MOSFET - Power, Single P-Channel, SO8-FL

-30 V, 1.8 mΩ, -234 A

NTMFS003P03P8Z

Features

- Ultra Low R_{DS(on)} to Improve System Efficiency
- Advanced Package Technology in 5x6mm for Space Saving and Excellent Thermal Conduction
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Load Switch
- Protection: Reverse Current, Over Voltage, and Reverse Negative Voltage
- Battery Management

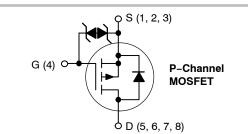
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

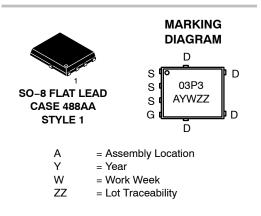
Parameter			Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	-30	V		
Gate-to-Source Voltage			V _{GS}	±25	V		
Continuous Drain		$T_C = 25^{\circ}C$	I _D	-234	А		
Current $R_{\theta JC}$ (Note 3)	Steady	$T_C = 85^{\circ}C$		-169			
Power Dissipation $R_{\theta JC}$ (Note 3)	State	T _C = 25°C	P _D	139	W		
Continuous Drain Cur-		$T_A = 25^{\circ}C$	Ι _D	-35.7	А		
rent $R_{\theta JA}$ (Notes 1, 3)	Steady	$T_A = 85^{\circ}C$		-25.7			
Power Dissipation $R_{\theta JA}$ (Notes 1, 3)	State	T _A = 25°C	P _D	3.2	W		
Continuous Drain Cur-		$T_A = 25^{\circ}C$	Ι _D	-19.1	А		
rent $R_{\theta JA}$ (Notes 2, 3)	Steady	$T_A = 85^{\circ}C$		-13.8			
Power Dissipation $R_{\theta JA}$ (Notes 2, 3)	State	T _A = 25°C	PD	0.9	W		
Pulsed Drain Current $T_A = 25^{\circ}C, t_p = 10 \ \mu s$			I _{DM}	-604	А		
Single Pulse Drain-to-Source Avalanche Energy (I _{Lpk} = 58.04 A)			E _{AS}	168.4	mJ		
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +150	°C		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.

2. Surface-mounted on FR4 board using a minimum pad size, 2 oz. Cu pad.


The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)}	ID
-30 V	1.8 m Ω @ –10 V	-234 A
-30 V	2.9 mΩ @ -4.5 V	-204 A

ORDERING INFORMATION

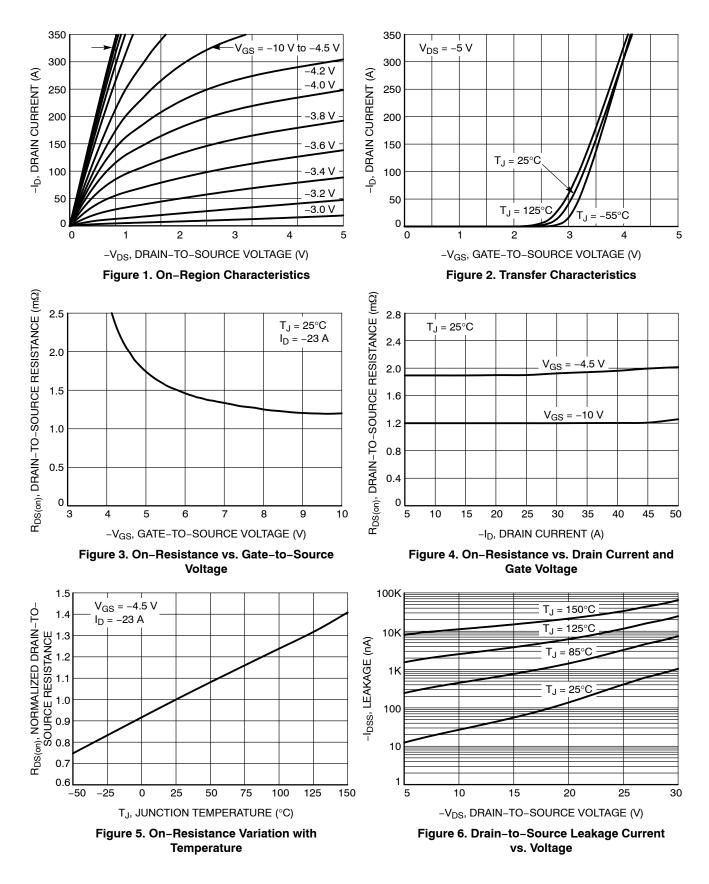
Device	Package	Shipping [†]		
NTMFS003P03P8ZT1G	SO8-FL	1500 / Tape &		
	(Pb-Free)	Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

