On to Power Good Time</b> This field value is represented as the number of 2 ms intervals, which ensuring that the power switching is effective within 2 ms. Only bits [25:24] are implemented as R/W. The remaining bits are read only as '0'. It is not expected that these bits be written to anything other than 1h, but limited adjustment is provided. This field should be written to support system implementation. This field should always be written to a non-zero value.
[12]	NOCP	No Over Current Protection This bit should be written to support the external system port over-current implementation. 0 = Over-current status is reported 1 = Over-current status is not reported
[11]	осрм	Over Current Protection Mode This bit should be written 0 and is only valid when NOCP bit is cleared. 0 = Global Over-Current 1 = Individual Over-Current
[10]	DevType	Device Type
[9]	NPS	<ul> <li>No Power Switching</li> <li>This bit should be written to support the external system port power switching implementation.</li> <li>0 = Ports are power switched.</li> <li>1 = Ports are always powered on.</li> </ul>
[8]	PSM	Power Switching Mode This bit is only valid when NoPowerSwitching is cleared. This bit should be written '0'. 0 = Global Switching 1 = Individual Switching

Bits	Descriptions	
[7:0]	DPortNum	Number Downstream Ports





#### Host Controller Root Hub Descriptor B Register (HcRhDeB)

Register	Address	R/W	Description	Reset Value
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_0000

31	30	29	28	27	26	25	24			
PPCM										
23	22	21	20	19	18	17	16			
PPCM										
15	14	13	12	11	10	9	8			
			DevRe	emove		20) (05	2)~			
7	6	5	4	3	2	1	0			
			DevRe	emove		20	20			

Bits	Descriptions	
[31:16]	РРСМ	Port Power Control Mask Global-power switching. This field is only valid if NoPowerSwitching is cleared and PowerSwitchingMode is set (individual port switching). When set, the port only responds to individual port power switching commands (Set/ClearPortPower). When cleared, the port only responds to global power switching commands (Set/ClearGlobalPower). 0 = Device not removable 1 = Global-power mask Port Bit relationship - Unimplemented ports are reserved, read/write '0'. 0 : Reserved 1 : Port 1 2 : Port 2  15 : Port 15
[15:0]	DevRemove	Device Removable 0 = Device not removable 1 = Device removable Port Bit relationship 0 : Reserved 1 : Port 1 2 : Port 2  15 : Port 15 Unimplemented ports are reserved, read/write '0'.



#### Host Controller Root Hub Status Register (HcRhSts)

Register	Address	R/W	Description	Reset Value
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_0000

				×.	N. C		
31	30	29	28	27	26	25	24
RWECIr			2				
23	22	21	20	19	18	17	16
		Rese	erved		SU	OCIC	LPSC
15	14	13	12	11	10	9	8
DRWEn				Reserved		20) (05	
7	6	5	4	3	2	1	0
		Rese	erved			OC O	LPS

Bits	Description	15
[31]	RWECIr	Clear Remote Wakeup Enable Writing a '1' to this bit clears DeviceRemoteWakeupEnable. Writing a '1' has no effect.
[17]	OCIC	<b>Over Current Indicator Change</b> This bit is set when <b>OverCurrentIndicator</b> changes. Writing a '1' clears this bit. Writing a '0' has no effect.
[16]	LPSC	<ul> <li>(Read) LocalPowerStatusChange</li> <li>Not supported. Always read '0'.</li> <li>(Write) SetGlobalPower</li> <li>Write a '1' issues a SetGlobalPower command to the ports. Writing a '0' has no effect.</li> </ul>
[15]	DRWEn	<ul> <li>(Read) DeviceRemoteWakeupEnable</li> <li>This bit enables ports' ConnectStatusChange as a remote wakeup event.</li> <li>0 = disabled</li> <li>1 = enabled</li> <li>(Write) SetRemoteWakeupEnable</li> <li>Writing a '1' sets DeviceRemoteWakeupEnable. Writing a '0' has no effect.</li> </ul>
[1]	oc	Over Current Indicator This bit reflects the state of the OVRCUR pin. This field is only valid if <b>NoOverCurrentProtection</b> and <b>OverCurrentProtectionMode</b> are cleared. 0 = No over-current condition 1 = Over-current condition

[0]	LPS	(Read) LocalPowerStatus Not Supported. Always read '0'. (Write) ClearGlobalPower	
		Writing a '1' issues a <b>ClearGlobalPower</b> command to the ports. '0' has no effect.	writing a





#### Host Controller Root Hub Port Status (HcRhPrt [1])

Register	Address	R/W	Description	Reset Value
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_0000

31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
	Reserved		PRSC	POCIC	PSSC	PESC	CSC
15	14	13	12	11	10	9	8
		Rese	erved			LSDev	PPS
7	6	5	4	3	2	1	0
	Reserved		PR	POC	PS	PE	СС

		<ul> <li>Port Reset Status Change This bit indicates that the port reset signal has completed. 0 = Port reset is not complete. 1 = Port reset is complete.</li> <li>Port Over Current Indicator Change This bit is set when OverCurrentIndicator changes. Writing a '1' clears</li> </ul>
[19] <b>PC</b>	DCIC	
		this bit. Writing a '0' has no effect.
[18] <b>PS</b>	SSC	<ul> <li>Port Suspend Status Change</li> <li>This bit indicates the completion of the selective resume sequence for the port.</li> <li>0 = Port is not resumed.</li> <li>1 = Port resume is complete.</li> </ul>
[17] <b>PE</b>	ESC	<ul> <li>Port Enable Status Change</li> <li>This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus).</li> <li>0 = Port has not been disabled.</li> <li>1 = PortEnableStatus has been cleared.</li> </ul>
[16] CS	sc	Connect Status Change This bit indicates connect or disconnect event has been detected. Writing a '1' clears this bit. Writing a '0' has no effect. 0 = No connect/disconnect event. 1 = Hardware detection of connect/disconnect event. Note: If DeviceRemoveable is set, this bit resets to '1'.



Bits	Descriptions	6
[9]	LSDev	<ul> <li>(Read) LowSpeedDeviceAttached</li> <li>This bit defines the speed (and bud idle) of the attached device. It is only valid when CurrentConnectStatus is set.</li> <li>0 = Full Speed device</li> <li>1 = Low Speed device</li> <li>(Write) ClearPortPower</li> <li>Writing a '1' clears PortPowerStatus. Writing a '0' has no effect</li> </ul>
[8]	PPS	<ul> <li>(Read) PortPowerStatus</li> <li>This bit reflects the power state of the port regardless of the power switching mode.</li> <li>0 = Port power is off.</li> <li>1 = Port power is on.</li> <li>Note: If NoPowerSwitching is set, this bit is always read as '1'.</li> <li>(Write) SetPortPower</li> <li>Writing a '1' sets PortPowerStatus. Writing a '0' has no effect.</li> </ul>
[4]	PR	<ul> <li>(Read) PortResetStatus</li> <li>0 = Port reset signal is not active.</li> <li>1 = Port reset signal is active.</li> <li>(Write) SetPortReset</li> <li>Writing a '1' sets PortResetStatus. Writing a '0' has no effect.</li> </ul>
[3]	POC	<ul> <li>(Read) PortOverCurrentIndicator</li> <li>This bit reflects the state of the OVRCUR pin dedicated to this port. This field is only valid if NoOverCurrentProtection is cleared and</li> <li>OverCurrentProtectionMode is set.</li> <li>0 = No over-current condition</li> <li>1 = Over-current condition</li> <li>(Write) ClearPortSuspend</li> <li>Writing a '1' initiates the selective resume sequence for the port. Writing a '0' has no effect.</li> </ul>
[2]	PS	<ul> <li>(Read) PortSuspendStatus</li> <li>0 = Port is not suspended</li> <li>1 = Port is selectively suspended</li> <li>(Write) SetPortSuspend</li> <li>Writing a '1' sets PortSuspendStatus. Writing a '0' has no effect.</li> </ul>
[1]	PE	<ul> <li>(Read) PortEnableStatus</li> <li>0 = Port disabled.</li> <li>1 = Port enabled.</li> <li>(Write) SetPortEnable</li> <li>Writing a '1' sets PortEnableStatus. Writing a '0' has no effect.</li> </ul>
[0]	сс	<ul> <li>(Read) CurrentConnectStatus</li> <li>0 = No device connected.</li> <li>1 = Device connected.</li> <li>NOTE: If DeviceRemoveable is set (not removable) this bit is always '1'.</li> <li>(Write) ClearPortEnable</li> <li>Writing '1' a clears PortEnableStatus. Writing a '0' has no effect.</li> </ul>



#### USB Operational Mode Enable Register (OpModEn)

Register	Address	R/W	Description	Reset Value
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_0000

					A				
31	30	29	28	27	26	25	24		
			Rese	erved	US T	~			
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
			Reserved			200	SIEPDis		
7	6	5	4	3	2	1	0		
Reserved				OCALow	Reserved	ABORT	DBR16		
				•		6	N. O.		

Bits	Description	s
[8]	SIEPDis	<b>SIE Pipeline Disable</b> When set, waits for all USB bus activity to complete prior to returning completion status to the List Processor. This is a failsafe mechanism to avoid potential problems with the clk_dr transition between 1.5 MHz and 12 MHz.
[3]	OCALow	Over Current Active Low This bit controls the polarity of over current flag from external power IC. 0: Over current flag is high active 1: Over current flag is low active
[1]	ABORT	AHB Bus ERROR Response This bit indicates there is an ERROR response received in AHB bus. 0: No ERROR response received 1: ERROR response received
[0]	DBR16	<b>Data Buffer Region 16</b> When set, the size of the data buffer region is 16 bytes. Otherwise, the size is 32 bytes.
ų	The second	
		Publication Release Date: Jun 18, 2010 188 Revision: A5

#### 32-BIT ARM926EJS-BASED MCU

### 6.8 USB 2.0 Device Controller

The NUC945 USB Device Controller is compliant to the USB Specification version 2.0. It also supports the software control for device remote-wakeup and 6 configurable endpoints in addition to Control Endpoint. Each of these endpoints can be Isochronous, Bulk or Interrupt and they can be either of IN or OUT direction with maximum packet size up to 1024 bytes. Three different modes of operation (Auto validation mode, manual validation mode and Fly mode) are supported for IN-endpoint.

#### 6.8.1 USB Device Register Group Summary

Register Groups	Description				
Main Control Registers	These set of registers control the global enable of interrupts and maintain the status of the interrupts				
USB Control Registers	These set of registers control the USB related events to/from the USB host and hold the status of the USB events.				
Control Endpoint Registers	These set of registers direct the control endpoint in handling the USB requests from the host and hold the status information of the transactions.				
Non control Endpoint Registers	These set of registers configure, control and exhibit the status of the non-control endpoints' operation				
DMA Registers	These registers are responsible for the DMA related operations				

## 6.8.2 USB Device Control Registers Map

Register	Address	R/W	Description	Reset Value
USBD_BA = 0xB000	0_6000			
IRQ_STAT	0xB000_6000	R	Interrupt Register	0x0000_0000
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status register	0x0000_0000
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable register	0x0000_0040
USB_OPER	0xB000_6018	R/W	USB operational register	0x0000_0002

Register	Address	R/W	Description	Reset Value
USB_FRAME_CNT	0xB000_601C	R	USB frame count register	0x0000_0000
USB_ADDR	0xB000_6020	R/W	USB address register	0x0000_0000
CEP_DATA_BUF	0xB000_6028	R/W	Control-ep Data Buffer	0x0000_0000
CEP_CTRL_STAT	0xB000_602C	R/W	Control-ep Control and Status	0x0000_0000
CEP_IRQ_ENB	0xB000_6030	R/W	Control-ep Interrupt Enable	0x0000_0000
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000
IN_TRNSFR_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000
OUT_TRNSFR_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000
CEP_CNT	0xB000_6040	R	Control-ep data count	0x0000_0000
SETUP1_0	0xB000_6044	R	Setupbyte1 & byte0	0x0000_0000
SETUP3_2	0xB000_6048	R	Setupbyte3 & byte2	0x0000_0000
SETUP5_4	0xB000_604C	R	Setupbyte5 & byte4	0x0000_0000
SETUP7_6	0xB000_6050	R	Setupbyte7 & byte6	0x0000_0000
CEP_START_ADDR	0xB000_6054	R/W	Control EP's RAM start address	0x0000_0000
CEP_END_ADDR	0xB000_6058	R/W	Control EP's RAM end address	0x0000_0000
DMA_CTRL_STS	0xB000_605C	R/W	DMA control and status register	0x0000_0000
DMA_CNT	0xB000_6060	R/W	DMA count register	0x0000_0000
EPA_DATA_BUF	0xB000_6064	R/W	Endpoint A data register	0x0000_0000
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt status register	0x0000_0002
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt enable register	0x0000_0000
EPA_DATA_CNT	0xB000_6070	R	Data count available in endpoint A buffer	0x0000_0000
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A response register set/clear	0x0000_0000
EPA_MPS	0xB000_6078	R/W	Endpoint A maximum packet size register	0x0000_0000
EPA_CNT	0xB000_607C	R/W	Endpoint A transfer count register	0x0000_0000
EPA_CFG	0xB000_6080	R/W	Endpoint A configuration register	0x0000_0012
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM start address	0x0000_0000
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM end address	0x0000_0000
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B data register	0x0000_0000
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt status register	0x0000_0002
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt enable register	0x0000_0000

Register	Address	R/W	Description	Reset Value
EPB_DATA_CNT	0xB000_6098	R	Data count available in endpoint B buffer	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	Endpoint B response register set/clear	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B maximum packet size register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B transfer count register	0x0000_0000
EPB_CFG	0xB000_60A8	R/W	Endpoint B configuration register	0x0000_0022
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM start address	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM end address	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C data register	0x0000_0000
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt status register	0x0000_0002
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt enable register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Data count available in endpoint C buffer	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C response register set/clear	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C maximum packet size register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C transfer count register	0x0000_0000
EPC_CFG	0xB000_60D0	R/W	Endpoint C configuration register	0x0000_0032
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM start address	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM end address	0x0000_0000
EPD_DATA_BUF	0xB000_60DC	R/W	Endpoint D data register	0x0000_0000
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt status register	0x0000_0002
EPD_IRQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt enable register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Data count available in endpoint D buffer	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W	Endpoint D response register set/clear	0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D maximum packet size register	0x0000_0000
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D transfer count register	0x0000_0000
EPD_CFG	0xB000_60F8	R/W	Endpoint D configuration register	0x0000_0042
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM start address	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM end address	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E data register	0x0000_0000
EPE_IRQ_STAT	0xB000_6108	R/W	Endpoint E Interrupt status register	0x0000_0002
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt enable register	0x0000_0000

Register	Address	R/W	Description	Reset Value	
EPE_DATA_CNT	0xB000_6110	R	Data count available in endpoint E buffer	0x0000_0000	
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E response register set/clear	0x0000_0000	
EPE_MPS	0xB000_6118	R/W	Endpoint E maximum packet size register	0x0000_0000	
EPE_TRF_CNT	0xB000_611C	R/W	Endpoint E transfer count register	0x0000_0000	
EPE_CFG	0xB000_6120	R/W	Endpoint E configuration register	0x0000_0052	
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM start address	0x0000_0000	
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM end address	0x0000_0000	
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F data register	0x0000_0000	
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt status register	0x0000_0002	
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt enable register	0x0000_0000	
EPF_DATA_CNT	0xB000_6138	R	Data count available in endpoint F buffer	0x0000_0000	
EPF_RSP_SC	0xB000_613C	R/W	Endpoint F response register set/clear	0x0000_0000	
EPF_MPS	0xB000_6140	R/W	Endpoint F maximum packet size register	0x0000_0000	
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F transfer count register	0x0000_0000	
EPF_CFG	0xB000_6148	R/W	Endpoint F configuration register	0x0000_0062	
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM start address	0x0000_0000	
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM end address	0x0000_0000	
USB_DMA_ADDR	0xB000_6700	R/W	AHB_DMA address register	0x0000_0000	
USB_PHY_CTL	0xB000_6704	R/W	USB PHY control register	0x0000_0260	
			Publication Release Da	ate: Jun 18, 201 Revision: A	

### 6.8.3 USB Device Control Registers

#### Interrupt Register (IRQ)

R	egister	Address		R/W	Descrip	Description			Default Value
IR	IRQ 0xB000_6000		000	R	Interru	pt Register	CS P		0x0000_0000
	31	30	29		28	27	26	25	24
					Rese	rved	V	26	
	23	22	21		20	19	18	17	16
					Rese	rved		"al	0
	15	14	13		12	11	10	9	8
Reserved									
	7	6	5		4	3	2	1	0
	EPF_INT	EPE_INT	EPD_I	NT E	PC_INT	EPB_INT	EPA_INT	CEP_INT	USB_INT

Bits	Descriptio	Descriptions								
[7]	EPF_INT	This bit conveys the interrupt for Endpoints F. When set, the corresponding Endpoint F's interrupt status register should be read to determine the cause of the interrupt.								
[6]	EPE_INT	This bit conveys the interrupt for Endpoints E. When set, the corresponding Endpoint E's interrupt status register should be read to determine the cause of the interrupt.								
[5]	EPD_INT	This bit conveys the interrupt for Endpoints D. When set, the corresponding Endpoint D's interrupt status register should be read to determine the cause of the interrupt.								
[4]	EPC_INT	This bit conveys the interrupt for Endpoints C. When set, the corresponding Endpoint C's interrupt status register should be read to determine the cause of the interrupt.								
[3]	EPB_INT	This bit conveys the interrupt for Endpoints B. When set, the corresponding Endpoint B's interrupt status register should be read to determine the cause of the interrupt.								
[2]	EPA_INT	This bit conveys the interrupt for Endpoints A. When set, the corresponding Endpoint A's interrupt status register should be read to determine the cause of the interrupt.								
[1]	CEP_INT	<b>Control Endpoint Interrupt</b> . This bit conveys the interrupt status for control endpoint. When set, Control- ep's interrupt status register should be read to determine the cause of the interrupt.								

Bits	Descriptio	Descriptions					
[0]	USB_INT	<b>USB Interrupt</b> . the interrupt status for USB specific events endpoint. When set, USB interrupt status register should be read to determine the cause of the interrupt.					





#### Interrupt Enable Low Register (IRQ_ENB_L)

Register Address R/W		R/W	Description	Default Value
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001

					10 Mar					
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
			Rese	rved		20 6				
7	6	5	4	3	2	1	0			
EPF_IE	EPE_IE	EPD_IE	EPC_IE	EPB_IE	EPA_IE	CEP_IE	USB_IE			
						- 7.5	20			

Bits	Descriptions	
[7]	EPF_IE	Interrupt Enable for Endpoint F. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint F
[6]	EPE_IE	Interrupt Enable for Endpoint E. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint E
[5]	EPD_IE	Interrupt Enable for Endpoint D. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint D
[4]	EPC_IE	Interrupt Enable for Endpoint C. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint C
[3]	EPB_IE	Interrupt Enable for Endpoint B. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint B
[2]	EPA_IE	Interrupt Enable for Endpoint A. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint A.
[1]	CEP_IE	<b>Control Endpoint Interrupt Enable</b> . When set, this bit enables a local interrupt to be generated when an interrupt is pending for the control endpoint.
[0]	USB_IE	<b>USB Interrupt Enable</b> . When set, this bit enables a local interrupt to be generated when a USB event occurs on the bus.
	<ul> <li>[7]</li> <li>[6]</li> <li>[5]</li> <li>[4]</li> <li>[3]</li> <li>[2]</li> <li>[1]</li> </ul>	[7]       EPF_IE         [6]       EPE_IE         [5]       EPD_IE         [4]       EPC_IE         [3]       EPB_IE         [1]       CEP_IE



#### USB Interrupt Status Register (USB_IRQ_STAT)

Register	Address	R/W	Description	Default Value
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved	TCLKOK_IS	DMACOM_IS	HISPD_IS	SUS_IS	RUM_IS	RST_IS	SOF_IS			

	Bits	Descriptions					
	[6]	TCLKOK_IS	<b>Usable Clock Interrupt</b> . This bit is set when usable clock is available from the transceiver. Writing `1" clears this bit.				
	[5]	DMACOM_IS	<b>DMA Completion Interrupt.</b> This bit is set when the DMA transfer is over. Writing '1" clears this bit.				
1.000	[4]	High Speed Settle.HISPD_ISThis bit is set when the valid high-speed reset protocol is the device has settled is high-speed. Writing `1" clears this					
	[3]	SUS_IS	<b>Suspend Request</b> . This bit is set as default and it has to be cleared by writing '1' before the USB reset. This bit is also set when a USB Suspend request is detected from the host. Writing '1' clears this bit.				
	[2]	RUM_IS	<b>Resume.</b> When set, this bit indicates that a device resume has occurred. Writing a '1' clears this bit.				
	[1]	RST_IS	<b>Reset Status.</b> When set, this bit indicates that either the USB root port reset is end. Writing a '1' clears this bit.				
	[0]	SOF_IS	<b>SOF</b> . This bit indicates when a start-of-frame packet has been received. Writing a '1' clears this bit.				



#### USB Interrupt Enable Register (USB_IRQ_ENB)

Register	Address	R/W	Description	Default Value
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable Register	0x0000_0040

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved	TCLKOK_IE	DMACOM_IE	HISPD_IE	SUS_IE	RUM_IE	RST_IE	SOF_IE			

Bits	Descriptions						
[6]	TCLKOK_IE	Usable Clock Interrupt. This bit enables the usable clock interrupt.					
[5]	DMACOM_IE	DMA Completion Interrupt. This bit enables the DMA completion interrupt					
[4]	HISPD_IE	High Speed Settle. This bit enables the high-speed settle interrupt.					
[3]	SUS_IE	Suspend Request. This bit enables the Suspend interrupt.					
[2]	RUM_IE	Resume. This bit enables the Resume interrupt.					
[1]	RST_IE	Reset Status. This bit enables the USB-Reset interrupt.					
[0]	SOF_IE	SOF Interrupt. This bit enables the SOF interrupt.					
		Publication Release Date: Jun 18					



#### USB Operational Register (USB_OPER)

Register	Address	R/W	Description	Default Value
USB_OPER	0xB000_6018	R/W	USB Operational Register	0x0000_0002

31	30	29	28	27	26	25	24
			Rese	erved	51	2 CS.	
23	22	21	20	19	18	17	16
			Rese	erved		42 6	5
15	14	13	12	11	10	9	8
			Rese	erved			12
7	6	5	4	3	2	1	0
		Reserved			CUR_SPD	SET_HISPD	GEN_RUM

Bits	Descriptions	
[2]	CUR_SPD	<b>USB Current Speed.</b> When set, this bit indicates that the DEVICE CONTROLLER has settled in High Speed and a zero indicates that the device has settled in Full Speed
[1]	SET_HISPD	<b>USB High Speed.</b> When set to one, this bit indicates the DEVICE CONTROLLER to initiate a chirp-sequence during reset protocol, if it set to zero; it indicates the DEVICE CONTROLLER to suppress the chirp-sequence during reset protocol, thereby allowing the DEVICE CONTROLLER to settle in full-speed, even though it is connected to a USB2.0 Host.
[0]	GEN_RUM	Generate Resume. Writing a 1 to this bit causes a Resume sequence to be initiated to the host if device remote wakeup is enabled. This bit is self-clearing.
	A CAR	nost if device remote wakeup is enabled. This bit is self-clearing.
		Publication Release Date: Jun 18, 20 198 Revision:



#### USB Frame Count Register (USB_FRAME_CNT)

Register Address		R/W	Description	Default Value
USB_FRAME_CNT	0xB000_601C	R	USB Frame Count Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	5%	Co.	
23	22	21	20	19	18	17	16
			Rese	erved	1.5	an C	
15	14	13	12	11	10	9	8
Rese	erved			FRAM	E_CNT	-Oh	5
7	6	5	4	3	2	1	0
		FRAME_CN	Г		Ν	IFRAME_CN	

Bits	Descriptions	
[13:3]	FRAME_CNT	<b>FRAME COUNTER.</b> This field contains the frame count from the most recent start-of- frame packet.
[2:0]	MFRAME_CNT	<b>MICRO FRAME COUNTER.</b> This field contains the micro-frame number for the frame number in the frame counter field.



#### USB Address Register (USB_ADDR)

Register	Address	R/W	Description	Default Value
USB_ADDR	0xB000_6020	R/W	USB Address Register	0x0000_0000

30	29	28	27	26	25	24
		Rese	erved			
22	21	20	19	18	17	16
		Rese	erved	1	Alla	
14	13	12	11	10	9	8
		Rese	erved		26	25
6	5	4	3	2	1	0
			ADDR		~	0.4
	22 14	22 21 14 13	Rese 22 21 20 Rese 14 13 12 Rese	Reserved       22     21     20     19       Reserved       14     13     12     11       Reserved       6     5     4     3	Reserved       22     21     20     19     18       Reserved       14     13     12     11     10       Reserved       6     5     4     3     2	Reserved         22       21       20       19       18       17         Reserved         14       13       12       11       10       9         Reserved         6       5       4       3       2       1

Bits	Descriptions	5
[6:0]	ADDR	This field contains the current USB address of the device. This field is cleared when a root port reset is detected.



#### Control-ep Data Buffer (CEP_DATA_BUF)

Register	Address	R/W	Description	Default Value
CEP_DATA_BUF	0xB000_6028	RW	Control-ep Data Buffer	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	rved	0	Qr.	
23	22	21	20	19	18	17	16
			Rese	erved	N.	Alla	
15	14	13	12	11	10	9	8
			DATA	_BUF		26	25
7	6	5	4	3	2	1	0
			DATA	L_BUF		- 13	6 6

Bits	Descriptions	Descriptions				
[15:0]	DATA_BUF	<b>Control-ep Data Buffer.</b> Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).				



#### Default R/W Register Address Description Value RW CEP_CTRL_STAT 0xB000_602C Control-ep Control and Status 0x0000_0000

Control-ep Control and Status (CEP_CTRL_STAT)
-----------------------------------------------

					2/2	17 M I	
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							2
15	14	13	12	11	10	9	8
			Res	erved		10h	
7	6	5	4	3	2	1	0
Reserved				FLUSH	ZEROLEN	STLALL	NAK_CLEAR
							1535 //

Bits	Descriptions	
[3]	FLUSH	<b>CEP-FLUSH Bit</b> . Writing 1 to this bit cause the packet buffer and its corresponding CEP_AVL_CNT register to be cleared. This bit is self-cleaning.
[2]	ZEROLEN	<b>ZEROLEN Bit</b> . This bit is valid for auto validation mode only. When this bit is set, DEVICE CONTROLLER can send a zero length packet to the host during Data stage to an IN token. This bit gets cleared once the zero length data packet is sent. So, the local CPU need not write again to clear this bit.
[1]	STLALL	<b>STALL</b> . This bit is a read/write bit. When this stall bit is set, the control endpoint sends a stall handshake in response to any in or out token thereafter. This is typically used for response to invalid/unsupported requests. When this bit is being set the NAK clear bit has to be cleared at the same time since the NAK clear bit has highest priority than STALL. It is automatically cleared on receipt of a next setup-token. So, the local CPU need not write again to clear this bit. NOTE: ONLY when CPU writes data[1:0] is 2'b10 or 2'b00, this bit can be updated.
		Publication Release Date: Jun 18, 2010 202 Revision: A5



[0] NAK_CLEAR NAK_CLEAR. This is a read/write bit. This bit plays a crucial role in any contransfer. It bit is set to one by the DEVICE CONTROLLER, whenever a set token is received. The local CPU can take its own time to finish off any hour keeping work based on the request and then clear this bit. Unless the bit being cleared by the local CPU by writing zero, the DEVICE CONTROLLER will responding with NAKs for the subsequent status phase. This mechanism how the host from moving to the next request, until the local CPU is also ready process the next request. NOTE: ONLY when CPU write data[1:0] is 2'b10 or 2'b00, this bit can updated.	tup se- is be lds to
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------





#### Control Endpoint Interrupt Enable (CEP_IRQ_ENABLE)

Register	Address	R/W	Description	Default Value
CEP_IRQ_ENABLE	0xB000_6030	R/W	Control Endpoint Interrupt Enable	0x0000_0000

					52		
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved			EMPTY_IE	FULL_IE	STACOM_IE	ERR_IE	STALL_IE
7	6	5	4	3	2	1	0
NAK_IE	DATA_RxED_IE	DATA_TxED_IE	PING_IE	IN_TK_IE	OUT_TK_IE	SETUP_PK_IE	SETUP_TK_IE

Bits	Descriptions	
[12]	EMPTY_IE	Buffer Empty Interrupt. This bit enables the buffer empty interrupt.
[11]	FULL_IE	Buffer Full Interrupt. This bit enables the buffer full interrupt.
[10]	STACOM_IE	Status Completion Interrupt. This bit enables the Status Completion interrupt.
[9]	ERR_IE	<b>USB Error Interrupt</b> . This bit enables the USB Error interrupt.
[8]	STALL_IE	STALL Sent Interrupt. This bit enables the STALL sent interrupt
[7]	NAK_IE	NAK Sent Interrupt. This bit enables the NAK sent interrupt.
[6]	DATA_RxED_IE	Data Packet Received Interrupt. This bit enables the data received interrupt.
[5]	DATA_TxED_IE	Data Packet Transmitted Interrupt. This bit enables the data packet transmitted interrupt.
[4]	PING_IE	<b>Ping Token Interrupt</b> . This bit enables the ping token interrupt.



Bits	Descriptions	
[3]	IN_TK_IE	In Token Interrupt. This bit enables the in token interrupt
[2]	OUT_TK_IE	Out Token Interrupt. This bit enables the out token interrupt.
[1]	SETUP_PK_IE	Setup Packet Interrupt. This bit enables the setup packet interrupt.
[0]	SETUP_TK_IE	Setup Token Interrupt Enable. This bit enables the setup token interrupt.





#### Control-Endpoint Interrupt Status (CEP_IRQ_STAT)

Register	Address	R/W	Description	Default Value
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved	S	21/2		
15	14	13	12	11	10	9	8	
	Reserved		EMPTY_IS	FULL_IS	STACOM_IS	ERR_IS	STALL_IS	
7	6	5	4	3	2	1	0	
NAK_IS	DATA_RxED_IS	DATA_TxED_IS	PING_IS	IN_TK_IS	OUT_TK_IS	SETUP_PK_I	SETUP_TK_IS	

Bits	Descriptions	
[12]	EMPTY_IS	Buffer Empty Interrupt. (Read Only) This bit is set when the control-endpt buffer is empty.
[11]	FULL_IS	<b>Buffer Full Interrupt</b> . (Write "1" Clear) This bit is set when the control-endpt buffer is full.
[10]	STACOM_IS	<b>Status Completion Interrupt</b> . (Write "1" Clear) This bit is set when the status stage of a USB transaction has completed successfully.
[9]	ERR_IS	<b>USB Error Interrupt</b> . (Write "1" Clear) This bit is set when an error had occurred during the transaction.
[8]	STALL_IS	<b>STALL Sent Interrupt</b> . (Write "1" Clear) This bit is set when a stall-token is sent in response to an in/out token
[7]	NAK_IS	<b>NAK Sent Interrupt</b> . (Write "1" Clear) This bit is set when a nak-token is sent in response to an in/out token
[6]	DATA_RxED_IS	<b>Data Packet Received Interrupt</b> . (Write "1" Clear) This bit is set when a data packet is successfully received from the host for out-token and an ack is sent to the host.
[5]	DATA_TxED_IS	<b>Data Packet Transmitted Interrupt</b> . (Write "1" Clear) This bit is set when a data packet is successfully transmitted to the host in response to an in-token and an ack-token is received for the same.



Bits	Descriptions	
[4]	PING_IS	<b>Ping Token Interrupt</b> . (Write "1" Clear) This bit is set when the control-endpt receives a ping token from the host.
[3]	IN_TK_IS	<b>In Token Interrupt</b> . (Write "1" Clear) This bit is set when the control-endpt receives an in token from the host.
[2]	OUT_TK_IS	<b>Out Token Interrupt</b> . (Write "1" Clear) This bit is set when the control-endpoint receives a out token from the host.
[1]	SETUP_PK_IS	<b>Setup Packet Interrupt</b> . (Write "1" Clear) This bit is set when a setup packet has been received from the host. This bit must be cleared (by writing a 1) before the next setup packet can be received. If the bit is not cleared, then the successive setup packets will be overwritten in the setup packet buffer.
[0]	SETUP_TK_IS	<b>Setup Token Interrupt</b> . (Write "1" Clear) This bit indicates when a setup token is received. Writing a 1 clears this status bit



Register	Address	R/W	Description	Default Value
IN_TRF_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000
			105 001	

#### In-transfer data count (IN_TRF_CNT)

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved	1	A 1/2			
15	14	13	12	11	10	9	8		
			Rese	erved		200	25		
7	6	5	4	3	2	1	0		
	IN_TRF_CNT								

Bits	Descriptions	
[7:0]	IN_TRF_CNT	<b>In-transfer data count</b> . There is no mode selection for the control endpoint (but it operates like manual mode). The local-CPU has to fill the control-endpoint buffer with the data to be sent for an in-token and to write the count of bytes in this register. When zero is written into this field, a zero length packet is sent to the host. When the count written in the register is more than the MPS, the data sent will be of only MPS.



#### Out-transfer data count (OUT_TRF_CNT)

Register Address F		R/W	Description	Default Value	
OUT_TRF_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000	
			INS ENT		

					A / 3 L		
31	30	29	28	27	26	25	24
			Rese	erved		Do -	
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
			OUT_TI	RF_CNT		26	22
7	6	5	4	3	2	1	0
			OUT_T	RF_CNT		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20
						N.	5 20

Bits	Descriptions	
[15:0]	OUT_TRF_CNT	<b>Out-Transfer Data Count</b> . The DEVICE CONTROLLER maintains the count of the data received in case of a out transfer, during the control transfer.

#### Control- Endpoint data count (CEP_CNT)

Reg	Register Address		R/W	Desci	ription	Default Value			
CEP	CEP_CNT 0xB000_6040		R	Contro	ol-ep data co	0x0000_0000			
12.	š								
2	31	30	29		28	27	26	25	24
2	-100.				Rese	erved			
$\sim$	23	22	21		20	19	18	17	16
$\langle \langle \rangle$	7. 7.				Rese	erved			
	15	14	13		12	11	10	9	8
	CEP_CNT								
	7	6	5		4	3	2	1	0
	-0,	2-42			CEP	_CNT			

Bits	Descriptions	
[15:0]	CEP_CNT	<b>Control-ep Data Count</b> . The DEVICE CONTROLLER maintains the count of the data of control-ep.



# Register Address R/W Description Default Value SETUP1_0 0xB000_6044 R Setup1 & Setup0 bytes 0x0000_0000 31 30 29 28 27 26 25 24

#### Setup1 & Setup0 bytes (SETUP1_0)

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
	SETUP1								
7	6	5	4	3	2	1	0		
			SET	TUP0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	60		

Bits	Descriptions		
		Setup Byte 1[15:8]. This register provides byte 1 of the last setup packet received. I a Standard Device Request, the following bRequest Co information is returned.	
		Code Descriptions	
		0x00 Get Status	
		0x01 Clear Feature	
		0x02 Reserved	
		0x03 Set Feature	
[15:8]	SETUP1	0x04 Reserved	
		0x05 Set Address	
A		0x06 Get Descriptor	
100		0x07 Set Descriptor	
S. Y. B.		0x08 Get Configuration	
VID R	1	0x09 Set Configuration	
XA.	1.2	0x0A Get Interface	
No.	202	0x0B Set Interface	
9	à la	0x0C Synch Frame	
0	(On Va		



Bits	Descriptions							
		This reg a Stan informa	Setup Byte 0[7:0]. This register provides byte 0 of the last setup packet received a Standard Device Request, the following bmRequest information is returned. Bits Descriptions					
		[7]	Direction	0 = host to device;				
				1 = device to host				
[7:0]	SETUPO	[6:5]	Туре	0 = Standard, 1 = Class, 2 = Vendor, 3 = Reserved				
		[4:0]	Recipient	0 = Device, 1 = Interface,				
				2 = Endpoint,				
				3 = Other, 4-31 Reserved				





#### Register Address R/W Description **Default Value** SETUP3_2 0x0000_0000 0xB000_6048 R Setup3 & Setup2 bytes

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			SET	UP3		26	25	
7	6	5	4	3	2	1	0	
SETUP2								

Bits	Descriptions	
[15:8]	SETUP3	Setup Byte 3 [15:8]. This register provides byte 3 of the last setup packet received. For a Standard Device Request, the most significant byte of the wValue field is returned.
[7:0]	SETUP2	<b>Setup Byte 2 [7:0]</b> . This register provides byte 2 of the last setup packet received. For a Standard Device Request, the least significant byte of the wValue field is returned.
		Publication Release Date: Jun 18, 20 212 Revision:

#### Setup3 & Setup2 bytes (SETUP3_2)



# RegisterAddressR/WDescriptionDefault ValueSETUP5_40xB000_604CRSetup5 & Setup4 bytes0x0000_0000

Setup5	& Setup4	bytes (	(SETUP5_4)

					XOL NO		
31	30	29	28	27	26	25	24
			Rese	erved		2n	
23	22	21	20	19	18	17	16
			Rese	erved	1	A 1/2	
15	14	13	12	11	10	9	8
			SET	UP5		200	25
7	6	5	4	3	2	1	0
			SET	UP4		- 73	601

Bits	Descriptions	
[15:8]	SETUP5	Setup Byte 5[15:8]. This register provides byte 5 of the last setup packet received. For a Standard Device Request, the most significant byte of the wIndex field is returned.
[7:0]	SETUP4	<b>Setup Byte 4[7:0]</b> . This register provides byte 4 of the last setup packet received. For a Standard Device Request, the least significant byte of the wIndex is returned.



#### Register Address R/W Description **Default Value** 0xB000_6050 0x0000_0000 SETUP7_6 R Setup7 & Setup6 bytes

#### Setup7 & Setup6 bytes (SETUP7_6)

31	30	29	28	27	26	25	24
			Rese	erved		Qs -	
23	22	21	20	19	18	17	16
			Rese	erved	N.	Alla	
15	14	13	12	11	10	9	8
			SET	UP7		26	25
7	6	5	4	3	2	1	0
			SET	TUP6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01

	Setup Byte 7[15:8].	
SETUP7	This register provides byte 7 of the last setup packet received. a Standard Device Request, the most significant byte of wLength field is returned.	
SETUP6		
	SETUP6	<b>SETUP6</b> This register provides byte 6 of the last setup packet received. a Standard Device Request, the least significant byte of



#### Control Endpoint RAM Start Address Register (CEP_START_ADDR)

Register A	Address	R/W	Description	Default Value
CEP_START_ADDR (	0xB000_6054	R/W	Control Ep RAM Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	erved		an C	20
15	14	13	12	11	10	9	8
		Reserved			CEP	_START_A	DDR
7	6	5	4	3	2	1	0
	CEP_START_ADDR						

Bits	Descriptions	
[10:0]	CEP_START_ADDR	This is the start-address of the RAM space allocated for the control-endpoint



#### Control Endpoint RAM End Address Register (CEP_END_ADDR)

Register	Address	R/W	Description	Default Value
CEP_END_ADDR	0xB000_6058	R/W	Control Ep RAM End Address Register	0x0000_0000
			105 001	

31	30	29	28	27	26	25	24
			Resei	rved	"On"	Dr.	
23	22	21	20	19	18	17	16
			Resei	rved	NS /	alla	
15	14	13	12	11	10	9	8
		Reserved			CE	P_END_AD	DR
7	6	5	4	3	2	1	0
			CEP_ENI	D_ADDR		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0)

Bits	Descriptions	
[10:0]	CEP_END_ADDR	This is the end-address of the RAM space allocated for the control-endpoint





#### DMA Control Status Register (DMA_CTRL_STS)

Register	Address	R/W	Description	Default Value
DMA_CTRL_STS	0xB000_605C	R/W	DMA Control Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved		2n	
23	22	21	20	19	18	17	16
			Rese	erved	1	A 1/2	
15	14	13	12	11	10	9	8
			Rese	erved		200	25
7	6	5	4	3	2	1	0
RST_DMA	SCAT_GA_EN	DMA_EN	DMA_RD		DMA	ADDR	01

Bits	Descriptions	
[7]	RST_DMA	Reset DMA state machine.
[6]	SCAT_GA_EN	Scatter gather function enable
[5]	DMA_EN	DMA Enable Bit
[4]	DMA_RD	<b>DMA Operation Bit.</b> If '1', the operation is a DMA read and if '0' the operation is a DMA write.
[3:0]	DMA_ADDR	DMA ep_addr Bits

When enable scatter gather DMA function, SCAT_GA_EN needs to be set high and DMA_CNT set to 8 bytes. Then DMA will enable to fetch the descriptor which describes the real memory address and length. The descriptor will be a

8-byte format, like the following:

[31]	[30]		[29:0]
200		N	IEM_ADDR[31:0]
EOT	RD	reserved	count[19:0]

**MEM_ADDR**: It specifies the memory address (AHB address).

**EOT**: endo of transfer. When this bit sets to high, it means this is the last descriptor.

**RD**: "1" means read from memory into buffer. "0" means read from buffer into memory.



Register	Addres	s	R/W	Descript	ion		Defa	ault Value
DMA_CNT	0xB000_	_6060	R/W	DMA Cou	nt Register	× se	0x00	000_0000
						801		
31	30	29		28	27	26	25	24
				Reser	ved	(On C	20	
23	22	21		20	19	18	17	16
	Re	eserved				DMA	CNT	
15	14	13		12	11	10	9	8
				DMA_	CNT		120	S
7	6	5		4	3	2	1	0
				DMA	CNT		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0)

#### DMA Count Register (DMA_CNT)

Bits	Descriptions	
[19:0]	DMA_CNT	The transfer count of the DMA operation to be performed is written to this register.



### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Data Register (EPA_DATA_BUF~ EPF_DATA_BUF)

Register	Address	R/W	Description	Default Value
EPA_DATA_BUF	0xB000_6064	R/W	Endpoint A Data Register	0x0000_0000
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B Data Register	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C Data Register	0x0000_0000
EPD_DATA_BUF	0xB000_60DC	R/W	Endpoint D Data Register	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E Data Register	0x0000_0000
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved		1	132. ~?)
23	22	21	20	19	18	17	16
			Rese	erved			<u> </u>
15	14	13	12	11	10	9	8
			EP_DA	ΓA_BUF			
7	6	5	4	3	2	1	0
			EP_DA	TA_BUF			

Bits	Descriptions	
[15:0]	EP_DATA_BUF	Endpoint A~F Data Register. Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).
[15:0]	EP_DATA_BUF	of this register provide the lower order byte for the buffer transaction
		Publication Release Date: Jun 18, 201

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Interrupt Status Register (EPA_IRQ_STAT~ EPF_IRQ_STAT)

Register	Address	R/W	Description	Default Value
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt Status Register	0x0000_0002
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt Status Register	0x0000_0002
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt Status Register	0x0000_0002
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt Status Register	0x0000_0002
EPE_IRQ_STAT	0xB000_6104	R/W	Endpoint E Interrupt Status Register	0x0000_0002
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt Status Register	0x0000_0002
			7	er a

31	30	29	28	27	26	25	24
			Rese	erved		US.	~2
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved	b	O_SHORT_PKT_IS	ERR_IS	NYET_IS	STALL_IS	NAK_IS
7	6	5	4	3	2	1	0
PING_IS	IN_TK_IS	OUT_TK_IS	DATA_RxED_IS	DATA_TxED_IS	SHORT_PKT_IS	EMPTY_IS	FULL_IS

Received (Writing a '1' clears this bit.) backet (including zero length packet ) clears this bit.) e occurs any error in the transaction. .' clears this bit.) space available in the RAM is not sufficient to
occurs any error in the transaction.
n coming data packet.
ng a `1' clears this bit.) Ild not be accepted or provided because the I was acknowledged with a STALL.
a `1' clears this bit.) could not be provided, and was acknowledged
(Writing a `1' clears this bit.) a IN token has been received from the host.
]



Bits	Descriptions	
[6]	IN_TK_IS	<b>Data IN Token Interrupt</b> . (Writing a `1' clears this bit.) This bit is set when a Data IN token has been received from the host.
[5]	OUT_TK_IS	<b>Data OUT Token Interrupt</b> . (Writing a '1' clears this bit.) This bit is set when a Data OUT token has been received from th host. This bit also set by PING tokens(in high-speed only).
[4]	DATA_RxED_IS	Data Packet Received Interrupt. (Writing a '1' clears this bit.) This bit is set when a data packet is received from the host by th endpoint.
[3]	DATA_TxED_IS	<b>Data Packet Transmitted Interrupt</b> . (Writing a '1' clears this bit.) This bit is set when a data packet is transmitted from the endpoint t the host.
[2]	SHORT_PKT_IS	<b>Short Packet Transferred Interrupt</b> . (Writing a '1' clears this bit.) This bit is set when the length of the last packet was less than the Maximum Packet Size (EP_MPS).
[1]	EMPTY_IS	<b>Buffer Empty</b> . (READ ONLY) For an IN endpoint, a buffer is available to the local side for writing u to FIFO full of bytes. This bit is set when the endpoint buffer is empt For an OUT endpoint, the currently selected buffer has a count of 0, o no buffer is available on the local side (nothing to read).
[0]	FULL_IS	Buffer Full. (READ ONLY) This bit is set when the endpoint packet buffer is full. For an I endpoint, the currently selected buffer is full, or no buffer is availab to the local side for writing (no space to write). For an OUT endpoin

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Interrupt Enable Register (EPA_IRQ_ENB~ EPF_IRQ_ENB)

Register	Address	R/W	Description	Default Value
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt Enable Register	0x0000_0000
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt Enable Register	0x0000_0000
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt Enable Register	0x0000_0000
EPD_IRQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt Enable Register	0x0000_0000
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt Enable Register	0x0000_0000
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt Enable Register	0x0000_0000

						TON G	1
31	30	29	28	27	26	25	24
Reserved							~))
23	22	21	20	19	18	17	16
			R	eserved			
15	14	13	12	11	10	9	8
	Reserve	d	O_SHORT_PKT_IE	ERR_IE	NYET_IE	STALL_IE	NAK_IE
7	6	5	4	3	2	1	0
PING_IE	IN_TK_IE	OUT_TK_IE	DATA_RxED_IE	DATA_TxED_IE	SHORT_PKT_IE	EMPTY_IE	FULL_IE

Bits	Descriptions	
[12]	O_SHORT_PKT_IE	Bulk Out Short Packet Interrupt Enable When set, this bit enables a local interrupt to be set whenever bulk- out short packet occurs on the bus for this endpoint.
[11]	ERR_IE	<b>ERR interrupt Enable</b> . When set, this bit enables a local interrupt to be set whenever ERR condition occurs on the bus for this endpoint.
[10]	NYET_IE	<b>NYET Interrupt Enable.</b> When set, this bit enables a local interrupt to be set whenever NYET condition occurs on the bus for this endpoint.
[9]	STALL_IE	<b>USB STALL Sent Interrupt Enable</b> . When set, this bit enables a local interrupt to be set when a stall token is sent to the host.
[8]	NAK_IE	<b>USB NAK Sent Interrupt Enable</b> . When set, this bit enables a local interrupt to be set when a nak token is sent to the host.



Bits	Descriptions	Descriptions				
[7]	PING_IE	<b>PING Token Interrupt Enable.</b> When set, this bit enables a local interrupt to be set when a ping token has been received from the host.				
[6]	IN_TK_IE	Data IN Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data IN token has been received from the host.				
[5]	OUT_TK_IE	Data OUT Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data OUT token has been received from the host.				
[4]	DATA_RxED_IE	Data Packet Received Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been transmitted to the host.				
[3]	DATA_TxED_IE	Data Packet Transmitted Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been received from the host.				
[2]	SHORT_PKT_IE	Short Packet Transferred Interrupt Enable. When set, this bit enables a local interrupt to be set when a short data packet has been transferred to/from the host.				
[1]	EMPTY_IE	Buffer Empty Interrupt. When set, this bit enables a local interrupt to be set when a buffer empty condition is detected on the bus.				
[0]	FULL_IE	<b>Buffer Full Interrupt</b> . When set, this bit enables a local interrupt to be set when a buffer full condition is detected on the bus.				

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Data Available count register (EPA_DATA_CNT~ EPF_DATA_CNT)

Register	Address	R/W	Description	Default Value
EPA_DATA_CNT	0xB000_6070	R	Endpoint A Data Available count register	0x0000_0000
EPB_DATA_CNT	0xB000_6098	R	Endpoint B Data Available count register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Endpoint C Data Available count register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Endpoint D Data Available count register	0x0000_0000
EPE_DATA_CNT	0xB000_6110	R	Endpoint E Data Available count register	0x0000_0000
EPF_DATA_CNT	0xB000_6133	R	Endpoint F Data Available count register	0x0000_0000
			(	A On

							and the second se
31	30	29	28	27	26	25	24
Reserved		DMA_LOOP					
23	22	21	20	19	18	17	16
			DMA_	LOOP			
15	14	13	12	11	10	9	8
		DATA_CNT					
7	6	5	4	3	2	1	0
	DATA_CNT						

scriptions	
A_LOOP	This register is the remaining DMA loop to complete. Each loop means 32-byte transfer.
FA_CNT	For an OUT / IN endpoint, this register returns the number of valid bytes in the endpoint packet buffer.
FA_CNT	



#### Endpoint A~F Response Set/Clear Register (EPA_RSP_SC~ EPF_RSP_SC)

Register	Address	R/W	Description	Default Value
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A Response Set/Clear Register	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	Endpoint B Response Set/Clear Register	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C Response Set/Clear Register	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W	Endpoint D Response Set/Clear Register	0x0000_0000
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E Response Set/Clear Register	0x0000_0000
EPF_RSP_SC	0xB000_613C	R/W	Endpoint F Response Set/Clear Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	rved			<u> </u>
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
DIS_BUF	PK_END	ZEROLEN	HALT	TOGGLE	MO	DE	BUF_FLUSH

Bits	Descriptions	escriptions			
[7] DIS_BUF		Disable Buffer This bit is used to disable buffer (set buffer size to 1) when received a bulk-out short packet.			
[6]	PK_END	<b>Packet End.</b> This bit is applicable only in case of Auto-Validate Mtheod. This bit is set to validate any remaining data in the buffer which is not equal to the MPS of the endpoint, and happens to be the last transfer.			
[5]	ZEROLEN	<b>Zerolen In.</b> This bit is used to send a zero-length packet n response to an in- token. When this bit is set, a zero packet is sent to the host on reception of an in-token.			
[4]	HALT	<b>Endpoint Halt</b> . This bit is used to send a stall handshake as response to the token from the host. When an Endpoint Set Feature (ep_halt) is detected by the local CPU, it must write a '1' to this bit.			



Bits	Descriptions			
[3]	TOGGLE	<b>Endpoint Toggle.</b> This bit is used to clear the endpoint data toggle bit. Reading this bit returns the current state of the endpoint data toggle bit. The local CPU may use this bit, to initialize the end-point's toggle incase of reception of a Set Interface request or a Clear Feature (ep_halt) request from the host. Only when toggle bit is "1", this bit can be written into the inversed write data bit[3].		
[2:1]	MODE	Mode.         These two bits decide the mode of operation of the in-endpoint.         MODE[2:1]       Mode Description         2'b00       Auto-Validate Mode         2'b01       Manual-Validate Mode         2'b10       Fly Mode         2'b11       Reserved.         These bits are not valid for a out-endpoint. The auto validate mode         will be activated when the reserved mode is selected.         (These modes are explained detailed in later sections)		
[0]	BUF_FLUSH	<b>Buffer Flush</b> . Writing a 1 to this bit causes the packet buffer to be flushed and the corresponding EP_AVAIL register to be cleared. This bit is self-clearing. This bit should always be written after an configuration event.		

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Maximum Packet Size Register (EPA_MPS~ EPF_MPS)

Register	Address	R/W	Description	Default Value
EPA_MPS	0xB000_6078	R/W	Endpoint A Maximum Packet Size Register	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B Maximum Packet Size Register	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C Maximum Packet Size Register	0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D Maximum Packet Size Register	0x0000_0000
EPE_MPS	0xB000_6118	R/W	Endpoint E Maximum Packet Size Register	0x0000_0000
EPF_MPS	0xB000_6140	R/W	Endpoint F Maximum Packet Size Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23 22 21 20 19 18 17 16										
Reserved										
15 14 13 12 11 10 9 8										
Reserved EP_MPS										
7	6	5	4	3	2	1	0			
			EP_I	MPS						

Bits	s	Descriptions	
[10	:0]	EP_MPS	Endpoint Maximum Packet Size. This field determines the Endpoint Maximum Packet Size.

Publication Release Date: Jun 18, 2010 Revision: A5

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F Transfer Count Register (EPA_TRF_CNT~ EPF_TRF_CNT)

Register	Address	R/W	Description	Default Value
EPA_TRF_CNT	0xB000_607C	R/W	Endpoint A Transfer Count Register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B Transfer Count Register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C Transfer Count Register	0x0000_0000
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D Transfer Count Register	0x0000_0000
EPE_TRF_CNT	0xB000_611C	R/W	Endpoint E Transfer Count Register	0x0000_0000
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23 22 21 20 19 18 17 16										
Reserved										
15	15 14 13 12 11 10 9 8									
	EP_TRF_CNT									
7	6	5	4	3	2	1	0			
	EP_TRF_CNT									

Bits	Descriptions	
[10:0]	EP_TRF_CNT	For IN endpoints, this field determines the total number of bytes to be sent to the host in case of manual validation method. For OUT endpoints, this field has no effect



#### Endpoint A~F Configuration Register (EPA_CFG~ EPF_CFG)

Register	Address	R/W	Description	Default Value
EPA_CFG	0xB000_6080	R/W	Endpoint A Configuration Register	0x0000_0012
EPB_CFG	0xB000_60A8	R/W	Endpoint B Configuration Register	0x0000_0022
EPC_CFG	0xB000_60D0	R/W	Endpoint C Configuration Register	0x0000_0032
EPD_CFG	0xB000_60F8	R/W	Endpoint D Configuration Register	0x0000_0042
EPE_CFG	0xB000_6120	R/W	Endpoint E Configuration Register	0x0000_0052
EPF_CFG	0xB000_6148	R/W	Endpoint F Configuration Register	0x0000_0062

31     30     29     28     27     26     25     24       Reserved       23     22     21     20     19     18     17     16       Reserved       15     14     13     12     11     10     9     8       Reserved       EP_MULT										
23         22         21         20         19         18         17         16           Reserved           15         14         13         12         11         10         9         8           Reserved           EP_MULT	31	30	29	28	27	26	25	24		
Reserved           15         14         13         12         11         10         9         8           Reserved         EP_MULT				0						
15         14         13         12         11         10         9         8           Reserved         EP_MULT	23	22	21	20	19	18	17	16		
Reserved EP_MULT		Reserved								
	15	15 14 13 12				10	9	8		
			Rese	erved			EP_I	MULT		
7 6 5 4 3 2 1 0	7	6	5	4	3	2	1	0		
EP_NUM EP_DIR EP_TYPE EP_VALID		EP_I	NUM		EP_DIR	EP_	ТҮРЕ	EP_VALID		

Bits	Description	is	
		MULT Field This field in single micro	dicates number of transactions to be carried out in one
F0.01		[9:8]	Description
[9:8]	EP_MULT	0x00	One transaction
180		0x01	Reserved
0 Y 3	25	0x10	Reserved
Con the		0x11	Invalid
[7:4]	EP_NUM	Endpoint N This field sel	umber. lects the number of the endpoint. Valid numbers 1 to 15.
[3]	EP_DIR	IN to Device	irection. - OUT EP (Host OUT to Device) EP_DIR = 1- IN EP (Host e) Note that a maximum of one OUT and IN endpoint is each endpoint number.



Bits	Description	s					
[2:1]		Endpoint Ty This field sel Control type.	lects the type of this endpoint. Endpoint 0 is forced to a				
	EP_TYPE	[2:1]	Description				
		0x00	Reserved				
		0x01	Bulk				
		0x10	Interrupt				
		0x11	Isochronous				
[0]	EP_VALID	VALID Endpoint Valid. When set, this bit enables this endpoint. This bit has no efferent of the endpoint of th					





#### Endpoint A~F RAM Start Address Register (EPA_START_ADDR~ EPF_START_ADDR)

Register	Address	R/W	Description	Default Value
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM Start Address Register	0x0000_0000
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM Start Address Register	0x0000_0000
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM Start Address Register	0x0000_0000
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM Start Address Register	0x0000_0000
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM Start Address Register	0x0000_0000
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM Start Address Register	0x0000_0000
			(3)	2.00

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	15 14 13 12 11 10 9 8									
EP_START_ADDR										
7	6	5	4	3	2	1	0			
	EP_START_ADDR									

Bits	Descriptions	
[10:0]	EP_START_ADDR	This is the start-address of the RAM space allocated for the endpoint $A \sim F$ .

### 32-BIT ARM926EJS-BASED MCU

#### Endpoint A~F RAM End Address Register (EPA_END_ADDR~ EPF_END_ADDR)

Register	Address	R/W	Description	Default Value
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM End Address Register	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM End Address Register	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM End Address Register	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM End Address Register	0x0000_0000
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM End Address Register	0x0000_0000
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM End Address Register	0x0000_0000

31	30	29	28	27	26	25	24
			Reser	ved		M	
23	22	21	20	19	18	17	16
			Reser	ved			<u> </u>
15	14	13	12	11	10	9	8
					EF	P_END_ADE	DR
7	6	5	4	3	2	1	0
			EP_END	ADDR			

	Bits	Descriptions	
È	[10:0]	EP_END_ADDR	This is the end-address of the RAM space allocated for the endpoint $A \sim F$ .



Register	Register Address		R/W	Description	Description USB DMA address register		
USB_DMA_ADDR	0xB00	0xB000_6700		USB DMA address re			
31	30	29		28 27	26	25	24
51		27		USB_DMA_ADDR	20	23	27
23	22	21		20 19	18	17	16
				USB_DMA_ADDR	60	(Ta)	
15	14	13		12 11	10	9	8
				USB_DMA_ADDR	~	On Ir	0
7	6	5		4 3	2	1	0
				USB_DMA_ADDR		C.S.S.	S/A
						112	5.0

#### USB Address Register (USB_DMA_ADDR)

Bits	Descriptions	
[31:0]	USB_DMA_ADDR	It specifies the address from which the DMA has to read / write. The address must WORD (32-bit) aligned.





#### USB PHY Control (USB_PHY_CTL)

Register	Address		R/W	Description		D	Default Value
USB_PHY_CTL 0xB00		0xB000_6704		USB PHY contr	0	0x0000_0260	
				- X	5000	15.	
31	30	29	28	27	26	25	24
				Reserved	572	10	
23	22	21	20	19	18	17	16
				Reserved	2	sh Co.	
15	14	13	12	11	10	9	8
		Rese	erved			Phy_suspen	nd Reserved
7	6	5	4	3	2	1	0
				Reserved		100	

Bits	Descriptions		
[9]	Phy_suspend	Set this bit low will cause USB PHY suspended.	3B



### 32-BIT ARM926EJS-BASED MCU

## 6.9 DMA Controller (DMAC)

The DMA Controller provides a DMA (Direct Memory Access) function for FMI to exchange data between system memory (ex. SDRAM) and shared buffer (one 2048 bytes). Software just simply fills in the starting address and enables DMAC, and then you can let DMAC to handle the data transfer automatically.

There is one 2048 bytes shared buffer inside DMAC, separate into four 512 bytes ping-pong FIFO. It can provide multi-block transfers using ping-pong mechanism for FMI. Software can access these shared buffers directly when FMI is not in busy.

### 6.9.1 DMA Controller Registers Map

Register	Offset	R/W	Description	Reset Value
Shared Buffer	(DMAC_BA = 0xE	3000_C	:000)	ST 0
FB_0	0XB000_C000			6
		R/W	Shared Buffer (FIFO)	N/A
FB_511	0xB000_C7FC			
DMAC Registe	rs (DMAC_BA = 0	xB000	_C000)	
DMACCSR	0xB000_C800	R/W	DMAC Control and Status Register	0x0000_0000
DMACSAR2	0xB000_C808	R/W	DMAC Transfer Starting Address Register 2	0x0000_0000
DMACBCR	0xB000_C80C	R	DMAC Transfer Byte Count Register	0x0000_0000
DMACIER	0xB000_C810	R/W	DMAC Interrupt Enable Register	0x0000_0001
DMACISR	0xB000_C814	R/W	DMAC Interrupt Status Register	0x0000_0000

R: read only, W: write only, R/W: both read and write



### 6.9.2 DMAC Registers

#### DMAC Control and Status Register (DMACCSR)

Register	Offset	R/W	Descript	Description			Reset Value	
DMACCSR	0xB000_C80	0 R/W	DMAC Co	ntrol and Sta	tus Register		0x0000_0000	
					972	A		
31	30	29	28	27	26	25	24	
			R	eserved	5	b Con		
23	22	21	20	19	18	17	16	
			R	eserved		200	2	
15	14	13	12	11	10	9	8	
		Rese		FMI_BUSY	Reserved			
7	6	5	4	3	2	1	0	
	Reserv	ed		SG_EN2	Reserved	SW_RST	DMACEN	

Descriptions	
	FMI DMA Transfer is in progress
FMI_BUSY	This bit indicates if FMI is granted and doing DMA transfer or not. 0 = FMI DMA transfer is not in progress. 1 = FMI DMA transfer is in progress.
	Enable Scatter-Getter Function for FMI
SG_EN2	<ul> <li>Enable DMA scatter-getter function or not.</li> <li>0 = Normal operation. DMAC will treat the starting address in DMACSAR2 as starting pointer of a single block memory.</li> <li>1 = Enable scatter-getter operation. DMAC will treat the starting address in DMACSAR2 as a starting address of Physical Address Descriptor (PAD) table. The format of these PADs will be described later.</li> </ul>
A	Software Engine Reset
SW_RST	<ul> <li>0 = Writing 0 to this bit has no effect.</li> <li>1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents of control register will not be cleared. This bit will auto clear after few clock cycles.</li> </ul>
Sal Fa	DMAC Engine Enable
DMACEN	Setting this bit to 1 enables DMAC's operation. If this bit is cleared, DMAC will ignore all DMA request from FMI and force Bus Master into IDLE state. 0 = Disable DMAC. 1 = Enable DMAC. NOTE: If target abort is occurred, DMACEN will be cleared.
	FMI_BUSY SG_EN2 SW_RST



#### DMAC Transfer Starting Address Register 2 (DMACSAR2)

Register	Offset	R/W	Description           DMAC Transfer Starting Address Register 2				Reset Value		
DMACSAR2	0xB000_C8	808 R/W				0x0000_0000			
				X	No no				
31	30	29	28	27	26	25	24		
			DMAC	SA[31:24]	627 1	1			
23	22	21	20	19	18	17	16		
			DMAC	SA[23:16]	S	s Cs.			
45	4.4	40	10		10	0	0		

15	14	13	12	11	10	9	8
			DMAC	SA[15:8]		as to	S
7	6	5	4	3	2	1	0
DMACSA[7:0]							
						CA Ch	

Bits	Descriptions	
	0] <b>DMACSA</b>	DMA Transfer Starting Address for FMI
[31:0]		This field indicates a 32-bit starting address of system memory (SRAM/SDRAM) for DMAC to retrieve or fill in data (for FMI engine).
		If DMAC is not in normal mode, this field will be interpreted as a starting address of Physical Address Descriptor (PAD) table.

**NOTE:** Starting address should be word alignment, for example, 0x0000_0000, 0x0000_0004...

The format of PAD table must like below. Note that the total sector count of all PADs must be equal to or greater than the sector count filled in FMI engine. EOT should be set to 1 in the last descriptor.

byte 3 byte 2 Physical Base Address	byte 1 byte 0	 ]	LOW
Image: Second se	Sector Count	Memory Reg	ion
Physical Base Address: 32-bit, Sector Count: 1 sector = 512 b sectors (bit 15~0) EOT: End of PAD Table (bit 31	ytes, 0 means 65536		HIGH
		Publicatior	n Release Dat



#### DMAC Transfer Byte Count Register (DMACBCR)

Register	Offset	R/W	Description	Description				
DMACBCR	0xB000_C800	C R	DMAC Transfer Byte Count Register				<0000_0000	
31	30	29	28	27	26	25	24	
		Res	erved		CYL E	BCNT[25:24]		
23	22	21	20	19	18	17	16	
			BCNT[	23:16]	50	Co.		
15	14	13	12	11	10	9	8	
			BCNT	[15:8]	6	2. 5		
7	6	5	4	3	2	1	0	
			BCNT	[7:0]		NON.	(A)	
<u></u>						~~~	$\langle 0 \rangle$	

Bits	Descriptions	
		DMA Transfer Byte Count (Read Only)
[25:0]	BCNT	This field indicates the remained byte count of DMAC transfer. The value of this field is valid only when FMI is busy; otherwise, it is zero.





#### DMAC Interrupt Enable Register (DMACIER)

Register	Offse	Offset R/W		Description				Reset Value	
DMACIER	0xB000_	0xB000_C810		DMAC Inte	errupt Enable	(	0x0000_0001		
31	30	30 29		28	27	26	25	24	
				Re	served	622	- AL		
23	22		21	20	19	18	17	16	
				Re	served	Y	h Co		
15	14		13	12	11	10	9	8	
				Re	served		an to		
7	6	5		4	3	2	1	0	
			Reser	ved			WEOT_IE	TABORT_IE	

Bits	Descriptions	
		Wrong EOT Encountered Interrupt Enable
[1]	WEOT_IE	<ul> <li>0 = Disable interrupt generation when wrong EOT is encountered.</li> </ul>
		• $1 =$ Enable interrupt generation when wrong EOT is encountered.
		DMA Read/Write Target Abort Interrupt Enable
[0]	[0] TABORT_IE	0 = Disable target abort interrupt generation during DMA transfer.
		1 = Enable target abort interrupt generation during DMA transfer.





