# Onsemi

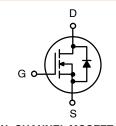
# Silicon Carbide (SiC) **MOSFET** - EliteSiC, 23 mohm, 650 V, M3S, TO-247-3L NTHL023N065M3S

# Features

- Typical  $R_{DS(on)} = 23 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge ( $Q_{G(tot)} = 69 \text{ nC}$ )
- High Speed Switching with Low Capacitance ( $C_{oss} = 153 \text{ pF}$ )
- 100% Avalanche Tested
- This Device is Halide Free and RoHS Compliant with Exemption 7a, Pb-Free 2LI (on second level interconnection)

#### Applications

• SMPS, Solar Inverters, UPS, Energy Storages, EV Charging Infrastructure

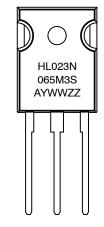

| <b>MAXIMUM RATINGS</b> (T <sub>J</sub> = 25°C unless otherwise noted)      |                                                                                         |                                   |                |    |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|----------------|----|--|--|
| Parameter                                                                  | Symbol                                                                                  | Value                             | Unit           |    |  |  |
| Drain-to-Source Voltage                                                    |                                                                                         | V <sub>DSS</sub>                  | 650            | V  |  |  |
| Gate-to-Source Voltage                                                     |                                                                                         | V <sub>GS</sub>                   | -8/+22         | V  |  |  |
| Continuous Drain Current                                                   | T <sub>C</sub> = 25°C                                                                   | Ι <sub>D</sub>                    | 70             | А  |  |  |
| Power Dissipation                                                          |                                                                                         | PD                                | 263            | W  |  |  |
| Continuous Drain Current                                                   | T <sub>C</sub> = 100°C                                                                  | I <sub>D</sub>                    | 49             | А  |  |  |
| Power Dissipation                                                          |                                                                                         | PD                                | 131            | W  |  |  |
| Pulsed Drain Current<br>(Note 1)                                           | T <sub>C</sub> = 25°C<br>t <sub>p</sub> = 100 μs                                        | I <sub>DM</sub>                   | 218            | A  |  |  |
| Continuous Source-Drain<br>Current (Body Diode)                            | $\begin{array}{l} T_{C} = 25^{\circ}C \\ V_{GS} = -3 \ V \end{array}$                   | IS                                | 40             | A  |  |  |
|                                                                            | $\begin{array}{l} T_C = 100^\circ C \\ V_{GS} = -3 \ V \end{array}$                     |                                   | 23             |    |  |  |
| Pulsed Source-Drain Current<br>(Body Diode)<br>(Note 1)                    | $\begin{array}{l} T_C = 25^\circ C \\ V_{GS} = -3 \ V \\ t_p = 100 \ \mu s \end{array}$ | I <sub>SM</sub>                   | 181            | A  |  |  |
| Single Pulse Avalanche Energy<br>(Note 2)                                  | I <sub>LPK</sub> = 19.6 A,<br>L = 1 mH                                                  | E <sub>AS</sub>                   | 192            | mJ |  |  |
| Operating Junction and Storage Temperature<br>Range                        |                                                                                         | T <sub>J</sub> , T <sub>stg</sub> | –55 to<br>+175 | °C |  |  |
| Lead Temperature for Soldering Purposes<br>(1/8" from case for 10 seconds) |                                                                                         | ΤL                                | 270            | °C |  |  |

## 

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating, limited by max junction temperature. 2.  $E_{AS}$  of 192 MJ is based on starting  $T_J = 25^{\circ}C$ , L = 1 mH,  $I_{AS} = 19.6$  A,  $V_{DD} = 100 \text{ V}, \text{ V}_{GS} = 18 \text{ V}$

| V <sub>(BR)DSS</sub> | NDSS R <sub>DS(ON)</sub> TYP   |      |
|----------------------|--------------------------------|------|
| 650 V                | 23 mΩ @ V <sub>GS</sub> = 18 V | 70 A |








TO-247-3LD CASE 340CX

#### MARKING DIAGRAM



HL023N065M3S = Specific Device Code = Assembly Location А

- = Year
- Υ
- WW = Work Week ΖZ
- = Lot Traceability

#### **ORDERING INFORMATION**

| Device         | Package   | Shipping           |
|----------------|-----------|--------------------|
| NTHL023N065M3S | TO-247-3L | 30 Units /<br>Tube |

