

NTE7156 Integrated Circuit DC-Coupled Vertical Deflection Circuit

Description:

The NTE7156 is a power circuit in a 9–Lead SIP type package designed for use in 90° and 110° color deflection systems for field frequencies of 50Hz to 120Hz. This device provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

Features:

- Few External Components
- Highly Efficient Fully DC-Coupled Vertical Output Bridge Circuit
- Vertical Flyback Switch
- Guard Circuit

DC Supply

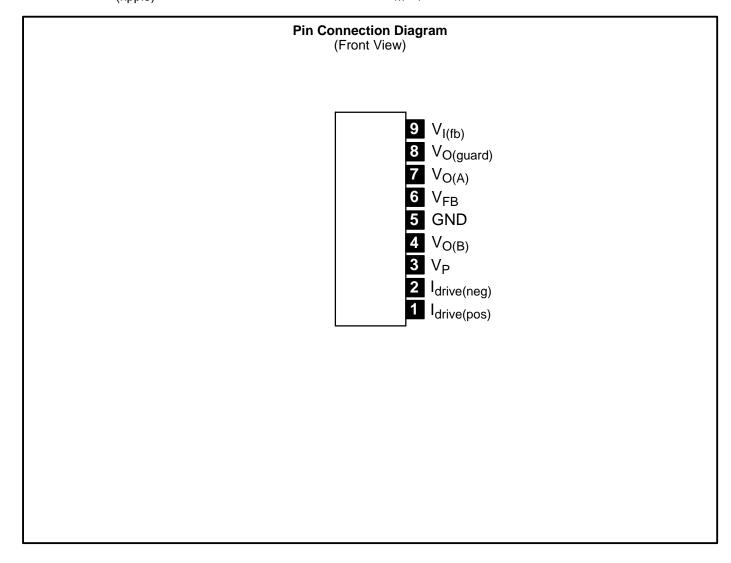
- Protection Against:
 - Short–Circuit of the Output Pins (7 and 4)
 - Short-Circuit of the Output Pins to VP
- Temperature Protection
- High EMC Immunity Because of Common Mode Inputs
- A Guard Signal in Zoom Mode

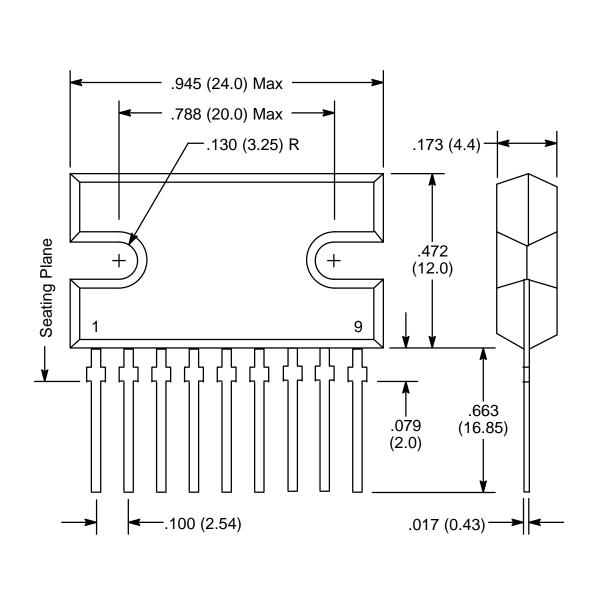
Absolute Maximum Ratings:

DC Supply	
Supply Voltage, V _P	
Non-Operating	40V
Operating	
Flyback Supply Voltage, V _{FB}	50V
Note 1	60V
Vertical Circuit	
Output Current (Peak-to-Peak Value, Note 2), I _{O(P-P)}	3A
Output Voltage (Pin7), V _{O(A)}	52V
Output Voltage (Pin7), V _{O(A)}	62V
Flyback Switch	
Peak Output Current, I _M	±15A
Thermal Data	
Virtual Junction Temperature, T _{VJ}	+150°C
Operating Ambient Temperature Range, T _A	
Storage Temperature Range, T _{stq}	
Thermal Resistance, Virtual Junction-to-Ambient, RthVJ-C	
Thermal Resistance, Virtual Junction-to-Case, R _{thVJ-A}	
Short–Circuit Time (Note 3), t _{sc}	
· · · · · · · · · · · · · · · · · · ·	

- Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω .
- Note 2. I_O maximum determined by current protection.
- Note 3. Up to $V_P = 18V$.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DC Supply	<u> </u>		ı			
Operating Supply Voltage	V _P		9	_	25	V
Flyback Supply Voltage	V_{FB}		V _P	_	50	V
		Note 1	V _P	_	60	V
Supply Current	l _P	No Load, No Signal	_	30	55	mA
Vertical Circuit	Į.		I.	- 1		
Output Voltage Swing (Scan)	V _O	$I_{diff} = 0.6mA_{(P-P)}, V_{diff} = 1.8V_{(P-P)}, I_{O} = 3A_{(P-P)}$	19.8	-	-	V
Linearity Error	LE	$I_O = 3A_{(P-P)}$, Note 4	_	1	3	%
		$I_O = 50 \text{mA}_{(P-P)}$, Note 4	_	1	3	%
Output Voltage Swing (Flyback) $V_{O(A)} - V_{O(B)}$	V _O	$I_{\text{diff}} = 0.3\text{mA}, I_{\text{O}} = 1.5\text{A}$	_	39	-	V
Forward Voltage of the Internal Efficiency Diode (V _{O(A)} – V _{FB})	V_{DF}	$I_{O} = -1.5A$, $I_{diff} = 0.3mA$	-	-	1.5	V
Output Offset Current	I _{OS}	$I_{diff} = 0$, $I_{I(sb)} = 50\mu A$ to $500\mu A$	_	_	30	mA
Offset Voltage at the Input of the Feedback Amplifier $(V_{I(fb)} - V_{O(B)})$	ΔV _{OS} T	I _{diff} = 0	_	-	72	μV/K
DC Output Voltage	V _{O(A)}	I _{diff} = 0, Note 5	_	8	-	V
Open Loop Voltage Gain (V _{7–4} /V _{1–2})	G _{VO}	Note 6, Note 7	_	80	-	dB
Open Loop Voltage Gain $(V_{7-4}/V_{9-4}, V_{1-2} = 0)$		Note 6	_	80	-	dB
Voltage Ratio V ₁₋₂ /V ₉₋₄	V _R		-	0	_	dB
Frequency Response (-3dB)	f _{res}	Open Loop, Note 8	_	40	_	Hz
Current Gain (I _O /I _{diff})	G _I		_	5000	_	
Current Gain Drift as a Function of Temperature	∆G _C T		-	-	10 ⁻⁴	K
Signal Bias Current	I _{I(sb)}		50	400	500	μΑ
Flyback Supply Current	I _{FB}	During Scan	-	_	100	μΑ
Power Supply Ripple Rejection	PSRR	Note 9	-	80	_	dB
DC Input Voltage	V _{I(DC)}		_	2.7	_	V
Common Mode Input Voltage	V _{I(CM)}	$I_{I(sb)} = 0$	0	_	1.6	V
Input Bias Current	I _{bias}	$I_{I(sb)} = 0$	_	0.1	0.5	μΑ
Common Mode Output Current	I _{O(CM)}	$\begin{array}{l} \Delta I_{I(sub)} = 300 \mu A_{(P-P)}, f_i = 50 Hz, \\ I_{diff} = 0 \end{array}$	_	0.2	_	mA
Guard Circuit		•	_	•		
Output Current	I _O	Not Active, V _{O(guard)} = 0V	_	_	50	μА
		Active, V _{O(guard)} = 3.6V	1.0	_	2.5	mA
Output Voltage on Pin8	V _{O(guard)}	I _O = 100μA	4.6	_	5.5	V
Allowable Voltage on Pin8		Maximum Leakage Current = 10μΑ	_	_	40	V


Notes:


- Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω .
- Note 4. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows:

 Divide the output signal I₄ I₇ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below:

$$LEAB = \ \frac{a_k - a_{(k+1)}}{a_{avg}} \ ; LEAB = \ \frac{a_{max} - a_{min}}{a_{avg}}$$

- Note 5. Referenced to V_P.
- Note 6. The V values within formulae relate to voltages at or across relative pin numbers, i.e. $V_{7-4}/V_{1-2} = voltage value across Pin7 and Pin4 divided by voltage value across Pin1 and Pin2.$
- Note 7. V₉₋₄ AC short-circuited.
- Note 8. Frequency response V_{7-4}/V_{9-4} is equal to frequency response V_{7-4}/V_{1-2} .
- Note 9. At $V_{(ripple)} = 500 \text{mV}$ eff; measured across R_M ; $f_i = 50 \text{Hz}$.