#### DMAC Interrupt Status Register (DMACISR)

Register	Offse	t	R/W	Description				Reset Value	
DMACISR	0xB000_0	0xB000_C814		DMAC Interrupt Status Register			(	0x0000_0000	
					X	A a			
31	30		29	28	27	26	25	24	
				Res	served	672	A		
23	22	2	21	20	19	18	17	16	
				Res	served	S	la Ca		
15	14		13	12	11	10	9	8	
				Res	served		62 6	1	
7	6		5	4	3	2	1	0	
		•	Rese	rved	•	-	WEOT_IF	TABORT_IF	
							CAN A		

Bits	Descriptions	
	[1] WEOT_IF	Wrong EOT Encountered Interrupt Flag
F17		When DMA Scatter-Getter function is enabled, and EOT of the descriptor is encountered before DMA transfer finished (that means the total sector count of all PAD is less than the sector count of FMI), this bit will be set.
ĹŢÌ		0 = No EOT encountered before DMA transfer finished.
		1 = EOT encountered before DMA transfer finished.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		DMA Read/Write Target Abort Interrupt Flag
501		0 = No bus ERROR response received.
[0]	TABORT_IF	1 = Bus ERROR response received.
h		NOTE: This bit is read only, but can be cleared by writing $1'$ to it.

**NOTE:** When DMAC's bus master received ERROR response, it means that target abort is happened. DMAC will stop transfer and respond this event to software, FMI; then go to IDLE state. When target abort occurred or WEOT_IF is set, suggest software reset DMAC and IP, and then transfer those data again.

### 32-BIT ARM926EJS-BASED MCU

#### Flash Memory Interface Controller (FMI) 6.10

The Flash Memory Interface (FMI) supports Secure Digital (SD and SDIO) and Memory Stick (Memory stick PRO). FMI is co-operated with DMAC to provide a fast data transfer between system memory and cards. There is one single 2048-byte buffer embedded in DMAC for temporary data storage.

### 6.10.1 FMI Controller Registers Map

Register	Address	R/W	Description	Reset Value
FMI Global R	egisters (FMI_BA	= 0xB0	000_D000)	0
FMICSR	0xB000_D000	R/W	Global Control and Status Register	0x0000_0000
FMIIER	0xB000_D004	R/W	Global Interrupt Control Register	0x0000_0001
FMIISR	0xB000_D008	R/W	Global Interrupt Status Register	0x0000_0000
Secure Digita	al Registers			1 and
SDCSR	0xB000_D020	R/W	SD Control and Status Register	0x0101_0000
SDARG	0xB000_D024	R/W	SD Command Argument Register	0x0000_0000
SDIER	0xB000_D028	R/W	SD Interrupt Control Register	0x0000_0000
SDISR	0xB000_D02C	R/W	SD Interrupt Status Register	0x000X_008C
SDRSP0	0xB000_D030	R	SD Receiving Response Token Register 0	0x0000_0000
SDRSP1	0xB000_D034	R	SD Receiving Response Token Register 1	0x0000_0000
SDBLEN	0xB000_D038	R/W	SD Block Length Register	0x0000_01FF
Memory Stic	k Registers			
MSCSR	0xB000_D060	R/W	Memory Stick Control and Status Register	0x0000_0008
MSIER	0xB000_D064	R/W	Memory Stick Interrupt Control Register	0x0000_0000
MSISR	0xB000_D068	R/W	Memory Stick Interrupt Status Register	0x0000_0000
MSBUF1	0xB000_D06C	R/W	Memory Stick Register Buffer 1	0x0000_0000
MSBUF2	0xB000_D070	R/W	Memory Stick Register Buffer 2	0x0000_0000
			Publication Release D 241	ate: Jun 18, 201 Revision: A

R: read only, W: write only, R/W: both read and write



### 6.10.2 Register Details

#### Global Control and Status Register (FMICSR)

Register	Address	R/W	Description	Description				
FMICSR	0xB000_D00	0xB000_D000 R/W 0		Global Control and Status Register			0x0000_0000	
					22	2		
31	30	29	28	27	26	25	24	
			Rese	erved	50	(CA)		
23	22	21	20	19	18	17	16	
			Rese	erved		No C	N	
15	14	13	12	11	10	9	8	
			Rese	erved			()	
7	6	5	4	3	2	1	0	
		Reserved	ł		MS_EN	SD_EN	SW_RST	

Bits	Descriptions	
		Memory Stick Functionality Enable
[2]	2] <b>MS_EN</b>	0 = Disable MS functionality of FMI.
		1 = Enable MS functionality of FMI.
		Secure Digital Functionality Enable
[1]	SD_EN	0 = Disable SD functionality of FMI.
	_	1 = Enable SD functionality of FMI.
de.		Software Engine Reset
[0]		0 = Writing 0 to this bit has no effect.
	[0] SW_RST	1 = Writing 1 to this bit will reset all FMI engines. The contents of control register will not be cleared. This bit will auto clear after few clock cycles.

**NOTE:** Software can enable only one engine at one time, or FMI will work abnormal.

#### Global Interrupt Control Register (FMIIER)

Register	er Address R/W Description		l		Re	set Value		
FMIIER	0xB000_[	0004 R/W	Global Interr	Global Interrupt Control Register			0x0000_0001	
				XV.	Nº SK			
31	30	29	28	27	26	25	24	
			Rese	erved	SZA FA	N. (		
23	22	21	20	19	18	17	16	
			Rese	erved	50	(Cs.		
15	14	13	12	11	10	9	8	
			Rese	erved	6	a de		
7	6	5	4	3	2	1	0	
			Reserved			"Oh i	DTA_IE	

Bits	Descriptions	
		DMAC READ/WRITE Target Abort Interrupt Enable
[0]	DTA_IE	<ul> <li>0 = Disable DMAC READ/WRITE target abort interrupt generation.</li> <li>1 = Enable DMAC READ/WRITE target abort interrupt generation.</li> </ul>



#### Global Interrupt Status Register (FMIISR)

Register	Address	R/W	Description			Re	set Value	
FMIISR	0xB000_D00	08 R/W	Global Interr	Global Interrupt Status Register			0x0000_0000	
				X	10.00			
31	30	29	28	27	26	25	24	
			Rese	erved	572 50	201		
23	22	21	20	19	18	17	16	
			Rese	erved	50	Co.		
15	14	13	12	11	10	9	8	
			Rese	erved	6	en la		
7	6	5	4	3	2	1	0	
			Reserved			TON Y	DTA_IF	
						7.4910		

Bits	Descriptions	
		DMAC READ/WRITE Target Abort Interrupt Flag (Read Only)
[0]	DTA_IF	This bit indicates DMAC received an ERROR response from internal AHB bus during DMA read/write operation. When Target Abort is occurred, please reset all engine.
[0]		0 = No bus ERROR response received.
		1 = Bus ERROR response received.
		<b>NOTE</b> : This bit is read only, but can be cleared by writing '1' to it.

**NOTE**: No matter interrupt enable is turn on or not, the interrupt flag will be set when target condition is occurred.



#### SD Control and Status Register (SDCSR)

Register	Address	R/W	Description	Reset Value
SDCSR	0xB000_D020	R/W	SD Control and Status Register	0x0101_0000

					11 C C C C C C C C C C C C C C C C C C		
31	30	29	28	27	26	25	24
Reserved	SDP	ORT	Reserved	SC	SDN	IWR	
23	22	21	20	19	18	17	16
			BLK_CNT		(non 1)	0	
15	14	13	12	11	10	9	8
DBW	SW_RST			CMD_C	ODE	The	
7	6	5	4	3	2	1	0
CLK_KEEPO	CLK8_OE	CLK74_OE	R2_EN	DO_EN	DI_EN	RI_EN	CO_EN
						Ch o	~

Bits	Descriptions	
[30:29]	SDPORT	SD Port Selection This field should be set to 00
[27:24]	SDNWR	N _{WR} Parameter for Block Write Operation This value indicates the N _{WR} parameter for data block write operation in clock counts. The actual clock cycle will be SDNWR+1.
[23:16]	BLK_CNT	Block Counts to Be Transferred or Received This field contains the block counts for data-in and data-out transfer. For READ_MULTIPLE_BLOCK and WRITE_MULTIPLE_BLOCK command, software can use this function to accelerate data transfer and improve performance. Note that only when SDBLEN=0x1FF, this field is valid. Otherwise, block counts will be set to 1 inside SD host engine. NOTE: Value 0x0 in this field means 256.
[15]	DBW	SD Data Bus Width 0 = Data bus width is 1-bit. 1 = Data bus width is 4-bit.
[14]	SW_RST	<pre>Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and counters. The contents of control register will not be cleared (but RI_EN, DI_EN, DO_EN and R2_EN will be cleared). This bit will be auto cleared after few clock cycles.</pre>
[13:8]	CMD_CODE	SD Command Code This register contains the SD command code (0x00 – 0x3F).

Bits	Descriptions	
[7]	CLK_KEEPO	SD Clock Enable for Port 0 0 = Disable SD clock generation. 1 = SD clock always keeps free running.
[6]	CLK8_OE	Generating 8 Clock Cycles Output Enable 0 = No effect. 1 = Enable, SD host will output 8 clock cycles. NOTE: When this operation is finished, this bit will be cleared automatically.
[5]	CLK74_OE	<ul> <li>Initial 74 Clock Cycles Output Enable</li> <li>0 = No effect.</li> <li>1 = Enable, SD host will output 74 clock cycles to SD card.</li> <li>NOTE: When this operation is finished, this bit will be cleared automatically.</li> </ul>
[4]	R2_EN	<ul> <li>Response R2 Input Enable</li> <li>0 = No effect. (Please use SDCSR[SW_RST] to clear this bit.)</li> <li>1 = Enable, SD host will wait to receive a response R2 from SD card and store the response data into DMAC's flash buffer (exclude CRC-7).</li> <li>NOTE: When the R2 response is finished, this bit is cleared automatically.</li> </ul>
[3]	DO_EN	<ul> <li>Data Output Enable</li> <li>0 = No effect. (Please use SDCSR[SW_RST] to clear this bit.)</li> <li>1 = Enable, SD host will transfer block data and the CRC-16 value to SD card.</li> <li>NOTE: When the output operation is finished, this bit is cleared automatically.</li> </ul>
[2]	DI_EN	<ul> <li>Data Input Enable</li> <li>0 = No effect. (Please use SDCSR[SW_RST] to clear this bit.)</li> <li>1 = Enable, SD host will wait to receive block data and the CRC-16 value from SD card.</li> <li>NOTE: When the input operation is finished, this bit will be cleared automatically</li> </ul>
[1]	RI_EN	Response Input Enable 0 = No effect. (Please use SDCSR[SW_RST] to clear this bit.) 1 = Enable, SD host will wait to receive a response from SD card. NOTE: When the response operation is finished, this bit is cleared automatically.
		Publication Release Date: Jun 18, 2010 246 Revision: A5



Bits	Descriptions	
		Command Output Enable
501	~~	0 = No effect.
[0]	CO_EN	1 = Enable, SD host will output a command to SD card.
		NOTE: When the command operation is finished, this bit is cleared automatically.





#### SD Command Argument Register (SDARG)

Regi	ister		Address	R/W	Description				Reset	Value
SD	ARG	0xE	3000_D024	R/W	SD Commai	SD Command Argument Register				_0000
						XO	N.			
	31		30	29	28	27	26	25	24	
SD_CMD_ARG										
	23	3	22	21	20	19	18	17	16	
					SD_CN	1D_ARG		"Do		
	15	5	14	13	12	11	10	9	8	
	SD_CMD_ARG									
	7		6	5	4	3	2	1	0	
					SD_CN	1D_ARG		26	100	

Bits	Descriptions	
		SD Command Argument
[31:0]	SD_CMD_ARG	This register contains a 32-bit value specifies the argument of SD command from host controller to SD card.





#### SD Interrupt Control Register (SDIER)

Register	Address	R/W	Description	Reset Value
SDIER	0xB000_D028	R/W	SD Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	CDOSRC	Reserved					
23	22	21	20	19	18	17	16
			Rese	erved	" (Open )	20	
15	14	13	12	11	10	9	8
Reserved	WKUP_EN	DITO_IE	RITO_IE	Reserved	SDIO0_IE	Reserved	CD0_IE
7	6	5	4	3	2	1	0
Reserved				CRC_IE	BLKD_IE		
						Ch o	~

Bits	Descriptions	
[30]	CDOSRC	SD0 Card Detect Source Selection0 = From SD0 card's DAT3 pin.1 = From GPIO pin.
[14]	WKUP_EN	Wake-Up Signal Generating Enable Enable/Disable wake-up signal generating of SD host when SDIO card (current using) issues an interrupt (wake-up) via DAT[1] to host. 0 = Disable. 1 = Enable.
[13]	DITO_IE	<ul> <li>Data Input Time-out Interrupt Enable</li> <li>Enable/Disable interrupt generation of SD controller when data input time-out. Time-out value is specified at SDTMOUT.</li> <li>0 = Disable.</li> <li>1 = Enable.</li> </ul>
[12]	RITO_IE	<ul> <li>Response Time-out Interrupt Enable</li> <li>Enable/Disable interrupt generation of SD controller when receiving response or R2 time-out. Time-out value is specified at SDTMOUT.</li> <li>0 = Disable.</li> <li>1 = Enable.</li> </ul>
[10]	SDI OO_IE	<pre>SDIO Interrupt Enable for Port 0 Enable/Disable interrupt generation of SD host when SDIO card 0 issues an interrupt via DAT[1] to host. 0 = Disable. 1 = Enable.</pre>



Bits	Descriptions	
[8]	CD0_IE	<pre>SD0 Card Detection Interrupt Enable Enable/Disable interrupt generation of SD controller when card 0 is inserted or removed. 0 = Disable. 1 = Enable.</pre>
[1]	CRC_IE	<ul> <li>CRC-7, CRC-16 and CRC Status Error Interrupt Enable</li> <li>0 = SD host will not generate interrupt when CRC-7, CRC-16 and CRC status is error.</li> <li>1 = SD host will generate interrupt when CRC-7, CRC-16 and CRC status is error.</li> </ul>
[0]	BLKD_IE	<ul> <li>Block Transfer Done Interrupt Enable</li> <li>0 = SD host will not generate interrupt when data-in (out) transfer done.</li> <li>1 = SD host will generate interrupt when data-in (out) transfer done.</li> </ul>



#### SD Interrupt Status Register (SDISR) Register Address R/W Description **Reset Value** SD Interrupt Status Register 0x000X 008C **SDISR** 0xB000 D02C R/W 31 29 28 27 25 24 30 26 Reserved 23 22 21 20 19 18 17 16 Reserved Reserved SDODAT1 Reserved **CDPSO** 13 15 14 12 11 10 9 8 Reserved DITO_IF RITO_IF Reserved SDIO0_IF Reserved CD0_IF 7 6 5 4 3 2 1 0 **SDDATO** CRCSTAT **CRC-16** CRC-7 CRC_IF BLKD_IF **Bits** Descriptions DAT1 Pin Status of SD0 (Read Only) [18] SD0DAT1 This bit is the DAT1 pin status of SD0. Card Detect Pin Status of SD0 (Read Only) This bit is the DAT3 pin status of SD0, and it is using for card detection. [16] **CDPSO** When there is a card inserted in or removed from SD0, software should check this bit to confirm if there is really a card insertion or remove. Data Input Time-out Interrupt Flag (Read Only) This bit indicates that SD host counts to time-out value when receiving data (waiting start bit). [13] DITO_IF

あ		1 = Data input time-out.
hi de		NOTE: This bit is read only, but can be cleared by writing $1'$ to it.
	132	Response Time-out Interrupt Flag (Read Only)
	NY SA	This bit indicates that SD host counts to time-out value when receiving response or R2 (waiting start bit).
[12]	RITO_IF	0 = Not time-out.
	1000	1 = Response time-out.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

0 = Not time-out



Bits	Descriptions			
		SDIO 0 Interrupt Flag (Read Only)		
[10]	SDI OO_IF	This bit indicates that SDIO card 0 issues an interrupt to host.		
		0 = No interrupt is issued by SDIO card 0.		
		1 = An interrupt is issued by SDIO card 0.		
		NOTE: This bit is read only, but can be cleared by writing '1' to it.		
		SD0 Card Detection Interrupt Flag (Read Only)		
[8]	CD0_IF	This bit indicates that SD card 0 is inserted or removed. Only if SDIER[CD0_IE] is set to 1, this bit is active.		
		0 = No card is inserted or removed.		
		1 = There is a card inserted in or removed from SD0.		
		NOTE: This bit is read only, but can be cleared by writing '1' to it.		
[7]		DATO Pin Status of Current Selected SD (Read Only)		
	SDDATO	This bit is the DATO pin status of current selected SD port.		
	CRCSTAT	CRC Status Value of Data-out Transfer (Read Only)		
		SD host will record CRC status of data-out transfer. Software could use this value to identify what type of error is during data-out transfer.		
[6:4]		010 = Positive CRC status.		
		101 = Negative CRC status		
		111 = SD card programming error occurs.		
12621		CRC-16 Check Status of Data-in Transfer (Read Only)		
100	CRC-16	SD host will check CRC-16 correctness after data-in transfer.		
[3]		0 = Fault.		
	2	1 = OK.		
[2]	CRC-7	CRC-7 Check Status (Read Only)		
		SD host will check CRC-7 correctness during each response in. If that response does not contain CRC-7 information (R3), then software should turn off SDIER[CRC_IE] and ignore this bit.		
		0 = Fault.		
		1 = OK.		



Bits	Descriptions	
		CRC-7, CRC-16 and CRC Status Error Interrupt Flag (Read Only)
[1]	CRC_IF	This bit indicates that SD host has occurred CRC error during response in, data-in or data-out (CRC status error) transfer. When CRC error is occurred, software should reset SD engine. Some response (ex. R3) doesn't have CRC-7 information with it; SD host will still calculate CRC-7, get CRC error and set this flag. In this condition, software should ignore CRC error and clears this bit manually.
		0 = No CRC error is occurred.
		1 = CRC error is occurred.
		NOTE: This bit is read only, but can be cleared by writing $1'$ to it.
		Block Transfer Done Interrupt Flag (Read Only)
[0]	BLKD_IF	<ul> <li>This bit indicates that SD host has finished data-in or data-out block transfer. If there is a CRC-16 error or incorrect CRC status during multiple block data transfer, the transfer will be broken and this bit will be set.</li> <li>0 = Not finished yet.</li> <li>1 = Done.</li> </ul>
		NOTE: This bit is read only, but can be cleared by writing '1' to it.





#### SD Receiving Response Token Register 0 (SDRSP0)

Regi	Register Addr		Address	R/W	Description				Reset	Reset Value	
SD	SDRSPO 0xB000_D030 R SD Receiving Response Token Regis				Token Regis	ster 0	0x0000	_0000			
						- 20				_	
	31		30	29	28	27	26	25	24		
					SD_RS	БР_ТКО	Va. VI	S			
	23	3	22	21	20	19	18	17	16		
					SD_RS	SP_ТКО		" Dr			
	15	5	14	13	12	11	10	9	8		
	SD_RSP_TK0										
	7		6	5	4	3	2	1	0		
					SD_RS	БР_ТКО		26	S.		
								100			

Bits	Descriptions				
		SD Receiving Response Token 0			
[31:0]	SD_RSP_TKO	SD host controller will receive a response token for getting a reply from SD card when SDCSR[RI_EN] is set. This field contains response bit 47-16 of the response token.			



#### SD Receiving Response Token Register 1 (SDRSP1)

Reg	Register		Address	R/W	Descriptior	ו			Reset \	/alue
SD	RSP1	0xE	3000_D034	R	SD Receiving	g Response	Token Regis	ster 1	0x0000_	_0000
						NO Y	N.Y.			
	31		30	29	28	27	26	25	24	
					Rese	rved	Va. VI	S		
	23	6	22	21	20	19	18	17	16	
					Rese	rved		" Dr		
	15	5	14	13	12	11	10	9	8	
	Reserved									
	7		6	5	4	3	2	1	0	
					SD_RS	P_TK1		26	N.	
								- Ch	0	_

Bits	Descriptions					
		SD Receiving Response Token 1				
[7:0]	SD_RSP_TK1	SD host controller will receive a response token for getting a reply from SD card when SDCSR[RI_EN] is set. This register contains the bit 15-8 of the response token.				





#### SD Block Length Register (SDBLEN) Register Address R/W Description **Reset Value** R/W 0x0000 01FF SDBLEN 0xB000 D038 SD Block Length Register Reserved Reserved Reserved **SDBLEN SDBLEN**

Bits	Descriptions	
		SD BLOCK LENGTH in Byte Unit
[8:0]	SDBLEN	A 9-bit value specifies the SD transfer byte count. The actual byte count is equal to SDBLEN+1.





#### SD Response/Data-in Time-out Register (SDTMOUT)

Regis	Register		set	R/W	Description			Reset	Value	
SDTM	10UT	0xE	3000_D03C	R/W	SD Respons	e/Data-in Ti	me-out Regi	ister	0x0000	0000_0
						20	N.Y.			
	31	I	30	29	28	27	26	25	24	
					Rese	erved	Va. US			
	23	3	22	21	20	19	18	17	16	
					SDTI	NOUT				
	15	5	14	13	12	11	10	9	8	
	SDTMOUT									
	7		6	5	4	3	2	1	0	
					SDT	NOUT		°O's	N/A	
									A 101	

Bits	Descriptions	
		SD Response/Data-in Time-out Value
[23:0]	SDTMOUT	A 24-bit value specifies the time-out counts of response and data input. SD host controller will wait start bit of response or data-in until this value reached. The time period is depended on SD engine clock frequency. Do not write a small number into this field, or you may never get response or data due to time-out. NOTE: Fill 0x0 into this field will disable hardware time-out function.