# DATA SHEET

www.onsemi.com

#### THERMAL CHARACTERISTICS

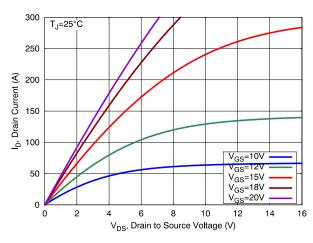
| Parameter                                        | Symbol              | Value | Unit |
|--------------------------------------------------|---------------------|-------|------|
| Thermal Resistance, Junction-to-Case (Note 3)    | $R_{	ext{	heta}JC}$ | 0.57  | °C/W |
| Thermal Resistance, Junction-to-Ambient (Note 3) | $R_{\thetaJA}$      | 40    |      |

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

#### **RECOMMENDED OPERATING CONDITIONS**

| Parameter                                  | Symbol     | Value      | Unit |
|--------------------------------------------|------------|------------|------|
| Operation Values of Gate-to-Source Voltage | $V_{GSop}$ | -53<br>+18 | V    |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.


#### **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                                                    | Symbol                           | Test Conditions                                                                                                       | Min | Тур  | Max  | Unit  |
|--------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|------|------|-------|
| OFF CHARACTERISTICS                                          |                                  |                                                                                                                       |     |      |      |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>             | $V_{GS}$ = 0 V, $I_D$ = 1 mA, $T_J$ = 25°C                                                                            | 650 | -    | -    | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | $\Delta V_{(BR)DSS}/ \Delta T_J$ | $I_D = 1 \text{ mA}$ , Referenced to 25°C                                                                             | -   | 89   | -    | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                 | $V_{DS}$ = 650 V, $T_J$ = 25°C                                                                                        | -   | -    | 10   | μΑ    |
|                                                              |                                  | $V_{DS}$ = 650 V, $T_J$ = 175°C (Note 5)                                                                              | -   | -    | 500  | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                 | $V_{GS} = -8/+22$ V, $V_{DS} = 0$ V                                                                                   | -   | -    | ±1.0 | μΑ    |
| ON CHARACTERISTICS                                           |                                  |                                                                                                                       |     |      |      |       |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>              | $V_{GS}$ = 18 V, $I_D$ = 20 A, $T_J$ = 25°C                                                                           | -   | 23   | 33   | mΩ    |
|                                                              |                                  | V <sub>GS</sub> = 18 V, I <sub>D</sub> = 20 A, T <sub>J</sub> = 175°C<br>(Note 5)                                     | -   | 35   | _    |       |
|                                                              |                                  | $V_{GS}$ = 15 V, $I_D$ = 20 A, $T_J$ = 25°C                                                                           | -   | 29   | -    | 1     |
|                                                              |                                  | V <sub>GS</sub> = 15 V, I <sub>D</sub> = 20 A, T <sub>J</sub> = 175°C<br>(Note 5)                                     | -   | 37   | -    |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>              | $V_{GS}$ = $V_{DS}$ , $I_D$ = 10 mA, $T_J$ = 25°C                                                                     | 2   | 2.8  | 4    | V     |
| Forward Transconductance                                     | 9 <sub>FS</sub>                  | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 20 A (Note 5)                                                                | -   | 14   | -    | S     |
| CHARGES, CAPACITANCES & GATE I                               | RESISTANCE                       |                                                                                                                       |     |      |      |       |
| Input Capacitance                                            | C <sub>ISS</sub>                 | $V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                                     | -   | 1952 | -    | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                 | (Note 5)                                                                                                              | -   | 153  | -    | 1     |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                 |                                                                                                                       | -   | 13   | -    |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>              | $V_{DD} = 400 \text{ V}, \text{ I}_{D} = 20 \text{ A},$                                                               | -   | 69   | -    | nC    |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                  | V <sub>GS</sub> = -3/18 V (Note 5)                                                                                    | -   | 19   | -    |       |
| Gate-to-Drain Charge                                         | Q <sub>GD</sub>                  |                                                                                                                       | _   | 18   | -    | 1     |
| Gate Resistance                                              | R <sub>G</sub>                   | f = 1 MHz                                                                                                             | -   | 4.0  | -    | Ω     |
| SWITCHING CHARACTERISTICS                                    |                                  |                                                                                                                       |     |      |      |       |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>               | $V_{GS}$ = -3/18 V, $V_{DD}$ = 400 V,<br>I <sub>D</sub> = 20 A, R <sub>G</sub> = 4.7 $\Omega$ , T <sub>J</sub> = 25°C | -   | 12   | -    | ns    |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>              | I <sub>D</sub> = 20 A, R <sub>G</sub> = 4.7 Ω, T <sub>J</sub> = 25°C<br>(Notes 4 and 5)                               | -   | 38   | -    | 1     |
| Rise Time                                                    | t <sub>r</sub>                   |                                                                                                                       | _   | 30   | -    | ]     |
| Fall Time                                                    | t <sub>f</sub>                   |                                                                                                                       | _   | 11   | -    | ]     |
| Turn-On Switching Loss                                       | E <sub>ON</sub>                  |                                                                                                                       | _   | 174  | -    | μJ    |
| Turn-Off Switching Loss                                      | E <sub>OFF</sub>                 |                                                                                                                       | _   | 44   | -    | ]     |
| Total Switching Loss                                         | E <sub>TOT</sub>                 |                                                                                                                       | -   | 218  | -    | ]     |

