NTE7156 Integrated Circuit DC-Coupled Vertical Deflection Circuit #### **Description:** The NTE7156 is a power circuit in a 9–Lead SIP type package designed for use in 90° and 110° color deflection systems for field frequencies of 50Hz to 120Hz. This device provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system. #### Features: - Few External Components - Highly Efficient Fully DC-Coupled Vertical Output Bridge Circuit - Vertical Flyback Switch - Guard Circuit DC Supply - Protection Against: - Short–Circuit of the Output Pins (7 and 4) - Short-Circuit of the Output Pins to VP - Temperature Protection - High EMC Immunity Because of Common Mode Inputs - A Guard Signal in Zoom Mode ### **Absolute Maximum Ratings:** | DC Supply | | |---|--------| | Supply Voltage, V _P | | | Non-Operating | 40V | | Operating | | | Flyback Supply Voltage, V _{FB} | 50V | | Note 1 | 60V | | Vertical Circuit | | | Output Current (Peak-to-Peak Value, Note 2), I _{O(P-P)} | 3A | | Output Voltage (Pin7), V _{O(A)} | 52V | | Output Voltage (Pin7), V _{O(A)} | 62V | | Flyback Switch | | | Peak Output Current, I _M | ±15A | | Thermal Data | | | Virtual Junction Temperature, T _{VJ} | +150°C | | Operating Ambient Temperature Range, T _A | | | Storage Temperature Range, T _{stq} | | | Thermal Resistance, Virtual Junction-to-Ambient, RthVJ-C | | | Thermal Resistance, Virtual Junction-to-Case, R _{thVJ-A} | | | Short–Circuit Time (Note 3), t _{sc} | | | · · · · · · · · · · · · · · · · · · · | | - Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω . - Note 2. I_O maximum determined by current protection. - Note 3. Up to $V_P = 18V$. ## | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------------|---|----------------|------|------------------|------| | DC Supply | <u> </u> | | ı | | | | | Operating Supply Voltage | V _P | | 9 | _ | 25 | V | | Flyback Supply Voltage | V_{FB} | | V _P | _ | 50 | V | | | | Note 1 | V _P | _ | 60 | V | | Supply Current | l _P | No Load, No Signal | _ | 30 | 55 | mA | | Vertical Circuit | Į. | | I. | - 1 | | | | Output Voltage Swing (Scan) | V _O | $I_{diff} = 0.6mA_{(P-P)}, V_{diff} = 1.8V_{(P-P)}, I_{O} = 3A_{(P-P)}$ | 19.8 | - | - | V | | Linearity Error | LE | $I_O = 3A_{(P-P)}$, Note 4 | _ | 1 | 3 | % | | | | $I_O = 50 \text{mA}_{(P-P)}$, Note 4 | _ | 1 | 3 | % | | Output Voltage Swing (Flyback) $V_{O(A)} - V_{O(B)}$ | V _O | $I_{\text{diff}} = 0.3\text{mA}, I_{\text{O}} = 1.5\text{A}$ | _ | 39 | - | V | | Forward Voltage of the Internal
Efficiency Diode (V _{O(A)} – V _{FB}) | V_{DF} | $I_{O} = -1.5A$, $I_{diff} = 0.3mA$ | - | - | 1.5 | V | | Output Offset Current | I _{OS} | $I_{diff} = 0$, $I_{I(sb)} = 50\mu A$ to $500\mu A$ | _ | _ | 30 | mA | | Offset Voltage at the Input of the Feedback Amplifier $(V_{I(fb)} - V_{O(B)})$ | ΔV _{OS} T | I _{diff} = 0 | _ | - | 72 | μV/K | | DC Output Voltage | V _{O(A)} | I _{diff} = 0, Note 5 | _ | 8 | - | V | | Open Loop Voltage Gain (V _{7–4} /V _{1–2}) | G _{VO} | Note 6, Note 7 | _ | 80 | - | dB | | Open Loop Voltage Gain $(V_{7-4}/V_{9-4}, V_{1-2} = 0)$ | | Note 6 | _ | 80 | - | dB | | Voltage Ratio V ₁₋₂ /V ₉₋₄ | V _R | | - | 0 | _ | dB | | Frequency Response (-3dB) | f _{res} | Open Loop, Note 8 | _ | 40 | _ | Hz | | Current Gain (I _O /I _{diff}) | G _I | | _ | 5000 | _ | | | Current Gain Drift as a Function of Temperature | ∆G _C T | | - | - | 10 ⁻⁴ | K | | Signal Bias Current | I _{I(sb)} | | 50 | 400 | 500 | μΑ | | Flyback Supply Current | I _{FB} | During Scan | - | _ | 100 | μΑ | | Power Supply Ripple Rejection | PSRR | Note 9 | - | 80 | _ | dB | | DC Input Voltage | V _{I(DC)} | | _ | 2.7 | _ | V | | Common Mode Input Voltage | V _{I(CM)} | $I_{I(sb)} = 0$ | 0 | _ | 1.6 | V | | Input Bias Current | I _{bias} | $I_{I(sb)} = 0$ | _ | 0.1 | 0.5 | μΑ | | Common Mode Output Current | I _{O(CM)} | $\begin{array}{l} \Delta I_{I(sub)} = 300 \mu A_{(P-P)}, f_i = 50 Hz, \\ I_{diff} = 0 \end{array}$ | _ | 0.2 | _ | mA | | Guard Circuit | | • | _ | • | | | | Output Current | I _O | Not Active, V _{O(guard)} = 0V | _ | _ | 50 | μА | | | | Active, V _{O(guard)} = 3.6V | 1.0 | _ | 2.5 | mA | | Output Voltage on Pin8 | V _{O(guard)} | I _O = 100μA | 4.6 | _ | 5.5 | V | | Allowable Voltage on Pin8 | | Maximum Leakage Current = 10μΑ | _ | _ | 40 | V | #### Notes: - Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω . - Note 4. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows: Divide the output signal I₄ I₇ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below: $$LEAB = \ \frac{a_k - a_{(k+1)}}{a_{avg}} \ ; LEAB = \ \frac{a_{max} - a_{min}}{a_{avg}}$$ - Note 5. Referenced to V_P. - Note 6. The V values within formulae relate to voltages at or across relative pin numbers, i.e. $V_{7-4}/V_{1-2} = voltage value across Pin7 and Pin4 divided by voltage value across Pin1 and Pin2.$ - Note 7. V₉₋₄ AC short-circuited. - Note 8. Frequency response V_{7-4}/V_{9-4} is equal to frequency response V_{7-4}/V_{1-2} . - Note 9. At $V_{(ripple)} = 500 \text{mV}$ eff; measured across R_M ; $f_i = 50 \text{Hz}$.