Power MOSFET 6.0 Amps, 20 Volts

N-Channel Enhancement Mode Dual SO-8 Package

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature Dual SO-8 Surface Mount Package
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- SO-8 Mounting Information Provided

Applications

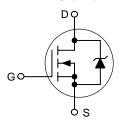
- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery–Powered Products, for example, Computers, Printers, Cellular and Cordless Telephones and **PCMCIA Cards**

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	20	V
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V_{DGR}	20	V
Gate-to-Source Voltage - Continuous	V_{GS}	±12	V
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	62.5 2.0 6.5 5.5	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	102 1.22 5.07 4.07 40	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	172 0.73 3.92 3.14 30	°C/W W A A

- 1. Mounted onto a 2" square FR-4 Board
- (1" sq. 2 oz. Cu 0.06" thick single sided), t < 10 seconds.

 2. Mounted onto a 2" square FR–4 Board
- (1'' sq. 2 oz. Cu 0.06'' thick single sided), t = steady state.
- 3. Minimum FR-4 or G-10 PCB, t = steady state.
- 4. Pulse Test: Pulse Width = 10 μs, Duty Cycle = 2%.



ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
20 V	$35 \text{ m}\Omega$ @ V _{GS} = 4.5 V	6.0 A

N-Channel

CASE 751 STYLE 11

MARKING DIAGRAM & PIN ASSIGNMENT

E6N02 = Device Code

= Assembly Location

= Year WW = Work Week

ORDERING INFORMATION

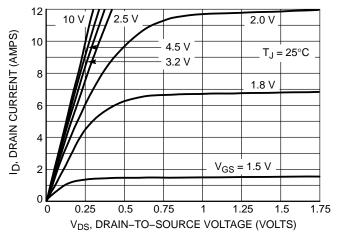
Device	Package	Shipping [†]
NTMD6N02R2	SO-8	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

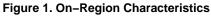
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) (continued)

Rating		Value	Unit
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 20 Vdc, V_{GS} = 5.0 Vdc, Peak I_L = 6.0 Apk, L = 20 mH, R_G = 25 Ω)		360	mJ
Maximum Lead Temperature for Soldering Purposes for 10 seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 5)

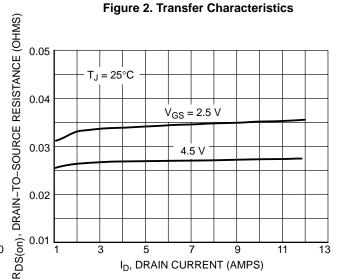

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Vo $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{Adc})$ Temperature Coefficient (Positive	V _{(BR)DSS}	20 -	_ 19.2	- -	Vdc mV/°C	
Zero Gate Voltage Drain Current $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{DS} =$	I _{DSS}	- -	- -	1.0 10	μAdc	
Gate-Body Leakage Current (Vo	_{GS} = +12 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	-	100	nAdd
Gate-Body Leakage Current (Vo	$_{GS} = -12 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	-	-	-100	nAdd
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = -250 \mu Adc)$ Temperature Coefficient (Negative	V _{GS(th)}	0.6	0.9 -3.0	1.2 -	Vdc mV/°C	
$ \begin{array}{l} {\rm Static\ Drain-to-Source\ On-Stat}\\ ({\rm V_{GS}}=4.5\ {\rm Vdc},\ {\rm I_{D}}=6.0\ {\rm Adc})\\ ({\rm V_{GS}}=4.5\ {\rm Vdc},\ {\rm I_{D}}=4.0\ {\rm Adc})\\ ({\rm V_{GS}}=2.7\ {\rm Vdc},\ {\rm I_{D}}=2.0\ {\rm Adc})\\ ({\rm V_{GS}}=2.5\ {\rm Vdc},\ {\rm I_{D}}=3.0\ {\rm Adc})\\ \end{array} $	R _{DS(on)}	- - - -	0.028 0.028 0.033 0.035	0.035 0.043 0.048 0.049	Ω	
Forward Transconductance (V _{DS}	$S = 12 \text{ Vdc}, I_D = 3.0 \text{ Adc}$	9FS	_	10	_	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	785	1100	pF
Output Capacitance	$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	260	450	
Reverse Transfer Capacitance	- ,	C _{rss}	-	75	180	
SWITCHING CHARACTERISTICS	S (Notes 6 and 7)					
Turn-On Delay Time		t _{d(on)}	-	12	20	ns
Rise Time	$(V_{DD} = 16 \text{ Vdc}, I_D = 6.0 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc},$	t _r	-	50	90	
Turn-Off Delay Time	$R_G = 6.0 \Omega$)	t _{d(off)}	-	45	75	
Fall Time		t _f	-	80	130	
Turn-On Delay Time		t _{d(on)}	-	11	18	ns
Rise Time	$(V_{DD} = 16 \text{ Vdc}, I_D = 4.0 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc},$	t _r	-	35	65	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vac},$ $R_{G} = 6.0 \Omega)$	t _{d(off)}	-	45	75	
Fall Time		t _f	-	60	110	
Total Gate Charge	(V _{DS} = 16 Vdc,	Q _{tot}	-	12	20	nC
Gate-Source Charge	$V_{GS} = 4.5 \text{ Vdc},$	Q _{gs}	-	1.5	_	1
Gate-Drain Charge	I _D = 6.0 Adc)	Qad	_	4.0	_	

- Handling precautions to protect against electrostatic discharge is mandatory
 Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperature.


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (continued) (Note 8)

Characteristic			Min	Тур	Max	Unit
BODY-DRAIN DIODE RATINGS	S (Note 9)					
Diode Forward On-Voltage		V _{SD}	- - -	0.83 0.88 0.75	1.1 1.2 -	Vdc
Reverse Recovery Time		t _{rr}	-	30	-	ns
	$(I_S = 6.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s})$	ta	-	15	-	
		t _b	-	15	-	
Reverse Recovery Stored Charge		Q_{RR}	-	0.02	_	μС

- 8. Handling precautions to protect against electrostatic discharge is mandatory.
- 9. Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.



12 $V_{DS} \ge 10 \text{ V}$ D, DRAIN CURRENT (AMPS) 10 8 6 25°C 100°C 2 $T_{II} = -55^{\circ}C$ 0 0.5 1.5 2 2.5 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

RDS(on), DRAIN-TO-SOURCE RESISTANCE (OHMS) 0.07 $I_D = 6.0 \text{ A}$ 0.06 $T_J = 25^{\circ}C$ 0.05 0.04 0.03 0.02 0.01 0 <u>L</u> 2 4 6 8 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 3. On-Resistance versus Gate-To-Source Voltage

3

5

Figure 4. On-Resistance versus Drain Current and Gate Voltage

7

I_D, DRAIN CURRENT (AMPS)

9

11

13

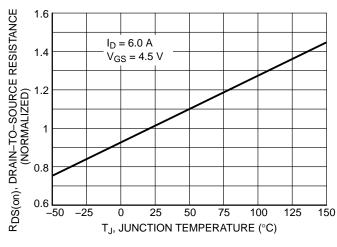
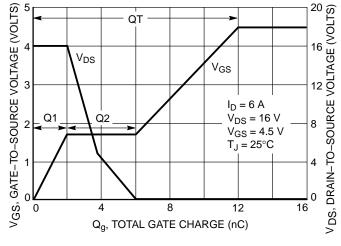



Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-To-Source Leakage Current versus Voltage

QT

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source **Voltage versus Total Charge**

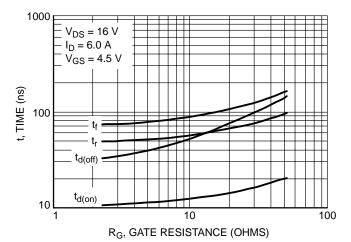
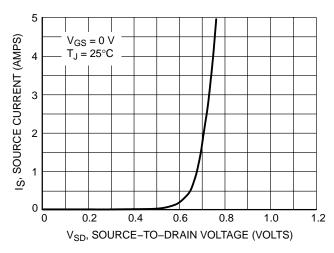



Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

 $\begin{array}{c} 100 \\ \hline \\ V_{GS} = 20 \text{ V} \\ \hline \\ SINGLE PULSE \\ \hline \\ T_C = 25^{\circ}C \\ \hline \\ 100 \text{ µs} \\ \hline \\ 10 \text{ ms} \\ \hline \\ 0.1 \text{ } 10 \text{ ms} \\ \hline \\ 0.1 \text{ } 10 \text{ } 100 \\ \hline \\ V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) \\ \end{array}$

Figure 10. Diode Forward Voltage versus Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

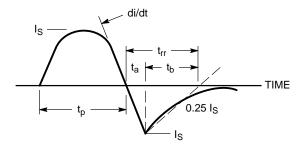
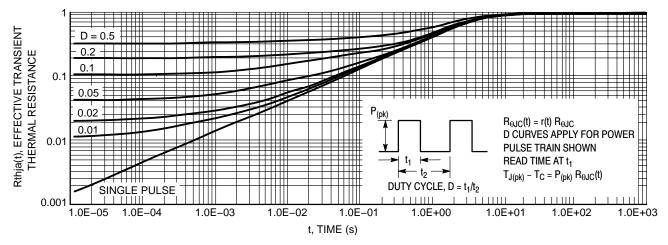
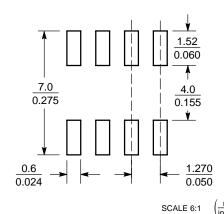


Figure 12. Diode Reverse Recovery Waveform

TYPICAL ELECTRICAL CHARACTERISTICS




Figure 13. Thermal Response

PACKAGE DIMENSIONS

SO-8 CASE 751-07 **ISSUE AB**

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- AND LES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0 244	

STYLE 11:

- PIN 1 SOURCE 1
 - GATE 1
 - SOURCE 2
 - GATE 2 DRAIN 2
 - DRAIN 2
 - DRAIN 1
 - DRAIN 1

details, please download the ON Semiconductor Soldering and

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.