#### ELECTRICAL CHARACTERISTICS (T<sub>.1</sub> = 25°C unless otherwise specified) (continued)

| Parameter                     | Symbol              | Test Conditions                                                                            | Min | Тур | Max | Unit |
|-------------------------------|---------------------|--------------------------------------------------------------------------------------------|-----|-----|-----|------|
| SWITCHING CHARACTERISTICS     | •                   | -                                                                                          | •   |     |     |      |
| Turn-On Delay Time            | t <sub>d(ON)</sub>  | $V_{GS} = -3/18 \text{ V}, V_{DD} = 400 \text{ V},$                                        | -   | 11  | _   | ns   |
| Turn-Off Delay Time           | t <sub>d(OFF)</sub> | I <sub>D</sub> = 20 A, R <sub>G</sub> = 4.7 Ω, T <sub>J</sub> = 175°C<br>(Notes 4 and 5)   | -   | 45  | _   |      |
| Rise Time                     | t <sub>r</sub>      |                                                                                            | -   | 29  | -   |      |
| Fall Time                     | t <sub>f</sub>      |                                                                                            | -   | 14  | _   |      |
| Turn-On Switching Loss        | E <sub>ON</sub>     |                                                                                            | -   | 173 | -   | μJ   |
| Turn-Off Switching Loss       | E <sub>OFF</sub>    |                                                                                            | -   | 64  | _   |      |
| Total Switching Loss          | E <sub>TOT</sub>    |                                                                                            | -   | 237 | _   |      |
| SOURCE-TO-DRAIN DIODE CHARAG  | TERISTICS           |                                                                                            |     |     |     |      |
| Forward Diode Voltage         | V <sub>SD</sub>     | $I_{SD} = 20 \text{ A}, \text{ V}_{GS} = -3 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$ | -   | 4.5 | 6.0 | V    |
|                               |                     | $I_{SD}$ = 20 A, $V_{GS}$ = -3 V, $T_{J}$ = 175°C<br>(Note 5)                              | _   | 4.2 | -   |      |
| Reverse Recovery Time         | t <sub>RR</sub>     | $V_{GS} = -3 V$ , $I_{S} = 20 A$ ,                                                         | -   | 20  | _   | ns   |
| Charge Time                   | t <sub>a</sub>      | dl/dt = 1000 A/μs, V <sub>DS</sub> = 400 V,<br>T <sub>.1</sub> = 25°C (Note 5)             | -   | 11  | _   |      |
| Discharge Time                | t <sub>b</sub>      |                                                                                            | -   | 9   | _   |      |
| Reverse Recovery Charge       | Q <sub>RR</sub>     | 1                                                                                          | -   | 95  | -   | nC   |
| Reverse Recovery Energy       | E <sub>REC</sub>    | 1                                                                                          | -   | 6.9 | -   | μJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub>    | 1                                                                                          | -   | 9.8 | _   | А    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. EON/EOFF result is with body diode.
5. Defined by design, not subject to production test.





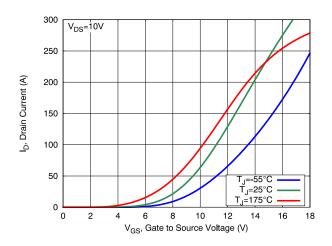



Figure 3. Transfer Characteristics

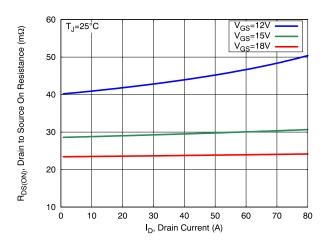



Figure 5. On-Resistance vs Drain Current

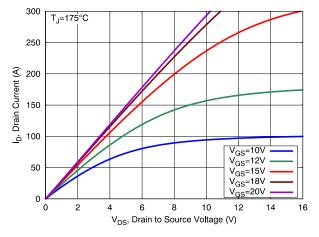



Figure 2. Output Characteristics

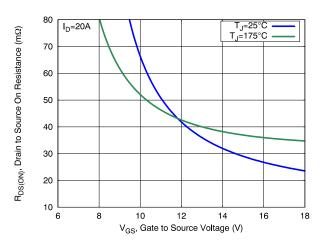



Figure 4. On-Resistance vs Gate Voltage

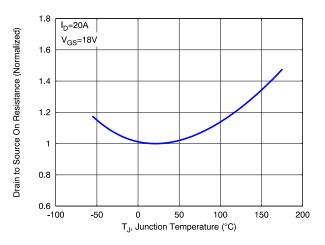



Figure 6. On–Resistance vs Junction Temperature

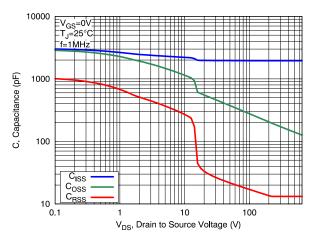



Figure 7. Capacitance Characteristics

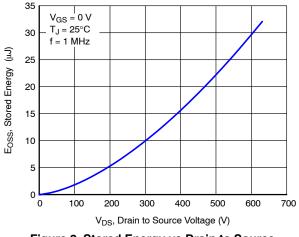



Figure 8. Stored Energy vs Drain to Source Voltage

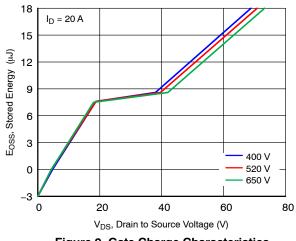



Figure 9. Gate Charge Characteristics

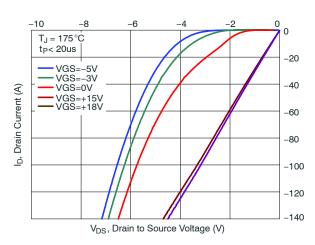



Figure 11. Reverse Conduction Characteristics

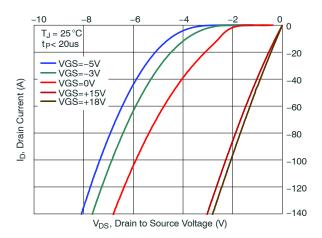



Figure 10. Reverse Conduction Characteristics

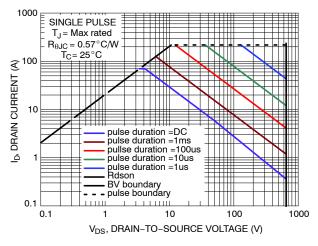



Figure 12. Safe Operating Area

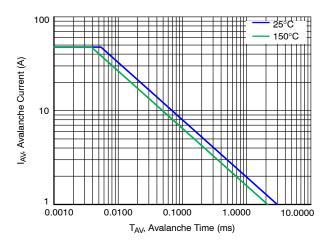
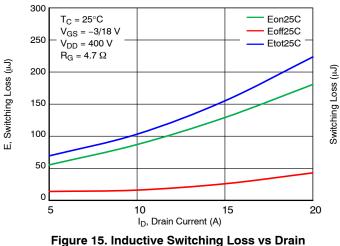
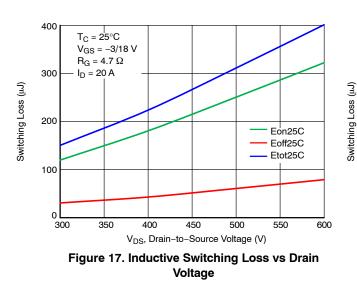





Figure 13. Avalanche Current vs Pulse Time (UIS)







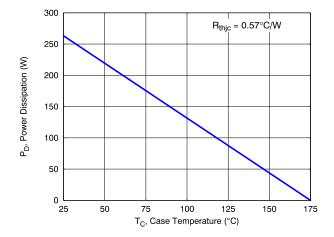



Figure 14. Maximum Power Dissipation vs Case Temperature

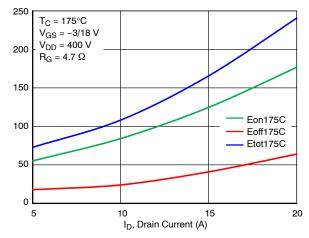



Figure 16. Inductive Switching Loss vs Drain Current

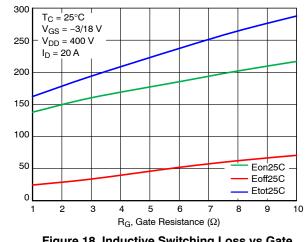
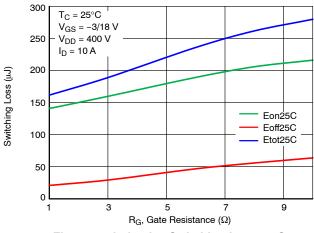




Figure 18. Inductive Switching Loss vs Gate Resistance





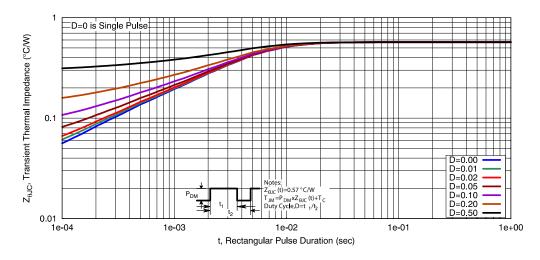
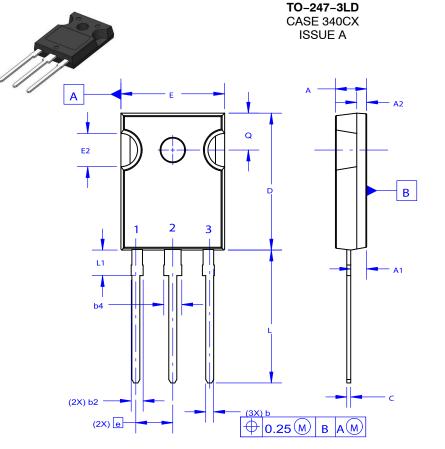




Figure 20. Thermal Response Characteristics





NOTES: UNLESS OTHERWISE SPECIFIED.

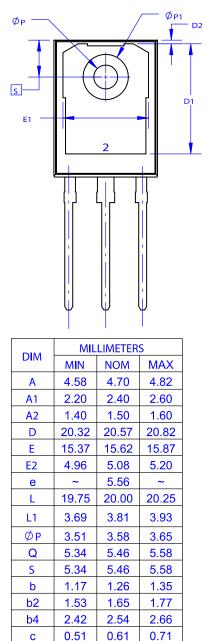
- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

γ

# GENERIC **MARKING DIAGRAM\*** Х



| XXXXX | = Specific Device Code |
|-------|------------------------|
| Α     | = Assembly Location    |


- = Assembly Location
- = Year
- ww = Work Week
- G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON93302G | BAON93302G Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TO-247-3LD  |                                                                                                                                                                                                | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 06 JUL 2020



D1

D2

E1

ØP1

13.08

0.51

12.81

6.60

~

0.93

~

6.80

~

1.35

~

7.00

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>