#### Memory Stick Control and Status Register (MSCSR)

Register	Address	R/W	Description	Reset Value
MSCSR	0xB000_D060	R/W	Memory Stick Control and Status Register	0x0000_0008

31	30	29	28	27	26	25	24
			Rese	erved	Carl L		
23	22	21	20	19	18	17	16
Rese	erved	MSPORT	DSIZE		DCNT		
15	14	13	12	11	10	9	8
	Rese	erved		TPC			
7	6	5	4	3	2	1	0
	Rese	erved		SERIAL	MSPRO	MS_GO	SW_RST
						1 1 V 1 V	(

Bits	Descriptions	
[24]		Memory Stick Port Selection
[21]	MSPORT	This bit should be set to 0
		Data Size for Transfer (for Memory Stick PRO Only)
		This field defines how many bytes should be transferred of following TPC codes. Data will be obtained from (stored in) DMAC's FIFO.
		READ_SHORT_DATA and WRITE_SHORT_DATA.
[20:19]	DSIZE	00 = 32 Bytes.
[20:15]	DOILL	01 = 64 Bytes.
		10 = 128 Bytes.
		11 = 256 Bytes.
		NOTE: This field is invalid when other TPC codes are executed.
22.2	8	Data Count Number (in Byte Unit)
	NY	This field defines how many bytes should be transferred of following TPC codes. Data will be obtained from (stored in) MSBUF1 and MSBUF2.
[10,16]	DONT	READ_REG, GET_INT, WRITE_REG, SET_R/W_REG_ADRS, SET_CMD and EX_SET_CMD.
[18:16]	DCNT	For example, when software wants to use SET_R/W_REG_ADRS, you should write 0x4 into this field; when you want to use SET_CMD, you should write 0x1 into this field, etc.
	19	NOTE: Value 0x0 means 8 bytes should be transferred, and it is the largest length this core can provide.



		TPC Code of the Packet
[11:8]	ТРС	This field defines the TPC code of the packet which software wants to transfer. This core supports all TPC code of Memory Stick and Memory Stick PRO specification. The lower 4 bits of TPC (TPC Check Code) will be generated by hardware automatically.
		Serial or Parallel Mode
[3]	SERIAL	0 = MS host is working at parallel mode.
		1 = MS host is working at serial mode (Default).
		Memory Stick or Memory Stick PRO
[2]	MSPRO	0 = Type of the card is Memory Stick.
		1 = Type of the card is Memory Stick PRO.
		Trigger Memory Stick Core to Transfer Packet
		0 = Writing 0 to this bit has no effect.
[1]	MS_GO	1 = Trigger Memory Stick core to transfer packet. When TPC code is READ_REG, GET_INT, WRITE_REG, SET_R/W_REG_ADRS, SET_CMD or EX_SET_CMD, data will be obtained from (stored in) MSBUF1 and MSBUF2. When TPC code is READ_LONG_DATA (READ_PAGE_DATA), READ_SHORT_DATA, WRITE_LONG_DATA (WRITE_PAGE_DATA) or WRITE_SHORT_DATA, data will be obtained from (stored in) DMAC's FIFO.
		Software Engine Reset
		0 = Writing 0 to this bit has no effect.
[0]	SW_RST	<ul> <li>1 = Writing 1 to this bit will reset the internal state machine and counters. The contents of control register will not be cleared. This bit will be auto cleared after few clock cycles.</li> </ul>



#### Memory Stick Interrupt Control Register (MSIER)

Register	Address	R/W	Description	Reset Value
MSIER	0xB000_D064	R/W	Memory Stick Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved					Reserved	CD0_IE
15	14	13	12	11	10	9	8
			Re	served		and the	
7	6	5	4	3	2	1	0
	Reserved		CRC_IE	BSYTO_IE	INTTO_IE	MSINT_IE	PKT_IE
						1 A V A.	Contra la

Bits	Descriptions	
		MS Card Detection 0 Interrupt Enable
[16]	CD0_IE	Enable/Disable Interrupt generation of MS controller when card 0 is inserted or removed.
		0 = Disable. 1 = Enable.
		CRC-16 Error Interrupt Enable
[4]	CRC_IE	0 = the core will not generate interrupt when CRC-16 is error.
		1 = the core will generate interrupt when CRC-16 is error.
		Busy to Ready Check Timeout Interrupt Enable
[3]	[3] BSYTO_IE	0 = Disable Busy to Ready check timeout interrupt.
PS .		1 = Enable Busy to Ready check timeout interrupt.
12 2		INT Response Timeout Interrupt Enable
[2]	[2] <b>INTTO_IE</b>	0 = Disable INT response timeout interrupt generation.
× C	NY	1 = Enable INT response timeout interrupt generation.
X	12 22	Memory Stick Card's Interrupt Enable
	Contra	0 = the core will not generate interrupt when MS card generates INT.
[1]	MSINT_IE	1 = the core will generate interrupt when MS card generates INT.
[-]		<b>NOTE</b> : Software should set MSIER[INTTO_IE] to '1' to enable INT detection function of the core, and set this bit to '1' if you want to get INT from MS card.
[0]		Packet Transfer Done Interrupt Enable
[0]	PKT_IE	0 = the core will not generate interrupt when packet transfer is done.



Bits	Descriptions	
		1 = the core will generate interrupt when packet transfer is done.





#### Memory Stick Interrupt Status Register (MSISR)

Register	Address	R/W	Description	Reset Value
MSISR	0xB000_D068	R/W	Memory Stick Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						CD0_
23	22	21	20	19	18	17	16
	Reserved				Silo	Reserved	CD0_IF
15	14	13	12	11	10	9	8
	Res	erved		CMDNK	BREQ	ERR	CED
7	6	5	4	3	2	1	0
	Reserved		CRC_IF	BSYTO_IF	INTTO_IF	MSINT_IF	PKT_IF

Descriptions	
	Pin Status of MS Card Detection 0 (Read Only)
CDO_	This is the pin status of MS card detection 0. When there is a card for insertion or removal, software should check this bit to confirm if it is really a card insertion or removal.
	NOTE: Software should perform de-bounce for card detection function.
	MS Card Detection 0 Interrupt Flag (Read Only)
	This bit indicates that MS card 0 is inserted or removed. Only if MSIER[CD0_IE] is set, this bit is active; otherwise, this bit is invalid.
CD0_IF	0 = No card is inserted or removed.
	1 = There is a card inserted in or removed from MS0.
	NOTE: This bit is read only, but can be cleared by writing $1'$ to it.
4	INT Status of Memory Stick PRO (Read Only)
CMDNK BREQ ERR CED	These 4 bits indicates the INT status of Memory Stick PRO card (only for parallel mode). When MSIER[INTTO_IE] is set, the core will wait for INT signal from card. If the card is working at parallel mode; after INT is occurred (MSISR[MSINT_IF] is set), the contents of INT register can be informed by these bits.
	NOTE: These bits are valid in parallel mode only.
N.	CRC-16 Error Interrupt Flag (Read Only)
CRC_IF	When the packet transfer is done, the core will compare the value of CRC-16 which it calculated and received. If CRC-16 value is not the same, this flag will be set. The comparison executes only for READ packet.
	0 = CRC-16  ok.
	CDO_IF CDO_IF CMDNK BREQ ERR CED



Bits	Descriptions	
		1 = CRC-16 failed.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		Busy to Ready Check Timeout Interrupt Flag (Read Only)
[3]	BSYTO_IF	This bit indicates that the core cannot detect RDY signal on DATA[0] pin during Handshake State. It means some errors are occurred during packet transfer. The maximum timeout duration for RDY signal is 16 SCLKs.
[5]	BSTIC_IF	0 = No RDY timeout occurred.
		1 = RDY timeout occurred.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		INT Response Timeout Interrupt Flag (Read Only)
[2]	INTTO_IF	This bit indicates that the core cannot detect INT signal of MS card after a period of time. In Memory Stick, the maximum period is 100ms. In Memory Stick PRO, the maximum period is 3500ms. If INT timeout is occurred, it means the card maybe malfunction.
		0 = INT detection is not timeout.
		1 = INT detection is timeout, no INT signal occurred.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		Memory Stick Card's Interrupt Flag (Read Only)
[1]	MSINT_IF	Memory Stick will generate INT signal after some TPC codes are executed, ex. SET_CMD. This bit indicates that Memory Stick has generated INT signal after TPC code execution. This core will check INT for software only when MSIER[INTTO_IE] is set to '1', or this bit is invalid.
-Ste		0 = No INT signal is detected.
57.		1 = INT signal is detected.
12	2	NOTE: This bit is read only, but can be cleared by writing '1' to it.
S.	No.	Packet Transfer Done Interrupt Flag (Read Only)
N.	ar a	This bit indicates that the whole packet transfer is done. The four states of Memory Stick are BS1, BS2, BS3 and BS0.
[0]	PKT_IF	0 = Packet transfer is not done yet.
	C D	1 = Packet transfer is done.
	Sh	NOTE: This bit is read only, but can be cleared by writing '1' to it.

**NOTE**: No matter interrupt is enable or not, the interrupt flag is set when target condition is occurred.

## 32-BIT ARM926EJS-BASED MCU

Memory Stick Register Buffer 1 (MSBUF1)

Memory Stick Register Buffer 2 (MSBUF2)

Register	Address	R/W	Description	Reset Value
MSBUF1 MSBUF2	0xB000_D06C 0xB000_D070	R/W	Memory Stick Register Buffer 1 Memory Stick Register Buffer 2	0x0000_0x0000

31	30	29	28	27	26	25	24
			DATA[	31:24]	50	Sh	
23	22	21	20	19	18	17	16
			DATA[	23:16]	.0	20 0	
15	14	13	12	11	10	9	8
			DATA	[15:8]		400	12
7	6	5	4	3	2	1	0
			DATA	[7:0]		No.	2
						0	ZAN O

Bits Descriptions Data Content of Packet Transfer This field contains the data of READ/WRITE TPC codes. When software uses following TPC codes, data will be obtained from (stored in) this field. READ REG, GET INT, WRITE REG, SET R/W REG ADRS, SET CMD and EX SET CMD. This core will always send (store) data from MSB of MSBUF2. For example, if software wants to WRITE a packet with 1 byte data, you should put the data at MSBUF2[31:24] and write 0x1 into MSCSR[DCNT] then trigger the core. The order of transfer will be MSBUF2[31], MSBUF2[30] ..., MSBUF2[24]. If you want to WRITE a packet with 6 bytes data, you should put the data at MSBUF2[31:0] and MSBUF1[31:16] and write 0x6 into MSCSR[DCNT] then trigger the core. The order of transfer will be MSBUF2[31:24], ... [31:0] DATA MSBUF2[7:0], MSBUF1[31:24], MSBUF1[23:16]. The same order will be applied to READ packet. MSBUF1 MSBUF2 BYTE 5 BYTE 1 BYTE 6 BYTE 2 BYTE 7 BYTE 3 BYTE 4 BYTE 8

## 6.11 UART Controller

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data characters received from the peripheral, and a parallel-to-serial conversion on data characters received from the CPU. There is only one UART blocks and accessory logic in this chip.

UARTO is a general UAR	T block without Mod	dem I/O signals.
------------------------	---------------------	------------------

UARTO	$((f_{1}, \forall ))_{n}$
Clock Source	External Crystal
UART Type	General UART
FIFO Number	16-byte receiving FIFO and 16 byte transmitting FIFO
Modem Function	None
Accessory Function	None
I/O pin	TXD0, RXD0

## 6.11.1 UART Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description	Condition	Reset Value
UARTO : UA	ART_BA = 0xB800	_0000			
RBR	0xB800_0100	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0xB800_0100	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0xB800_0104	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0xB800_0100	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0xB800_0104	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0xB800_0108	R	Interrupt Identification Register		0x8181_8181
FCR	0xB800_0108	W	FIFO Control Register		Undefined
LCR	0xB800_010C	R/W	Line Control Register		0x0000_0000
LSR	0xB800_0114	R	Line Status Register		0x6060_6060
TOR	0xB800_011C	R/W	Time Out Register		0x0000_0000



### **Receive Buffer Register (RBR)**

Register	Offset	R/W	Description	Reset Value
RBR	0XB800_0x00	R	Receive Buffer Register (DLAB = 0)	Undefined

7	6	5	4	3	2	1	0
			8-bit Rece	eived Data	- K	- And	

Bits		Descriptions
[7:0]	8-bit Received Data	By reading this register, the UART will return an 8-bit data received from SIN pin (LSB first).

#### Transmit Holding Register (THR)

Register	offset	R/W	Description				Re	set Value	
THR	0XB800_0x00	W	Transmit Holdir	Transmit Holding Register (DLAB = 0)				Undefined	
Sec.									
7	6	5	4	3	2	1		0	
20	8-bit Transmitted Data								

Bits		Descriptions
[7:0 ]	8-bit Transmitte d Data	By writing to this register, the UART will send out an 8-bit data through the SOUT pin (LSB first).
	- K	S L
		Publication Release Date: Jun 18, 2010 266 Revision: A5



### Interrupt Enable Register (IER)

Register	offset	R/W	Description	Reset Value
IER	0XB800_0x04	R/W	Interrupt Enable Register (DLAB = 0)	0x0000.0000

7	6	5	4	3	2	1	0
	RESERVED				RLSIE	THREIE	RDAIE

[3]       MODEM Status Interrupt (Irpt_MOS) Enable         0 = Mask off Irpt_MOS         1 = Enable Irpt_MOS         [2]       RLSIE         Receive Line Status Interrupt (Irpt_RLS) Enable         0 = Mask off Irpt_RLS         1 = Enable Irpt_THRE         1 = Enable Irpt_THRE         1 = Enable Irpt_THRE
[2]       RLSIE       0 = Mask off Irpt_RLS         1 = Enable Irpt_RLS       1 = Enable Irpt_RLS         [1]       THREIE       0 = Mask off Irpt_THRE
[1] <b>THREIE</b> 0 = Mask off Irpt_THRE
[0] RDAIE Receive Data Available Interrupt (Irpt_RDA) Enable and Time-out Interrupt (Irpt_TOUT) Enable 0 = Mask off Irpt_RDA and Irpt_TOUT 1 = Enable Irpt_RDA and Irpt_TOUT



#### Divider Latch (Low Byte) Register (DLL)

Register	Offset	R/W	Description	Reset Value
DLL	0XB800_0x00	R/W	Divisor Latch Register (LS) (DLAB = 1)	0x0000_0000

7	6	5	4	3	2	1	0
		Ba	ud Rate Divi	der (Low By	te)	- A	

Bits		Descriptions	
[7:0]	Baud Rate Divisor (Low Byte)	The low byte of the baud rate divider	SAN D

#### Divisor Latch (High Byte) Register (DLM)

Register	Offset	R/W	Description			Reset Value		
DLM	0XB800_0x04	R/W	Divisor Latch Register (MS) (DLAB = 1)				0x0000_0000	
2. 20								
7	6         5         4         3         2         1         0					0		
S.	Baud Rate Divider (High Byte)							

Bits	Descriptions						
[7:0]	Baud Rate Divisor (High Byte)	The high byte of the baud rate divider					

This 16-bit divider {DLM, DLL} is used to determine the baud rate as follows

Baud Rate = Crystal Clock / {16 * [Divisor + 2]}

Note: This definition is different from 16550



### Interrupt Identification Register (IIR)

Register	Offset	R/W	Description	Reset Value
IIR	0XB800_0x08	R	Interrupt Identification Register	0x8181_8181

					6111 61		
7	6	5	4	3	2	1	0
FMES	RFTLS		DMS	IID			NIP

[7]		ons						
[7]		FIFO Mode Enable Status						
	FMES	This bit indicates whether the FIFO mode is enabled or not. Since the FIFO mode is always enable, this bit always shows the logical 1 when CPU is reading this register.						
		Rx FIFO Threshold Level Status						
[6:5]	RFTLS	These bits show the current setting of receiver FIFO threshold level (RTHO). The meaning of RTHO is defined in the following FCR description.						
		DMA Mode Select						
[4]	DMS	The DMA function is not implemented in this version. When reading IIR, the DMS is always returned 0.						
[2,1]		Interrupt Identification						
[3:1]	1] <b>IID</b> The IID together with NIP indicates the current interrupt request from U							
[0]	NIP	No Interrupt Pending						
[0]	NIP	There is no pending interrupt.						



#### **Interrupt Control Functions**

IIR [3:0]	Priority	Interrupt Type	Interrupt Source	Interrupt Reset control
1		None	None	
0110	Highest	Receiver Line Status (Irpt_RLS)	Overrun error, parity error, framing error, or break interrupt	Reading the LSR
0100	Second	Received Data Available (Irpt_RDA)	Receiver FIFO threshold level is reached	Receiver FIFO drops below the threshold level
1100	Second	Receiver FIFO Time- out (Irpt_TOUT)	Receiver FIFO is non- empty and no activities are occurred in the receiver FIFO during the TOR defined time duration	Reading the RBR
0010	Third	Transmitter Holing Register Empty (Irpt_THRE)	Transmitter holding register empty	Reading the IIR (if source of interrupt is Irpt_THRE) or writing into the THR
0000	Fourth	MODEM Status (Irpt_MOS)	The CTS bits are changing state.	Reading the MSR (optional)

Note: These definitions of bit 7, bit 6, bit 5, bit 4 are different from the 16550.



## FIFO Control Register (FCR)

Register	Offset	R/W	Description	Reset Value
FCR	0XB800_0x08	W	FIFO Control Register	Undefined

7	6	5	4	3	2	1	0
RFITL				DMS	TFR	RFR	FME
						alla	

Bits	Descripti	ons						
		Rx FIFO	Interrupt Trig	ger Level				
			RFITL [7:4]	Trigger Level				
[7:4]	RFITL	UARTO	00xx	01 bytes	SVP O			
			01xx	04 bytes				
			10xx	08 bytes				
			11xx	14 bytes				
[3]	DMS	DMA Moo The DMA		implemente	d in this version.			
[2]	TFR	Setting the becomes	<b>Tx FIFO Reset</b> Setting this bit will generate an OSC cycle reset pulse to reset Tx FIFO. The Tx FIFO becomes empty (Tx pointer is reset to 0) after such reset. This bit is returned to 0 automatically after the reset pulse is generated.					
[1]	RFR	becomes	is bit will gene	nter is rese	C cycle reset pulse to reset Rx FIFO. The Rx FIFO to 0) after such reset. This bit is returned to 0 generated.			
[0]	FME	Because while rea	ding always ge	ts logical o	in the FIFO mode, writing this bit has no effect ne. This bit must be 1 when other FCR bits are be programmed.			
		No.	NON NON	271	Publication Release Date: Jun 18, 2010 Revision: A5			



#### Line Control Register (LCR)

Register	offset	R/W	Description	Reset Value
LCR	0XB800_0x0C	R/W	Line Control Register	0x0000_0000

7	6	5	4	3	2	1	0
DLAB	BCB	SPE	EPE	PBE	NSB	N G W	LS

Bits		Descriptions
[ ] ]	DLAD	Divider Latch Access Bit
[7]	DLAB	0 = It is used to access RBR, THR or IER.
		1 = It is used to access Divisor Latch Registers {DLL, DLM}.
5.67		Break Control Bit
[6]	BCB	When this bit is set to logic 1, the serial data output (SOUT) is forced to the Spacing State (logic 0). This bit acts only on SOUT and has no effect on the transmitter logic
		Stick Parity Enable
	005	0 = Disable stick parity
[5]	[5] <b>SPE</b>	1 = Parity bit is transmitted and checked as a logic 1 if bit 4 is 0 (odd parity), or as a logic 0 if bit 4 is 1 (even parity). This bit has effect only when bit 3 (parity bit enable) is set.
1		Even Parity Enable
[4]	EPE	0 = Odd number of logic 1's are transmitted or checked in the data word and parity bits.
		1 = Even number of logic 1's are transmitted or checked in the data word and parity bits.
	CO.Y	This bit has effect only when bit 3 (parity bit enable) is set.
		Publication Release Date: Jun 18, 201272Revision: A



r			P -					
		Parity Bit Enable						
[3]	PBE	0 = Parity bit is not generated (transmit data) or checked (receive data) during transfer.						
		1 = Parity bit is g of the serial of		ween the "last data word bit" and "stop bit"				
		Number of "STC	)P bit"	Contra				
		0= One " STOP b	it" is generated in the tra	ansmitted data				
[2]	NSB	1= One and a half "STOP bit" is generated in the transmitted data when 5-bit word length is selected;						
		Two "STOP bit" is generated when 6-, 7- and 8-bit word length is selected.						
		Word Length Se	elect	92.12				
		WLS[1:0]	Character length	13×10				
[1:0]	WLS	00	5 bits	25				
		01	6 bits	1				
		10	7 bits	1				
		11	8 bits	]				





#### Line Status Control Register (LSR)

Register	Offset	R/W	Description	Reset Value
LSR	0XB800_0x14	R	Line Status Register	0x6060_6060

7	6	5	4	3	2	1	0
ERR_Rx	TE	THRE	BH	FEI	PEI	OEI	RFDR
					200	Ca	

Bits	Descriptions								
		Rx FIFO Error							
		0 = Rx FIFO works normally							
[7]	ERR_Rx	1 = There is at least one parity error (PE), framing error (FE), or break indication (BI) in the FIFO. ERR_Rx is cleared when CPU reads the LSR and if there are no subsequent errors in the Rx FIFO.							
		Transmitter Empty							
[6]	TE	0 = Either Transmitter Holding Register ( <b>THR</b> - Tx FIFO) or Transmitter Shift Register ( <b>TSR</b> ) are not empty.							
		1 = Both THR and TSR are empty.							
		Transmitter Holding Register Empty							
		0 = THR is not empty.							
[5]	THRE	1 = THR is empty.							
教		THRE is set when the last data word of Tx FIFO is transferred to Transmitter Shift Register (TSR). The CPU resets this bit when the THR (or Tx FIFO) is loaded. This bit also causes the UART to issue an interrupt (Irpt_THRE) to the CPU when IER [1]=1.							
20	6	Break Interrupt Indicator							
[4]	BH	This bit is set to a logic 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and is reset whenever the CPU reads the contents of the LSR.							
		Publication Release Date: Jun 18, 2010							



		Framing Error Indicator				
[3]	FEI	This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0), and is reset whenever the CPU reads the contents of the LSR.				
		Parity Error Indicator				
[2] <b>PEI</b>		This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU reads the contents of the LSR.				
		Overrun Error Indicator				
[1]	OEI	An overrun error will occur only after the Rx FIFO is full and the next character has been completely received in the shift register. The character in the shift register is overwritten, but it is not transferred to the Rx FIFO. OE is indicated to the CPU as soon as it happens and is reset whenever the CPU reads the contents of the LSR.				
		Rx FIFO Data Ready				
[0]	RFDR	0 = Rx FIFO is empty				
		1 = Rx FIFO contains at least 1 received data word.				

LSR [4:2] (BII, FEI, PEI) are revealed to the CPU when its associated character is at the top of the Rx FIFO. These three error indicators are reset whenever the CPU reads the contents of the LSR.

LSR [4:1] (BII, FEI, PEI, OEI) are the error conditions that produce a "receiver line status interrupt" (Irpt_RLS) when IER [2]=1. Reading LSR clears Irpt_RLS. Writing LSR is a null operation (not suggested).



#### **Time-Out Register (TOR)**

Register	offset	R/W	Description	Re	set Value
TOR	0XB800_0x1C	R/W	Time Out Register	0x0	0000_0000
			VQL 45		
_		_			_

7	6	5	4	3	2	1	0
TOIE				τοις	Sh	"Gr	

Bits	Descriptions						
[7]	τοιε	<b>Time Out Interrupt Enable</b> The feature of receiver time out interrupt is enabled only when TOR [7] = IER[0] = 1.					
[6:0]	тоіс	<b>Time Out Interrupt Comparator</b> The time out counter resets and starts counting (the counting clock = baud rate) whenever the Rx FIFO receives a new data word. Once the content of time out counter (TOUT_CNT) is equal to that of time out interrupt comparator (TOIC), a receiver time out interrupt (Irpt_TOUT) is generated if TOR [7] = IER [0] = 1. A new incoming data word or Rx FIFO empty clears Irpt_TOUT.					



## 32-BIT ARM926EJS-BASED MCU

## 6.12 TIMER Controller

## 6.12.1 General Timer Controller

The timer module includes five channels, TIMER0~TIMER4, they can easily be implemented as counting scheme. The timer can perform functions like frequency measurement, event counting, interval measurement, pulse generation, delay timing, and so on. The timer possesses features such as adjustable resolution, programmable counting period, and detailed information. The timer can generate an interrupt signal upon timeout, or provide the current value of count during operation.

The general TIMER Controller includes the following features

- Five channels with a 24-bit down counter and an interrupt request each
- Independent clock source for each channel
- Maximum uninterrupted time = (1 / 15 MHz) * (255) * (2^24 1), if TCLK = 15 MHz



## 32-BIT ARM926EJS-BASED MCU

## 6.12.2 Timer Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address		Description	Reset Value
TMR_BA =	0xB800_1000		AND ST	
TCSRO	0xB800_1000	R/W	Timer Control and Status Register 0	0x0000_0005
TCSR1	0xB800_1004	R/W	Timer Control and Status Register 1	0x0000_0005
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_0000
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_0000
TDRO	0xB800_1010	R	Timer Data Register 0	0x0000_0000
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_0000
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000
TCSR2	0xB800_1020	R/W	Timer Control and Status Register 2	0x0000_0005
TCSR3	0xB800_1024	R/W	Timer Control and Status Register 3	0x0000_0005
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_0000
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_0000
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_0000
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_0000
TCSR4	0xB800_1040	R/W	Timer Control and Status Register 4	0x0000_0005
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_0000
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_0000

## 32-BIT ARM926EJS-BASED MCU

#### **Reset Value** Register Address **R/W/C** Description R/W TCSRO 0xB800_1000 Timer Control and Status Register 0 0x0000_0005 R/W TCSR1 0xB800_1004 Timer Control and Status Register 1 0x0000_0005 R/W TCSR2 0xB800_1020 Timer Control and Status Register 2 0x0000_0005 R/W TCSR3 0xB800_1024 Timer Control and Status Register 3 0x0000_0005 R/W TCSR4 0xB800_1040 Timer Control and Status Register 4 0x0000_0005

Timer Con	trol and St	atus Registe	r 0~4 (TCI	RO~TCR4)
				Rd 7 (D.)
<b>I - ·</b> ·				

							~ ^ ^ · · · · · · · · · · · · · · · · ·
31	30	29	28	27	26	25	24
RESERVED	CE	IE	MC	DE	CRST	САСТ	RESERVED
23	22	21	20	19	18	17	16
			RES	SERVED			5
15	14	13	12	11	10	9	8
RESERVED							
7	6	5	4	3	2	1	0
PRESCALE							

	Bits	Descriptions						
	[30]	CE	Counter Enable 0 = Stops counting 1 = Starts counting					
0	[29]	IE Interrupt Enable 0 = Disables timer interrupt 1 = Enables timer interrupt. If timer interrupt is enabled, the timer asserts interrupt signal when the associated counter decrements to zero.						
	×		3 martin and a start of the sta					
			Publication Release Date: Jun 18, 2010 279 Revision: A5					

## 32-BIT ARM926EJS-BASED MCU

		Timer Operating	Mode
		MODE [28:27]	Timer Operating Mode
		00	The timer is operating in the one-shot mode. The associated interrupt signal is generated once (if IE is enabled) and CE is automatically cleared then.
[28:27]	MODE	01	The timer is operating in the periodic mode. The associated interrupt signal is generated periodically (if IE is enabled).
		10	The timer is operating in the toggle mode. The associated interrupt signal is changing back and forth (if IE is enabled) with 50% duty cycle.
		11	Reserved for further use
[26]	CRST	0 = No effect.	set the TIMER counter, and also force CEN to 0.
[25]	САСТ	Timer is in Activ	ve the counter status of timer. active.
[7:0]	PRESCALE		<b>Divide Count</b> ided by PRESCALE + 1 before it is fed to the counter (here sidered as a decimal number). If PRESCALE = 0, then there is



#### Timer Initial Count Register 0~4 (TICR0~TICR4)

Register	Address	R/W/C	Description	Reset Value
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_00FF
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_00FF
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_00FF
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_00FF
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_00FF

31	30	29	28	27	26	25	24
			RESE	RVED		0	~~~~
23	22	21	20	19	18	17	16
			TIC[2	3:16]			53.5
15	14	13	12	11	10	9	8
			TIC[	15:8]			24
7	6	5	4	3	2	1	0
			TIC[	7:0]			

Ĩ	Bits		Descriptions
	. Clo		<b>Timer Initial Count</b> This is a 24-bit value representing the initial count. Timer will reload this value whenever the counter is decremented to zero.
2	[23:0]	TIO	NOTE:
9	[25.0]	TIC	(1) Never write 0x0 in TIC, or the core will run into unknown state.
		N.	(2) No matter CEN is 0 or 1, whenever software write a new value into this register, Timer will restart counting using this new value and abort previous count.
			Publication Release Date: Jun 18, 2010

## 32-BIT ARM926EJS-BASED MCU

#### Timer Data Register 0~4 (TDR0~TDR4)

Register	Address	R/W/C	Description	Reset Value
TDRO	0xB800_1010	R	Timer Data Register 0	0x0000_00FF
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_00FF
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_00FF
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_00FF
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_00FF

31	30	29	28	27	26	25	24
51	30	27	20	27	20	23	24
			RESE	RVED		(O)	~~~~
23	22	21	20	19	18	17	16
			TDR[2	23:16]		0	53.5
15	14	13	12	11	10	9	8
			TDR[	15:8]			24
7	6	5	4	3	2	1	0
			TDR	[7:0]			

en CEN =
٦e

#### Timer Interrupt Status Register (TISR)

Register	Address	R/W/C	Description	Reset Value
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000
			YOR STOR	

					Val Links		
31	30	29	28	27	26	25	24
			RESE	RVED	°O2	20	
23	22	21	20	19	18	17	16
			RESE	RVED		200 7	2
15	14	13	12	11	10	9	8
			RESE	RVED		Les .	20
7	6	5	4	3	2	1	0
	RESERVED	1	TIF4	TIF3	TIF2	TIF1	TIFO

Bits		Descriptions
[4]	TIF4	<ul> <li>Timer Interrupt Flag 4</li> <li>0 = It indicates that the timer 4 does not count down to zero yet. Software can reset this bit after the timer interrupt 4 had occurred.</li> <li>1 = It indicates that the counter of timer 4 is decremented to zero;</li> </ul>
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
[3]	TIF3	<ul> <li>Timer Interrupt Flag 3</li> <li>0 = It indicates that the timer 3 does not count down to zero yet. Software can reset this bit after the timer interrupt 3 had occurred.</li> <li>1 = It indicates that the counter of timer 3 is decremented to zero;</li> </ul>
	P	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
[2]	TIF2	<ul> <li>Timer Interrupt Flag 2</li> <li>0 = It indicates that the timer 2 does not count down to zero yet. Software can reset this bit after the timer interrupt 2 had occurred.</li> <li>1 = It indicates that the counter of timer 2 is decremented to zero;</li> </ul>
	-92-92	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
		Publication Release Date: Jun 18, 2010 283 Revision: AS



[1]	TIF1	<ul> <li>Timer Interrupt Flag 1</li> <li>0 = It indicates that the timer 1 does not count down to zero yet. Software can reset this bit after the timer interrupt 1 had occurred.</li> <li>1 = It indicates that the counter of timer 1 is decremented to zero;</li> <li>NOTE: This bit is read only, but can be cleared by writing 1 to this bit.</li> </ul>
[0]	TIFO	<ul> <li>Timer Interrupt Flag 0</li> <li>0 = It indicates that the timer 0 does not count down to zero yet. Software can reset this bit after the timer interrupt 0 had occurred.</li> <li>1 = It indicates that the counter of timer 0 is decremented to zero;</li> <li>NOTE: This bit is read only, but can be cleared by writing 1 to this bit.</li> </ul>





## 32-BIT ARM926EJS-BASED MCU

#### **Advanced Interrupt Controller** 6.13

An *interrupt* temporarily changes the sequence of program execution to react to a particular event such as power failure, transmit/receive request from Ethernet MAC Controller, and so on. The CPU processor provides two modes of interrupt, the Fast Interrupt (FIQ) mode for critical session and the Interrupt (IRQ) mode for general purpose. The IRQ request is occurred when the nIRQ input is asserted. Similarly, the FIQ request is occurred when the nFIQ input is asserted. The FIQ has privilege over the IRQ and can preempt an ongoing IRQ. It is possible to ignore the FIQ and the IRQ by setting the F and I bits in the current program status register (CPSR).

The Advanced Interrupt Controller (AIC) is capable of processing the interrupt requests up to 31 different sources. Currently, 13 interrupt sources are defined. Each interrupt source is uniquely assigned to an *interrupt channel*. The AIC implements a proprietary eight-level priority scheme that categories the available 13 interrupt sources into eight priority levels. Interrupt sources within the priority level 0 is the highest priority and the priority level 7 is the lowest. In order to make this scheme work properly, a certain priority level must be specified to each interrupt source during power-on initialization; otherwise, the system shall behave unexpectedly. Within each priority level, interrupt source that is positioned in a lower channel has a higher priority. Interrupt source that is active, enabled, and positioned in the lowest channel with priority level 0 is promoted to the FIQ. Interrupt sources within the priority levels other than 0 are routed to the IRQ. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is performed automatically by the AIC.

Though interrupt sources originated from the chip itself are intrinsically high-level sensitive, the AIC can be configured as either low-level sensitive, high-level sensitive, negative-edge triggered, or positive-edge triggered to each interrupt source.

The advanced interrupt controller includes the following features:

- External interrupts can be programmed as either edge-triggered or level-sensitive
- External interrupts can be programmed as either low-active or high-active
- Flags to reflect the status of each interrupt source •
- Individual mask for each interrupt source
- Proprietary 8-level interrupt scheme to employ the priority scheme.
- Priority methodology is adopted to allow for interrupt daisy-chaining
- Automatically masking out the lower priority interrupt during interrupt nesting
- Automatically clearing the interrupt flag when the external interrupt source is programmed to be edge-JL triggered

## 32-BIT ARM926EJS-BASED MCU

Priority	Name	Mode	Source
1 (Highest)		7	Reserved
2	nIRQ_Group0	Positive Level	External Interrupt Group (
3	nIRQ_Group1	Positive Level	ICE COMMTX/RX Interrup
4			Reserved
5			Reserved
6			Reserved
7	UART_INTO	Positive Level	UART Interrupt0
8			Reserved
9			Reserved
10			Reserved
11			Reserved
12	T_INTO	Positive Level	Timer Interrupt 0
13	T_INT1	Positive Level	Timer Interrupt 1
14	T_INT_Group	Positive Level	Timer Interrupt Group
15	USBH_INT_Group	Positive Level	USB Host Interrupt Group
16	EMCTx_INT	Positive Level	EMC Tx Interrupt
17	EMCRx_INT	Positive Level	EMC Rx Interrupt
18	GDMA_INT_Group	Positive Level	GDMA Interrupt Group
19	DMAC_INT	Positive Level	DMAC Interrupt
20	FMI_INT	Positive Level	FMI Interrupt
21	USBD_INT	Positive Level	USB Device Interrupt
22			Reserved
23			Reserved
24			Reserved
25			Reserved
26			Reserved
27			Reserved
28			Reserved
29			Reserved
30			Reserved
31			Reserved

Interrupt Group	Interrupt Sources		
External Interrupt Group 0	External Pins : nIRQ[1:0]		
External Interrupt Group 1	ICE Signals : COMMRX,COMMTX		
Timer Interrupt Group	TIMER2, TIMER3, and TIMER4		
USB Host Interrupt Group	OHCI and EHCI USB Host Controller		
GDMA Interrupt Group	GDMA0 and GDMA1		

## 32-BIT ARM926EJS-BASED MCU

## 6.13.1 AIC Registers Map

Register	Address	R/W	- Description	Reset Value
AIC_BA = OxE				
AIC_SCR2		R/W	Source Control Register 2	0x0000_0047
AIC_SCR3	0xB800_200C	R/W	Source Control Register 3	0x0000_0047
AIC_SCR7		R/W	Source Control Register 7	0x0000_0047
AIC_SCR12		R/W	Source Control Register 12	0x0000_0047
AIC_SCR13		R/W	Source Control Register 13	0x0000_0047
AIC_SCR14		R/W	Source Control Register 14	0x0000_0047
AIC_SCR15	0xB800_203C	R/W	Source Control Register 15	0x0000_0047
AIC_SCR16	0xB800_2040	R/W	Source Control Register 16	0x0000_0047
AIC_SCR17	0xB800_2044	R/W	Source Control Register 17	0x0000_0047
AIC_SCR18	0xB800_2048	R/W	Source Control Register 18	0x0000_0047
AIC_SCR19	0xB800_204C	R/W	Source Control Register 19	0x0000_0047
AIC_SCR20	0xB800_2050	R/W	Source Control Register 20	0x0000_0047
AIC_SCR21	0xB800_2054	R/W	Source Control Register 21	0x0000_0047
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000
AIC_GSCR	0xB800_208C	W/R	Interrupt Group Status Clear Register	0x0000_0000
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	N/A
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	N/A

#### AIC Source Control Registers (AIC_SCR1 ~ AIC_SCR29)

Register	Address	R/W	Description	Reset Value
AIC_SCR2	0xB800_2008	R/W	Source Control Register 2	0x0000_0047
•••	• • •	• • •		•••
AIC_SCR21	0xB800_2054	R/W	Source Control Register 21	0x0000_0047

31	30	29	28	27	26	25	24
RESERVED						20	32
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
RESERVED							5
7	6	5	4	3	2	1	0
SRC	SRCTYPE RESERVED		PRIORITY				

Bits	Descriptions						
北		<b>Interrupt Source Type</b> Whether an interrupt source is considered active or not by the AIC is subject to the settings of this field. Interrupt sources should be configured as level sensitive during normal operation unless in the testing situation.					
[7:6]	[7:6] SRCTYPE	SRCTYPE [7:6]		Interrupt Source Type			
		0	0	Low-level Sensitive			
SU.	20	0	1	High-level Sensitive			
×.	the aver	1	0	Negative-edge Triggered			
	G. F.	1	1	Positive-edge Triggered			
[2:0]	PRIORITY	<b>Priority Level</b> Every interrupt source must be assigned a priority level during initiation. Among them, priority level 0 has the highest priority and priority level 7 the lowest. Interrupt sources with priority level 0 are promoted to FIQ. Interrupt sources with priority level other than 0 belong to IRQ. For interrupt sources of the same priority level, which located in the lower channel number has higher priority.					

#### External Interrupt Control Register (AIC_IROSC)

Register	Address	R/W	Description	Reset Value
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000

					1.221				
31	30	29	28	27	26	25	24		
RESERVED									
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
			RESE	RVED		2	202		
7	6	5	4	3	2	1	0		
RESERVED				nll	RQ1	nIR	200		

Bits	Descriptions							
		External	Interrupt	Source Type				
		nl	RQx	Interrupt So	urce Type			
		0	0	Low-level Se	ensitive			
[5:0]	nlRQ <i>x</i>	0	1	High-level S	ensitive			
Sec.	Be.	1	0	Negative-ed	ge Triggered			
AT A		1	1	Positive-edg	e Triggered			
	sti.							
				289	Publication Re	elease Date: Jur Re	n 18, 2010 vvision: A5	



#### Interrupt Group Enable Control Register (AIC_GEN)

Register	Address	R/W	Description	Reset Value
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24
RESE	RVED	RESE	RVED	RESER	VED	RESE	RVED
23	22	21	20	19	18	17	16
СОММТХ	COMMRX	GD	GDMA		26	TIMER	
15	14	13	12	11	10	9	8
	•	RESE	RVED			US	вн
7	6	5	4	3	2	1	0
	RESERVED						

Bits		Descriptions				
[23]	СОММТХ	ICE Communications Channel Transmit Interrupt1: COMMTX Interrupt Enable0: COMMTX Interrupt Disable				
[22]	COMMRX	ICE Communications Channel Receive Interrupt1: COMMRX Interrupt Enable0: COMMRX Interrupt Disable				
[21:20]	GDMA	<ul> <li>GDMA Controller Interrupt Group</li> <li>Bit[21] is for GDMA Channel 1, Bit[20] is for GDMA Channel 0</li> <li>1: Interrupt Enable for each bit</li> <li>0: Interrupt Disable for each bit</li> </ul>				
[18:16]	TIMER	TIMER Controller Interrupt Group         Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2         1: Interrupt Enable for each bit         0: Interrupt Disable for each bit				
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[8] is for EHCI Host Controller 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit				
[1:0]	nIRQ[1:0]	External Interrupt Group 0				



#### Interrupt Group Active Status Register (AIC_GASR)

Register	Address	R/W	Description	Reset Value
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000

31       30       29       28       27       26       25       24         RESEVED       RESEVED       RESEVED         23       22       21       20       19       18       17       16         23       22       21       20       19       18       17       16         COMMTX       COMMRX       GDWA       RESERVED       TIMER       16         15       14       13       12       11       10       9       8         7       6       5       4       3       2       1       0         RESERVED       nIRQ[1:0]						VIII VI	21.	
23     22     21     20     19     18     17     16       COMMTX     COMMRX     GDWA     RESERVED     TIMER       15     14     13     12     11     10     9     8       RESERVED       7     6     5     4     3     2     1     0	31	30	29	28	27	26	25	24
COMMTX         COMMRX         GDMA         RESERVED         TIMER           15         14         13         12         11         10         9         8           RESERVED         USBH           7         6         5         4         3         2         1         0	RESE	RESERVED RESERVED		RESER	RESERVED		RESERVED	
15     14     13     12     11     10     9     8       RESERVED     USBH       7     6     5     4     3     2     1     0	23	22	21	20	19	18	17	16
RESERVED         USBH           7         6         5         4         3         2         1         0	COMMTX	COMMRX	GD	GDMA		TIMER		$\geq$
7 6 5 4 3 2 1 0	15	14	13	12	11	10	9	8
			RESE	RVED			US	вн
RESERVED nIRQ[1:0]	7	6	5	4	3	2	1	0
		RESERVED						2[1:0]

Bits		Descriptions
[23]	СОММТХ	ICE Communications channel transmit Interrupt This bit denotes that the comms channel transmit buffer is empty.
[22]	COMMRX	<b>ICE Communications channel Receive Interrupt</b> This bit denotes that the comms channel receive buffer contains valid data waiting to be read.
[21:20]	GDMA	GDMA Controller Interrupt Group Bit[21] is for GDMA Channel 1, Bit[20] is for GDMA Channel 0
[18:16]	TIMER	<b>TIMER Controller Interrupt Group</b> Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[8] is for EHCI Host Controller
[1:0]	nIRQ[1:0]	External Interrupt Group 0
		Publication Release Date: Jun 18, 2010 291 Revision: A5

#### Interrupt Group Status Clear Register (AIC_GSCR)

Register	Address	R/W	Description	Reset Value
AIC_GSCR	0xB800_208C	R/W	Interrupt Group Status Clear Register	0x0000_0000

					11 18 C			
31	30	29	28	27	26	25	24	
RESERVED								
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
			RESE	RVED		2	202	
7	6	5	4	3	2	1	0	
	RESERVED						2[1:0]	

Bits		Descriptions					
[1:0]	]	nIRQ[1:0]	<b>External Interrupt Group 0</b> Write 1: Clear the relative status bit, and this bit is auto clear to 0 Write 0: No action				

#### AIC Interrupt Raw Status Register (AIC_IRSR)

Register	Address	R/W	Description	Reset Value
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IRS31	IRS30	IRS29	IRS28	IRS27	IRS26	IRS25	IRS24
23	22	21	20	19	18	17	16
IRS23	IRS22	IRS21	IRS20	IRS19	IRS18	IRS17	IRS16
15	14	13	12	11	10	9	8
IRS15	IRS14	IRS13	IRS12	IRS11	IRS10	IRS9	IRS8
7	6	5	4	3	2	1	0
IRS7	IRS6	IRS5	IRS4	IRS3	IRS2	IRS1	RESERVED

Bits		Descriptions						
[31:1]	IRS <i>x</i>	Interrupt Status Indicate the intrinsic status of the corresponding interrupt source 0 = Interrupt channel is in the voltage level 0 1 = Interrupt channel is in the voltage level 1						

This register records the intrinsic state within each interrupt channel.

#### AIC Interrupt Active Status Register (AIC_IASR)

This register indicates the status of each interrupt channel in consideration of the interrupt source type as defined in the corresponding Source Control Register, but regardless of its mask setting.

Register	Address	R/W	Description	Reset Value
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000

						N. C. S. C.	
31	30	29	28	27	26	25	24
IAS31	IAS30	IAS29	IAS28	IAS27	IAS26	IAS25	IAS24
23	22	21	20	19	18	17	16
IAS23	IAS22	IAS21	IAS20	IAS19	IAS18	IAS17	IAS16
15	14	13	12	11	10	9	8
IAS15	IAS14	IAS13	IAS12	IAS11	IAS10	IAS9	IAS8
7	6	5	4	3	2	1	0
IAS7	IAS6	IAS5	IAS4	IAS3	IAS2	IAS1	RESERVED

Bits			Description	IS			
[31:1]	IASx Interrupt Active Status Indicate the status of the corresponding interrupt source 0 = Corresponding interrupt channel is inactive 1 = Corresponding interrupt channel is active						
US C	»						
÷ R							
			294	Publication Release Date: Jun 18, 2010 Revision: A5			

#### AIC Interrupt Status Register (AIC_ISR)

This register identifies those interrupt channels whose are both active and enabled.

Register	Address	R/W	Description	Reset Value
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IS31	1\$30	IS29	IS28	I S27	IS26	IS25	IS24
23	22	21	20	19	18	17	16
IS23	I S22	IS21	IS20	IS19	IS18	IS17	IS16
15	14	13	12	11	10	9	8
IS15	IS14	IS13	IS12	IS11	IS10	159	IS8
7	6	5	4	3	2	1	0
157	IS6	1\$5	IS4	153	152	IS1	RESERVED

Bits		Descriptions
[31:1]	ISx	Interrupt Status Indicates the status of corresponding interrupt channel 0 = Two possibilities: (1) The corresponding interrupt channel is inactive no matter whether it is enabled or disabled; (2) It is active but not enabled 1 = Corresponding interrupt channel is both active and enabled (can assert an interrupt)

## 32-BIT ARM926EJS-BASED MCU

#### AIC IRQ Priority Encoding Register (AIC_IPER)

When the AIC generates the interrupt, VECTOR represents the interrupt channel number that is active, enabled, and has the highest priority. If the representing interrupt channel possesses a priority level 0, then the interrupt asserted is FIQ; otherwise, it is IRQ. The value of VECTOR is copied to the register AIC_ISNR thereafter by the AIC. This register was restored a value 0 after it was read by the interrupt handler. This register can help indexing into a branch table to quickly jump to the corresponding interrupt service routine.

Register	Address	R/W	Description	Reset Value
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	20
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
RESERVED	VECTOR					0	0

Bits		Descriptions					
[6:2]	VECTORInterrupt Vector 0 = no interrupt occurs 1 ~ 31 = representing the interrupt channel that is active, enabled, a having the highest priority						
	P	having the highest priority					
		Publication Release Date: Jun 18, 2010					
		296 Revision: A5					

#### AIC Interrupt Source Number Register (AIC_ISNR)

The purpose of this register is to record the interrupt channel number that is active, enabled, and has the highest priority.

Register	Address	R/W	Description	Reset Value
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
31	30	29	28	27	26	25	24
0	0	0	0	0	0	00	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0			IRQID		

Bits		De	escriptions
[4:0]	IRQID	IRQ Identification Stands for the interrupt of	hannel number
· Rec			
		29	Publication Release Date: Jun 18, 2010 7 Revision: A5

AIC Interrupt Mask Register (AIC_IMR)

Register	Address	R/W	Description	Reset Value
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000

31	30	29	28	27	26	25	24
IM31	IM30	IM29	IM28	IM27	IM26	IM25	IM24
23	22	21	20	19	18	17	16
IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
15	14	13	12	11	10	9	8
IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8
7	6	5	4	3	2	1	0
IM7	IM6	IM5	IM4	IM3	IM2	IM1	RESERVED

Bits		Descriptions
[31:1]	IM <i>x</i>	Interrupt Mask This bit determines whether the corresponding interrupt channel is enabled or disabled. Every interrupt channel can be active no matter whether it is enabled or disabled. If an interrupt channel is enabled, it does not definitely mean it is active. Every interrupt channel can be authorized by the AIC only when it is both active and enabled.
2	1	0 = Corresponding interrupt channel is disabled 1 = Corresponding interrupt channel is enabled
	N. CON	2
		Publication Release Date: Jun 18, 2010 298 Revision: A5

AIC Output Interrupt Status Register (AIC_OISR)

The AIC classifies the interrupt into FIQ and IRQ. This register indicates whether the asserted interrupt is FIQ or IRQ. If both IRQ and FIQ are equal to 0, it means there is no interrupt occurred.

Register	Address	R/W	Description	Reset Value
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000

						- W/. #	
31	30	29	28	27	26	25	24
			RESE	RVED		2.9	
23	22	21	20	19	18	17	16
			RESE	RVED		YO)	50
15	14	13	12	11	10	9	8
			RESE	RVED			ST C
7	6	5	4	3	2	1	0
		RESE	RVED			IRQ	FIQ

Bits		Descriptions
[1]	IRQ	Interrupt Request 0 = nIRQ line is inactive. 1 = nIRQ line is active.
[0]	FIQ	Fast Interrupt Request 0 = nFIQ line is inactive. 1 = nFIQ line is active

AIC Mask Enable Command Register (AIC_MECR)

Register	Address	R/W	Description	Reset Value
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	Undefined

31	30	29	28	27	26	25	24
MEC31	MEC30	MEC29	MEC28	MEC27	MEC26	MEC25	MEC24
23	22	21	20	19	18	17	16
MEC23	MEC22	MEC21	MEC20	MEC19	MEC18	MEC17	MEC16
15	14	13	12	11	10	9	8
MEC15	MEC14	MEC13	MEC12	MEC11	MEC10	MEC9	MEC8
7	6	5	4	3	2	1	0
MEC7	MEC6	MEC5	MEC4	MEC3	MEC2	MEC1	RESERVED

	Descriptions			Bits
) for the sponding	1 = Enables the corresponding interrupt channel MEC1, MEC4~MEC6, MEC10, MEC11, MEC22~MEC31 have to reserved interrupt source, they should not be enable the c	MEC x 0 = No effect 1 = Enables the cor MEC1, MEC4~MEC6	MEC <i>x</i>	[31:1]
	0 = No effect 1 = Enables the corresponding interrupt channel MEC1, MEC4~MEC6, MEC10, MEC11, MEC22~MEC31 have to reserved interrupt source, they should not be enable the c	MEC x MEC 1 = Enables the cor MEC1, MEC4~MEC6 reserved interrupt	MEC <i>x</i>	[31:1]

AIC Mask Disable Command Register (AIC_MDCR)

Register	Address	R/W	Description	Reset Value
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	Undefined

31	30	29	28	27	26	25	24
MDC31	MDC30	MDC29	MDC28	MDC27	MDC26	MDC25	MDC24
23	22	21	20	19	18	17	16
MDC23	MDC22	MDC21	MDC20	MDC19	MDC18	MDC17	MDC16
15	14	13	12	11	10	9	8
MDC15	MDC14	MDC13	MDC12	MDC11	MDC10	MDC9	MDC8
7	6	5	4	3	2	1	0
MDC7	MDC6	MDC5	MDC4	MDC3	MDC2	MDC1	RESERVED

Bits	Descriptions						
[31:1]	MDC <i>x</i>	Mask Disable Command 0 = No effect 1 = Disables the corresponding interrupt channel					

AIC End of Service Command Register (AIC_EOSCR)

This register is used by the interrupt service routine to indicate that it is completely served. Thus, the interrupt handler can write any value to this register to indicate the end of its interrupt service.

Register	Address	R/W	Description	Reset Value
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	N/A

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
31	30	29	28	27	26	25	24
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2000	S
23	22	21	20	19	18	17	16
						<u>- 70</u> 0	STA.
15	14	13	12	11	10	9	8
							3 AL
7	6	5	4	3	2	1	0

32-BIT ARM926EJS-BASED MCU

6.14 General-Purpose Input/Output (GPIO)

6.14.1 Overview

The General-Purpose Input/Output (**GPIO**) module possesses 32 pins, and serves as multiple function purposes. Each port can be easily configured by software to meet various system configurations and design requirements. Software must define which function of each pin is used before starting the main program. If a pin is not used for multiplexed functions, the pin can be configured as I/O ports.

These 32 IO pins are divided into 5 groups according to its peripheral interface definition.

- PortC: 11-pin input/output port
- PortD: 7-pin input/output port
- PortE: 2-pin input/output port
- PortF: 10-pin input/output port
- PortH: 2-pin input/output port

32-BIT ARM926EJS-BASED MCU

6.14.2 GPIO Multiplexed Functions Table

GPIO Group	Shared Interface					
GPIOC (11 pins)						
GPIOC[2]	GPIOC02, only GPIO Function					
GPIOC[4]	GPIOC04, only GPIO Function					
GPIOC[5]	GPIOC05, only GPIO Function					
GPIOC[6]	GPIOC06, only GPIO Function					
GPIOC[7]	GPIOC07, only GPIO Function					
GPIOC[8]	GPIOC08, only GPIO Function					
GPIOC[9]	GPIOC09, only GPIO Function					
GPIOC[10]	GPIOC10, only GPIO Function					
GPIOC[11]	GPIOC11, only GPIO Function					
GPIOC[13]	GPIOC13, only GPIO Function					
GPIOC[14]	GPIOC14, only GPIO Function					
GPIOD (7 pins)	SD(SDIO) Interface					
GPIOD[0]	SD_CMD					
GPIOD[1]	SD_CLK					
GPIOD[2]	SD_DATO					
GPIOD[3]	SD_DAT1					
GPIOD[4]	SD_DAT2					
GPIOD[5]	SD_DAT3					
GPIOD[6]	SD_CDn					
GPIOE (2 pins)	UART Interface					
GPIOE[0]	TXD0					
GPIOE[1]	RXDO					
GPIOF (10 pins)	RMII Interface					
GPIOF[0]	PHY_MDC					
GPIOF [1]	PHY_MDIO					
GPIOF [3:2]	PHY_TXD [1:0]					
GPIOF [4]	PHY_TXEN					
GPIOF [5]	PHY_REFCLK					
GPIOF [7:6]	PHY_RXD [1:0]					
GPIOF [8]	PHY_CRSDV					
GPIOF [9]	PHY_RXERR					
GPIOH (2 pins)	nIRQ Interface					
GPIOH (2 pins) GPIOH[1:0]	nIRQ[1:0]					
	ווגענוטן					

32-BIT ARM926EJS-BASED MCU

6.14.3 GPIO Control Registers Map

Register	Address	R/W	Description	Reset Value
$GPIO_BA = 0xB80$	0_3000		Ster (C)	
GPIOC_DIR	0xB800_3004	R/W	GPIO portC direction control register	0x0000_0000
GPIOC_DATAOUT	0xB800_3008	R/W	GPIO portC data output register	0x0000_0000
GPIOC_DATAIN	0xB800_300C	R	GPIO portC data input register	N/A
GPIOD_DIR	0xB800_3014	R/W	GPIO portD direction control register	0x0000_0000
GPIOD_DATAOU	0xB800_3018	R/W	GPIO portD data output register	0x0000_0000
Т				
GPIOD_DATAIN	0xB800_301C	R	GPIO portD data input register	N/A
GPIOE_DIR	0xB800_3024	R/W	GPIO portE direction control register	0x0000_0000
GPIOE_DATAOUT	0xB800_3028	R/W	GPIO portE data output register	0x0000_0000
GPIOE_DATAIN	0xB800_302C	R	GPIO portE data input register	0x0000_0000
GPIOF_DIR	0xB800_3034	R/W	GPIO portF direction control register	0x0000_0000
GPIOF_DATAOUT	0xB800_3038	R/W	GPIO portF data output register	0x0000_0000
GPIOF_DATAIN	0xB800_303C	R	GPIO portF data input register	N/A
GPIOH_DBNCE	0xB800_3050	R/W	GPIO portH input de-bounce control register	0x0000_0000
GPIOH_DIR	0xB800_3054	R/W	GPIO portH direction control register	0x0000_0000
GPIOH_DATAOU	0xB800_3058	R/W	GPIO portH data output register	0x0000_0000
Т				
GPIOH_DATAIN	0xB800_305C	R	GPIO portH data input register	N/A

GPIO PortC Direction Control Register (GPIOC_DIR)

Register	Address	R/W	Description	Reset Value
GPIOC_DIR	0xB800_3004	R/W	GPIO portC in/out direction control register	0x0000_000 0

					~/~~~/			
31	30	29	28	27	26	25	24	
			RESE	RVED	500	× Co		
23	22	21	20	19	18	17	16	
			RESE	RVED	-0	er le		
15	14	13	12	11	10	9	8	
RESERVE	OUTEN							
D	Non Contraction of the contracti							
7	6	5	4	3	2	1	0	
			OU	TEN		Mr.	25. 17	

Bits	Descriptio	Descriptions						
[14:0]	OUTEN	GPIO PortC Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode The bit0,bit1,bit3 and bit12 are no action						

GPIO PortC Data Output Register (GPIOC_DATAOUT)

Register	Address			R/W	Descr	iption		Reset Value	
GPIOC_DATA	OUT	OUT 0xB800_3008		R/W	GPIO (GPIO portC data output register			0x0000_0000
31	3	0	29		28	27	26	25	24
					RESE	RVED	972 0	200	
23	2	2	21		20	19	18	17	16
					RESE	RVED	50	CS.	
15	1	4	13		12	11	10	9	8
RESERVE D						DATAOUT	0	320	20
7	6	•	5		4	3	2	1	0
					DAT	AOUT		~	2 (0)

Bits	Description	Descriptions					
[14:0]	dataou Τ	GPIO PortC Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective. The bit0,bit1,bit3 and bit12 are no action					

GPIO PortC Data Input Register (GPIOC_DATAIN)

Register	Addı	ress	R/W	Description			Reset Value
GPIOC_DATAIN	0xB8	00_300C	R	GPIO portC data	input register		N/A
Car an							
31	30	29	28	3 27	26	25	24
XXV P	146			RESERVED			
23	22	21	20) 19	18	17	16
SY	1 TA			RESERVED			
15	14	13	12	2 11	10	9	8
RESERVE D	Ek.	Sn		DATAIN			
7	6	5	4	3	2	1	0
	6	20.	S	DATAIN			
				307	Publication I	Release Date	e: Jun 18, 201 Revision: A

Bits	Descriptio	ns
[14:0]	DATAIN	GPIO PortC Data Input Value The DATAIN indicates the status of each GPIO portC pin regardless of its operation mode. The reserved bits will be read as "0". The bit0,bit1,bit3 and bit12 are no action

GPIO PortD Direction Control Register (GPIOD_DIR)

Register	Address	R/W	Description	Reset Value
GPIOD_DIR	0xB800_3014	R/W	GPIO portD in/out direction control register	0x0000_000 0

						1.1.11	
31	30	29	28	27	26	25	24
			RESE	RVED			
23	22	21	20	19	18	17	16
			RESE	RVED		32 (0)	10
15	14	13	12	11	10	9	8
			RESE	RVED		- Con	0
7	6	5	4	3	2	1	0
			OU [.]	TEN		M	22 2)

Bits	Descriptio	ns
[7:0]	OUTEN	GPIO PortD Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode Bit7 is no action
33.		
		Publication Release Date: Jun 18, 2010 309 Revision: A5

GPIO PortD Data Output Register (GPIOD_DATAOUT)

Register		Addr	ess	R/W	Descr	Description			Reset Value
GPIOD_DAT	AOUT	0xB8	00_3018	R/W	GPIO p	oortD data out		0x0000_0000	
31	3	0	29		28	27	26	25	24
					RESE	RVED	225 0	20	
23	2	2	21		20	19	18	17	16
					RESE	RVED	50	Co.	
15	1	4	13		12	11	10	9	8
					RESE	RVED	:0	22 7	2
7	6	5	5		4	3	2	1	0
					DAT	AOUT		5	102
								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 (0)

Bits	Descriptio	ns
[7:0]	σατρου	GPIO PortD Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective. Bit7 is no action

#### GPIO PortD Data Input Register (GPIOD_DATAIN)

Register Address		R/W	Description		Reset Value					
GPIOD_DATAI	N 0xB8	300_301C	R	GPIO portD data	input register		N/A			
21	20	20	20	27	26	25	24			
31	31 30 29 28 27 26 25 24 RESERVED									
23	22	21	20	19	18	17	16			
No.	202			RESERVED						
15	14	13	12	11	10	9	8			
0	$(0, \gamma)$	20		RESERVED						
7	6	5	4	3	2	1	0			
	No.	21L		DATAIN						

Bits	Descriptio	ns
[7:0]	DATAIN	GPIO PortD Data Input Value The DATAIN indicates the status of each GPIO portD pin regardless of its



Bits	Description	ns	
		operation mode. T Bit7 is reserved.	The reserved bits will be read as "0".



#### GPIO PortE Direction Control Register (GPIOE_DIR)

Register	Address	R/W	Description	Reset Value
GPIOE_DIR	0xB800_3024	R/W	GPIO portE in/out direction control register	0x0000_000 0

						1.1.11				
31	30	29	28	27	26	25	24			
RESERVED										
23	22	21	20	19	18	17	16			
			RESE	RVED		32 (0).	100			
15	14	13	12	11	10	9	8			
			RESE	RVED		- Con	0			
7	6	5	4	3	2	1	0			
		RESE	RVED			OU	TEN			

E	Bits	Descriptio	Descriptions								
[:	1:0]	OUTEN	<b>GPIO PortE Output Enable Control</b> Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode								





## GPIO PortE Data Output Register (GPIOE_DATAOUT)

Register		Addr	ess	s R/W Description					Reset Value
GPIOE_DATAOUT		0xB8	0xB800_3028		GPIO (	GPIO portE data output register			0x0000_0000
31	3	0	29		28	27	26	25	24
-	_	-				RVED	2000	10	
23	2	2	21		20	19	18	17	16
					RESE	RVED	50	Co.	
15	1	4	13		12	11	10	9	8
					RESE	RVED	0	92 7	2
7		6	5		4	3	2	1	0
			RE	SERVE	)				DATAOUT

Bits	Descriptio	ns
[1:0]	DATAOU	<b>GPIO PortE Data Output Value</b> Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.

#### GPIO PortE Data Input Register (GPIOE_DATAIN)

Register	Ad	Address		Description			Reset Value	
GPIOE_DATAIN 0xB800_302C			R	GPIO portE data	input register		N/A	
h								
31	30	29	28	27	26	25	24	
Re Car	<u> </u>			RESERVED				
23	22	21	20	19	18	17	16	
N.O	200			RESERVED				
15	14	13	12	2 11	10	9	8	
2	12:0			RESERVED				
7	6	5	4	3	2	1	0	
	312	RES	ERVED			D	ATAIN	

Bits	Descriptio	ns
[1:0]	DATAIN	<b>GPIO PortE Data Input Value</b> The DATAIN indicates the status of each GPIO portE pin regardless of its operation mode. The reserved bits will be read as "0".

#### GPIO PortF Direction Control Register (GPIOF_DIR)

Register	Address	R/W	Description	Reset Value
GPIOF_DIR	0xB800_3034	R/W	GPIO portF in/out direction control register	0x0000_000 0

				11/2	1.1.00	
30	29	28	27	26	25	24
		RESE	RVED	S.		
22	21	20	19	18	17	16
		RESE	RVED		32 (0).	50
14	13	12	11	10	9	8
	RESE	RVED			OUTEN	
6	5	4	3	2	1	0
		OU	TEN		Mr.	25. 20
	22	22 21 14 13 RESE	RESE           22         21         20           RESE           14         13         12           RESERVED           6         5         4	RESERVED           22         21         20         19           RESERVED           14         13         12         11           RESERVED	RESERVED           22         21         20         19         18           RESERVED           14         13         12         11         10           RESERVED           6         5         4         3         2	RESERVED           22         21         20         19         18         17           RESERVED           14         13         12         11         10         9           RESERVED           6         5         4         3         2         1

	Bits	Descriptio	Descriptions								
[	[9:0]	OUTEN	<b>GPIO PortF Output Enable Control</b> Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode								





#### GPIO PortF Data Output Register (GPIOF_DATAOUT)

Register		Addr	ess	R/W Description					Reset Value
GPIOF_DAT	GPIOF_DATAOUT (		300_3038 R/W		GPIO	portF data out		0x0000_0000	
		-					N. Co		
31	3	0	29		28	27	26	25	24
					RESE	ERVED	972	2	
23	2	2	21		20	19	18	17	16
					RESE	ERVED	50	Son	
15	1	4	13		12	11	10	9	8
			RE	SERVE	)			D	ATAOUT
7	6	<b>b</b>	5		4	3	2	1	0
					DAT	AOUT		00	1

Bits	Descriptio	ns
[9:0]	DATAOU	<b>GPIO PortF Data Output Value</b> Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.

#### GPIO PortF Data Input Register (GPIOF_DATAIN)

Register		Address		R/W	Desc	cription	Reset Value		
GPIOF_DATAIN C		0xB80	00_303C	R	GPIO portF data input register				0xxxxx_xxx x
31	30	0	29	28	8	27	26	25	24
87.7	11	·			RESE	RVED			
23	22	2	21	20	)	19	18	17	16
XON	1.28	54			RESE	RVED			
15	14	4	13	12	2	11	10	9	8
	no	5	RES	ERVED				D	ATAIN
7	6		5	4		3	2	1	0
	- 4	16-2	S)		DAT	AIN			
	0	× (3)	62						

Bits	Descriptio	ns
[9:0]	DATAIN	<b>GPIO PortF Data Input Value</b> The DATAIN indicates the status of each GPIO portF pin regardless of its operation mode. The reserved bits will be read as "0".



## GPIO PortH De-bounce Enable Control Register (GPIOH_DBNCE)

RegisterAddressGPIOH_DBNCE0xB800_3050			R/W	Description GPIO PortH de-bounce control register				Reset ValueN/A	
		3050	R/W						
31	3	0	29		28	27	26	25	24
		•			RESE	RVED	972	20	
23	2	2	21		20	19	18	17	16
					RESE	RVED	50	CS.	
15	1	4	13		12	11	10	9	8
			RESERVE	D				DBCLKS	EL
7	6	5	5		4	3	2	1	0
			RE	SERVE	)			DBEN	1 DBENO

		าร					
[10:8]	DBCLKSE	De-bounce Clock Selection These 3 bits are used to select the clock rate for de-bouncer circuit. The relationship between the system clock HCLK and the de-bounce clock TCLK_BUN is as follows: TCLK_BUN = HCLK / 2 ^{DBCLKSEL}					
[1]	DBEN1	De-bounce Circuit Enable for GPIOH1 (nIRQ1) Input 1 = Enable De-bounce 0 = Disable De-bounce					
[0]	DBENO	De-bounce Circuit Enable for GPIOHO (nIRQO) Input 1 = Enable De-bounce 0 = Disable De-bounce					
	A						
		Publication Release Date: Jun 18, 20					

#### GPIO PortH Direction Control Register (GPIOH_DIR)

Register	Address	R/W	Description	Reset Value
GPIOH_DIR	0xB800_3054	R/W	GPIO portH in/out direction control register	0x0000_000 0

					11/2	1.1.11	
31	30	29	28	27	26	25	24
			RES	ERVED			
23	22	21	20	19	18	17	16
			RES	ERVED		32 (0).	
15	14	13	12	11	10	9	8
			RES	ERVED		- Con	0
7	6	5	4	3	2	1	0
	RESERVED						TEN

Bits	Descriptio	ns
[1:0]	OUTEN	<b>GPIO PortH Output Enable Control</b> Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode





#### GPIO PortH Data Output Register (GPIOH_DATAOUT)

Register Address		R/W	Descr	iption	100	Reset Value			
GPIOH_DATAOUT 0xB800_3058		R/W	GPIO	portH data ou		0x0000_0000			
31	30	)	29		28	27	26	25	24
0.			_/				220 0		
23	22	2	21		20	19	18	17	16
					RESE	ERVED	50	SO2	
15	14	1	13		12	11	10	9	8
					RESE	ERVED	0	227	2
7	6		5		4	3	2	1	0
			RE	SERVE	)				DATAOUT

Bits	Descriptio	Descriptions						
[1:0]	DATAOU	<b>GPIO PortH Data Output Value</b> Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.						





#### GPIO PortH Data Input Register (GPIOH_DATAIN)

Register Address		R/W	Description	Description			
GPIOH_DATAIN 0xB800_305C		R	GPIO portH data i		N/A		
31	30	29	28	27	26	25	24
				RESERVED	Y (0) Y	Dr.	
23	22	21	20	19	18	17	16
				RESERVED	× 5	alla	
15	14	13	12	11	10	9	8
				RESERVED		120	28
7	6	5	4	3	2	1	0
		RES	SERVED			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DATAIN
						10	

Bits	Descriptio	Descriptions						
[1:0]	DATAIN	<b>GPIO PortH Data Input Value</b> The DATAIN indicates the status of each GPIO portH pin regardless of its operation mode. The reserved bits will be read as "0".						



### 32-BIT ARM926EJS-BASED MCU

# **7 Electrical Specifications**

## 7.1 Absolute Maximum Ratings

Ambient temperature	-20 °C ~ 70 °C
Storage temperature	-50 °C ~ 125°C
Voltage on any pin	-0.5V ~ 6V
Power supply voltage (Core logic)	-0.5V ~ 2.5V
Power supply voltage (IO Buffer)	-0.5V ~ 4.6V
Injection current (latch-up testing)	100mA
Crystal Frequency	4MHz ~ 30MHz





## 7.2 DC Specifications

## 7.2.1 Digital DC Characteristics

(Normal test conditions : VDD33 = 3.3V+/-10%, VDD18/PLLVDD18 = 1.8V+/-10%, USBVDDC0/USBVDDC1/USBVDDT0/USBVDDT1= 3.3V+/-5%, TA = -20 °C ~ 70 °C unless otherwise specified)

SYMBOL	PARAMETER	CONDITION	MIN	ΤΥΡ	MAX	UNIT
VDD33	Power Supply	SU	2.97	26 -	3.63	V
VDD18/ PLLVDD18	Power Supply	0	1.62	50	1.98	V
USBVDD	Power Supply		3.13	2.00	3.46	V
VIL	Input Low Voltage		-0.3	XO.	0.8	V
VIH	Input High Voltage		2.0		5.5	V
VT+	Schmitt Trigger positive-going threshold		1.5	- 7	1.62	V
VT-	Schmitt trigger negative-going threshold		1.14	-	1.27	V
V _{OL}	Output Low Voltage	Depend on driving	-	-	0.4	V
V _{OH}	Output High Voltage	Depend on driving	2.4	-	-	V
IIH	Input High Current	V _{IN} = 2.4 V	-1	-	1	uA
IIL	Input Low Current	$V_{IN} = 0.4 V$	-1	-	1	uA
I _{ОН}	Output High Current	EBI, GPIOC, GPIOD	-	35	-	mA
I _{OL}	Output Low Current	EBI, GPIOC, GPIOD	-	26	-	mA
I _{OH}	Output High Current	The other port	-	25	-	mA
I _{OL}	Output Low Current	The other port	-	17	-	mA
I _{oc}	Operation Current	Note 1	-	340	-	mA
I _{SC}	Standby Current	Note 2	-	TBD	-	uA

Note1:

This operation current is measured on VDD18 @ 1.8V, and all of IP clocks are enable with CPU clock/system clock @ 200MHz / 100MHz.

Note2:

The standby current is measured on VDD18 @1.8V, and all of IP clocks are disable with power-down mode, all of GPIO pins are set to output and clock pins keep at 0V.

Publication Release Date: Jun 18, 2010 Revision: A5

## 32-BIT ARM926EJS-BASED MCU

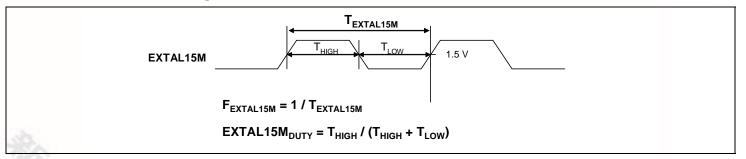
## 7.2.2 USB Low-/Full-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	MIN	TYP	MAX
<b>V</b> _{IH}	Pad input high voltage	V. Th	2.0V		
<b>V</b> _{IL}	Pad input low voltage	XAX.M			0.8V
<b>V</b> _{DI}	Differential input sensitivity	PADP-PADM	0.2V		
<b>V</b> _{CM}	Common mode voltage range	include V _{DI} range	0.8V		2.5V
<b>V</b> _{SE}	Single-ended receiver threshold	~ (O)	0.8V		2.0V
<b>V</b> _{OL}	Pad output low voltage	5	0V		0.3V
<b>V</b> _{OH}	Pad output high voltage	3	2.8V	S.	3.6V
<b>V</b> _{CRS}	Differential output signal cross-point voltage		1.3V	0	2.0V
<b>R</b> _{PU}	Internal pull-up resistor	Bus idle	900Ω	02	1575Ω
		Receiving	1425Ω	LY G	3090Ω
<b>R</b> _{PD}	Internal pull-down resistor		14.25KΩ	1 20	24.80KΩ
Z _{DRV}	briver output resistance [‡]	Steady state drive		10Ω	3
C _{IN}	Transceiver pad capacitance	Pad to ground		91	20pF

## 7.2.3 USB High-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	MIN	TYP	MAX
<b>V</b> _{HSDI}	High-speed differential input signal level	PADP-PADM	150mV		
<b>V</b> _{HSSQ}	High-speed SQ detection threshold	PADP-PADM	100mV		150mV
<b>V</b> _{HSCM}	High-speed common mode voltage range		-50mV		500mV
<b>V</b> _{HSOH}	High-speed data signaling high		360mV		440mV
<b>V</b> _{HSOL}	High-speed data signaling low		-10mV		10mV
<b>V</b> _{CHIRPJ}	Chirp J level		700mV		1100mV
<b>V</b> _{CHIRPK}	Chirp K level		-900mV		-500mV
<b>Z</b> _{HSDRV}	High-speed driver output resistance	45Ω±10%	40.5Ω		49.5Ω

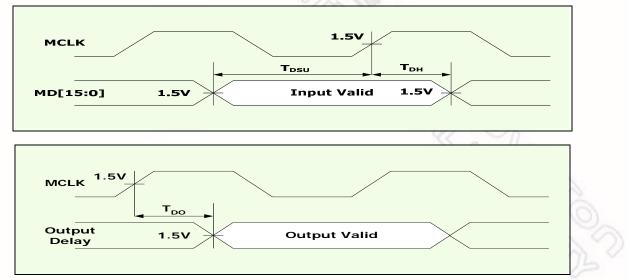



## 7.3 AC Specifications

## 7.3.1 RESET AC Characteristics

nRESET	

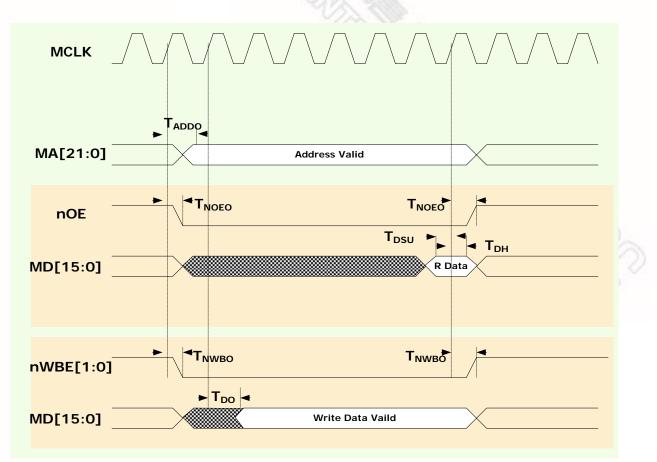
			32 (O) a	
Symbol	Parameter	MIN	MAX	Unit
T _{RST}	Reset Pulse Width after Power stable	1.0	and the second s	ms


## 7.3.2 Clock Input Characteristics



Symbol	Parameter	MIN	TYP	MAX	Unit
F _{EXTAL15M}	Clock Input Frequency	-	15.0	-	MHz
EXTAL15M _{DUTY}	Clock Input Duty Cycle	45	50	55	%
V _{IL} (EXTAL15M)	EXTAL15M Input Low Voltage	0	-	0.8	V
V _{IH} (EXTAL15M)	EXTAL15M Input High Voltage	2.0	-	VDD33+0.3	V

## 32-BIT ARM926EJS-BASED MCU

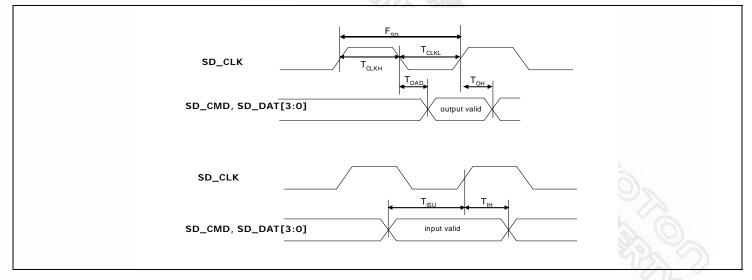

## 7.3.3 EBI/SDRAM Interface AC Characteristics



Symbol	Parameter	MIN	MAX	Unit
F _{MCLK}	SDRAM Clock Output Frequency	-	100	MHz
T _{DSU}	MD[15:0]] Input Setup Time	2	-	ns
T _{DH}	MD[15:0] Input Hold Time	2	-	ns
T _{OSU}	SDRAM Output Signal Valid Delay Time	2*	7*	ns

* The above  $T_{OSU}$  is based on the EBI CKSKEW register default setting on 0x48 and  $F_{MCLK}$  at 100MHz

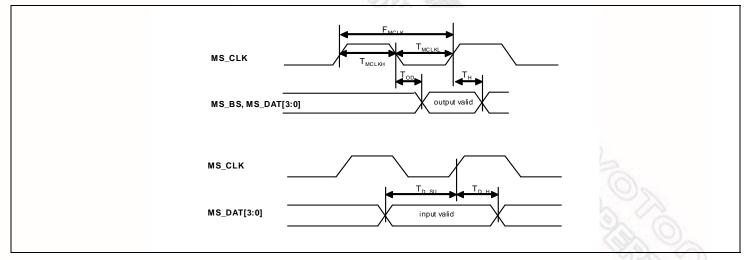
- 32-BIT ARM926EJS-BASED MCU
- 7.3.4 EBI (Flash/ROM) AC Characteristics




Symbol	Parameter	MIN	MAX	Unit
T _{ADDO}	Address Output Delay Time	2*	7*	ns
T _{NCSO}	ROM/Flash Chip Select Delay Time	2*	7*	ns
T _{NOEO}	Flash / ROM Output Enable Delay	2*	7*	ns
Т _{NWBO}	Flash / ROM Write Byte Enable Delay	2*	7*	ns
T _{DH}	Read Data Hold Time	5		ns
T _{DSU}	Read Data Setup Time	1		ns
T _{DO}	Write Data Output Delay Time	2*	7*	ns

The above data are based on the EBI CKSKEW register default setting on 0x48 and  $F_{\mbox{\scriptsize MCLK}}$  at 100MHz

## 32-BIT ARM926EJS-BASED MCU


#### **SD Host Interface AC Characteristics** 7.3.5



SD Clock Frequency SD Clock Frequency	Identification Mode Data Transfer Mode	100	400	KHz
SD Clock Frequency	Data Transfer Mode			
		-	50	MHz
SD Clock High Time	-	10	-	ns
SD Clock Low Time	-	10	-	ns
SD CMD & Data Input Setup Time	-	5	-	ns
SD CMD & Data Input Hold Time	-	5	-	ns
SD Output Active Delay (Falling Edge)	-	-	14	ns
SD Output Hold Time	-	0	-	ns
			se Date: Jur	
	SD CMD & Data Input Setup TimeSD CMD & Data Input Hold TimeSD Output Active Delay (Falling Edge)	SD CMD & Data Input Setup Time       -         SD CMD & Data Input Hold Time       -         SD Output Active Delay (Falling Edge)       -	SD CMD & Data Input Setup Time       -       5         SD CMD & Data Input Hold Time       -       5         SD Output Active Delay (Falling Edge)       -       -	SD CMD & Data Input Setup Time-5-SD CMD & Data Input Hold Time-5-SD Output Active Delay (Falling Edge)14

## 32-BIT ARM926EJS-BASED MCU

## 7.3.6 Memory Stick Interface AC Characteristics



Symbol	Parameter	Conditions	MIN	MAX	Unit
F _{MCLK}	MS_CLK Clock Frequency	Serial Mode	5	20	MHz
F _{MCLK}	MS_CLK Clock Frequency	Parallel Mode	10	40	MHz
T _{MCLKH}	MS_CLK Clock High Time		5	-	ns
T _{MCLKL}	MS_CLK Clock Low Time		5	-	ns
$T_{BS_OD}$	MS_BS Output Delay (Falling Edge)		5	15	ns
T _{BS_H}	MS_BS Output Hold Time		1	-	ns
T _{D_SU}	Data Input Setup Time		8	-	ns
T _{D_H}	Data input Hold Time		1	-	ns
T _{D_OD}	Data Output Delay (Falling Edge)		8	15	ns
$T_{D_{OD}}$	Data Output Hold Time		1	-	ns

A Color



## 7.3.7 USB Transceiver AC Characteristics

USB Transceiver: Low-Speed AC Electrical Specifications

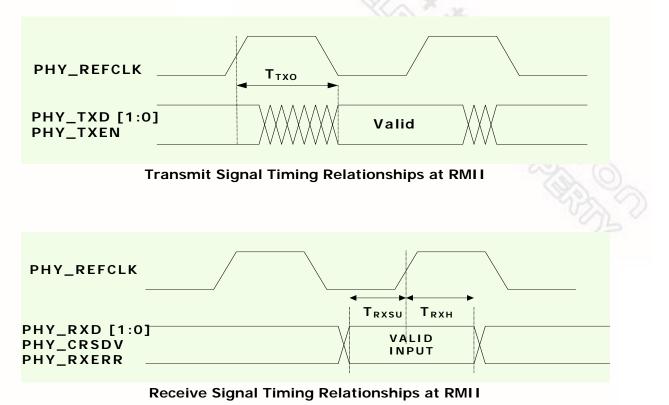
Symbol	Parameter	Conditions	MIN	ТҮР	MAX
T _{LR}	Low-speed driver rise time	C _L =50pF	75ns		300ns
T _{LF}	Low-speed driver fall time	C _L =50pF	75ns		300ns
<b>T</b> _{LRFM}	Low-speed rise/fall time matching	$T_{LRFM} = T_{LR} / T_{LF}$	80%	26	125%

#### **USB Transceiver: Full-Speed AC Electrical Specifications**

Symbol	Parameter	Conditions	MIN	ТҮР	MAX
<b>T</b> _{FR}	Full-speed driver rise time	C _L =50pF	4ns	CS3	20ns
$T_{_{ m FF}}$	Full-speed driver fall time	C _L =50pF	75ns	00	20ns
<b>T</b> _{FRFM}	Full-speed rise/fall time matching	$T_{FRFM} = T_{FR} / T_{FF}$	90%		111.11 %

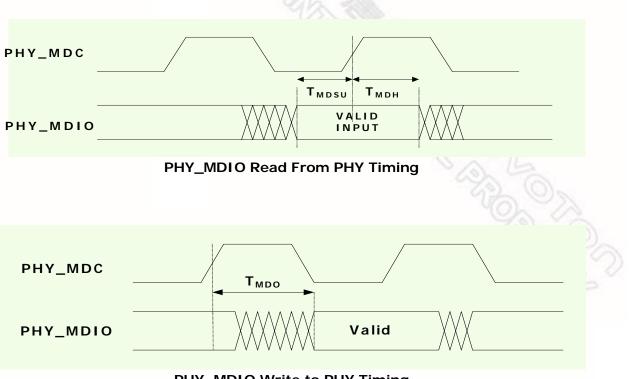
#### **USB Transceiver: High-Speed AC Electrical Specifications**

Symbol	Parameter	Conditions	MIN	TYP	MAX
<b>T</b> _{HSR}	High-speed driver rise time	Z _{HSDRV} =45Ω	500ps		900ps
<b>T</b> _{HSF}	High-speed driver fall time	$Z_{HSDRV} = 45\Omega$	500ps		900ps
the	High-speed driver waveform requirement		Eye diagram of template 1 ^{**} Eye diagram of template 4 ^{††}		
12 Carlo	High-speed receiver waveform requirement				
		Data source end	Eye diagram of template		plate 1
N.	High-speed jitter requirement	Receiver end	Eye diagra	am of tem	plate $4^{\dagger\dagger}$


** Check "Universal Serial Bus Specification Revision 2.0" page 133.

++ Check "Universal Serial Bus Specification Revision 2.0" page 136.

## 32-BIT ARM926EJS-BASED MCU


#### **EMC RMII AC Characteristics** 7.3.8

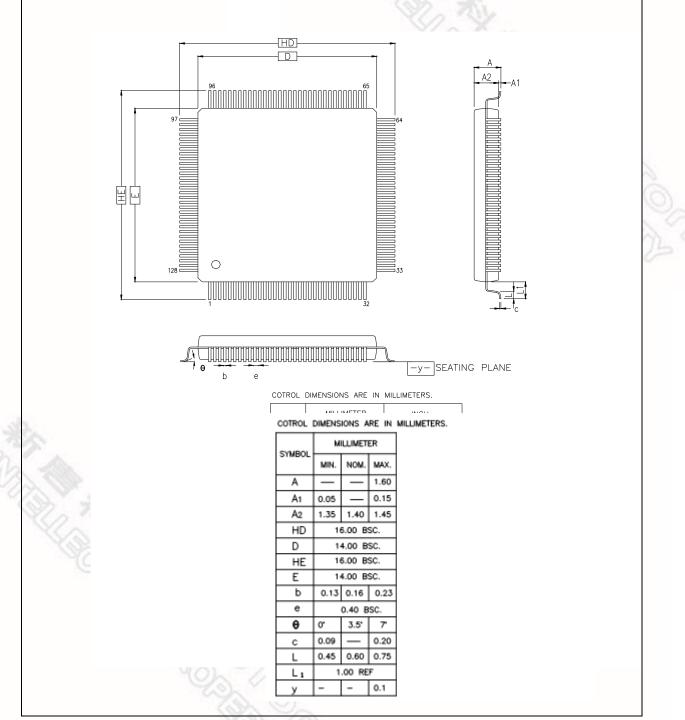
The signal timing characteristics conforms to the guidelines specified in IEEE Std. 802.3.



Symbol	Parameter	MIN	MAX	Unit			
Ттхо	Transmit Output Delay Time	7	14	ns			
T _{RxSU}	Receive Setup Time	4		ns			
T _{RxH}	Receive Hold Time	2		ns			






#### PHY_MDIO Write to PHY Timing

Symbol	Parameter	MIN	МАХ	Unit
T _{MDO}	PHY_MDIO Output Delay Time	0	15	ns
T _{MDSU}	PHY_MDIO Setup Time	5		ns
T _{MDH}	PHY_MDIO Hold Time	5		ns

## 32-BIT ARM926EJS-BASED MCU

## 8 Package Specifications

#### NUC945ADN LQFP128L (14X14X1.4 mm, footprint 2.0mm)





# **Revision History**

Revision	Date	Comments	
А	2008/09/26	First Release	
A2	2008/10/24	Add MCKE and nECS0 pins, Pin Sequence Updated	
A3	2009/01/12	Modified the USBVSS and nECS0 pin number on page 14 and 15	
A4	2009/04/13	Change Part Number form NUC945CDG to NUC945ADN	
A5	2010/06/18	Add IOH, IOL current value	



#### 32-BIT ARM926EJS-BASED MCU

#### Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.