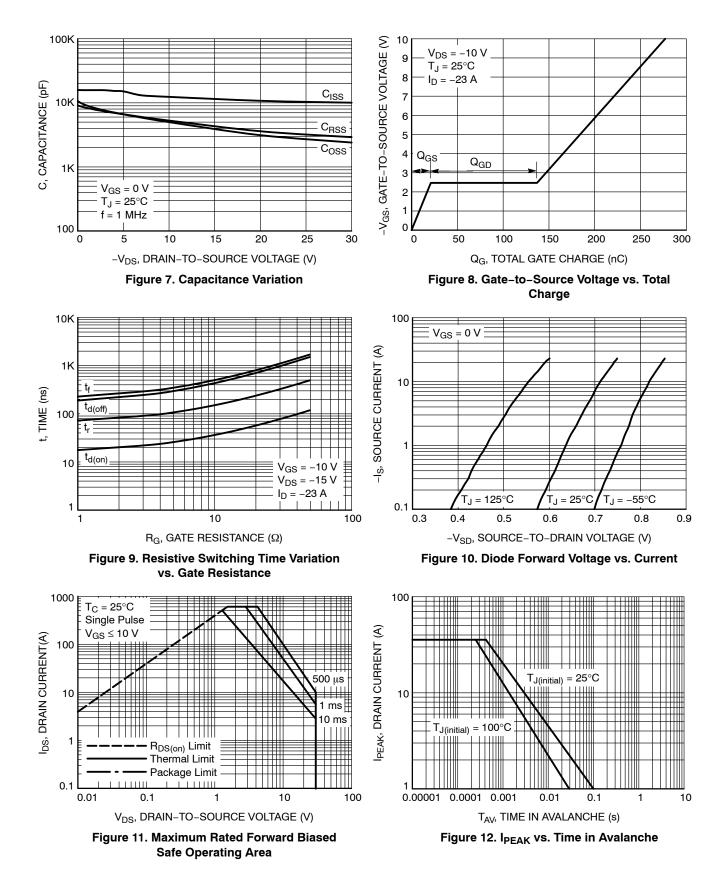
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain) (Note 1)	$R_{\theta JC}$	0.9	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	39	°C/W
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	135	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = –250 μ A		-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = -250 \ \mu A$, ref to $25^{\circ}C$			-5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±25 V		1	±10	μΑ
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	–250 μA	-1.0		-3.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = –250 μA, re	ef to 25°C		5.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I _D	= -23 A		1.2	1.8	mΩ
		V_{GS} = -4.5 V, I _C) = −20 A		1.9	2.9	
Froward Transconductance	9 FS	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -20 \text{ A}$			110		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = -15 V, f = 1.0 MHz			12120		pF
Output Capacitance	C _{oss}				4020		-
Reverse Transfer Capacitance	C _{rss}				4100		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -15 V, I _D = -23 A			167		nC
Threshold Gate Charge	Q _{G(TH)}				7		1
Gate-to-Source Charge	Q _{GS}				21		1
Gate-to-Drain Charge	Q _{GD}				116		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -10 V, V _{DS} = -15 V, I _D = -23 A			277		
SWITCHING CHARACTERISTICS, V	as = 4.5 V (Note	4)			•		
Turn-On Delay Time	t _{d(on)}				81		ns
Rise Time	t _r	V _{GS} = -4.5 V, V _D	s = -15 V.		440		1
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = -23$ Å, R _C			180		1
Fall Time	t _f				400		1
SWITCHING CHARACTERISTICS, V	as = 10 V (Note 4	4)					
Turn-On Delay Time	t _{d(on)}	V _{GS} = –10 V, V _{DS} = –15 V, I _D = –23 A, R _G = 6 Ω			28		ns
Rise Time	t _r				116		-
Turn-Off Delay Time	t _{d(off)}				325		
Fall Time	t _f				380		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		-0.75	-1.3	V
		I _S = -23 A T _{.1} = 125°C			-0.6		1

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS							
Reverse Recovery Time	t _{RR}			70		ns	
Charge Time	ta	V_{GS} = 0 V, dl_s/dt = 100 A/µs, I_s = –23 A		43			
Discharge Time	t _b			28			
Reverse Recovery Charge	Q _{RR}			116		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

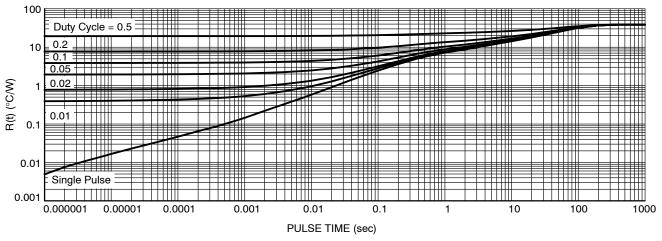
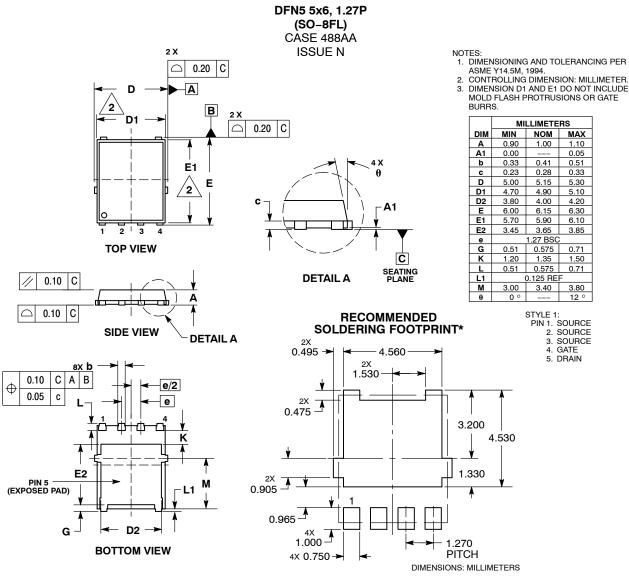



Figure 13. Thermal Characteristics

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make charges without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative