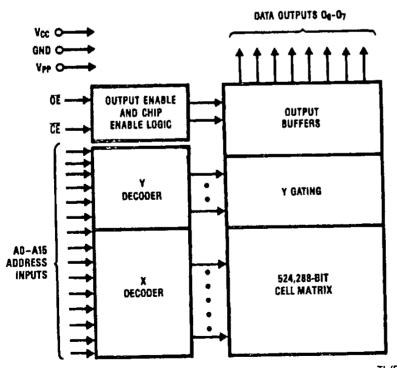


NMC27C512A 524,288-Bit (64k x 8) UV Erasable CMOS PROM

General Description

The NMC27C512A is a high-speed 512k UV erasable and electrically reprogrammable CMOS EPROM, ideally suited for applications where fast turnaround, pattern experimentation and low power consumption are important requirements.

The NMC27C512A is designed to operate with a single $\pm 5V$ power supply with $\pm 10\%$ tolerance. The CMOS design allows the part to operate over Extended and Military Temperature Ranges.

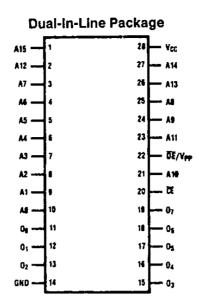

The NMC27C512A is packaged in a 28-pin dual in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written electrically into the device by following the programming procedure.

These EPROMs are fabricated with National's proprietary, time proven microCMOS double-poly silicon gate technology which combines high performance and high density with low power consumption and excellent reliability.

Features

- Clocked sense amps for fast access time down to 90 ns
- Low CMOS power consumption
 - Active Power: 220 mW max
 - Standby Power: 0.55 mW max
- Performance compatible to NSC800 CMOS microprocessor
- Single 5V power supply
- Extended temperature range (NMC27C512AQE120), -40°C to 85°C, and military temperature range (NMC27C512AQM150), -55°C to 125°C, available
- Pin compatible with NMOS 512k EPROMS
- Fast and reliable programming (0.5 ms for most bytes)
- Static operation—no clocks required
- TTL, CMOS compatible inputs/outputs
- TRI-STATE® output

Block Diagram


Pin Names

A0-A15	Addresses
CE	Chip Enable
ŌE/V _{PP}	Output Enable/Pro- gramming Voltage
00-07	Outputs
PGM	Program
NC	No Connect

TL/D/9181-1

Connection Diagram

27C256	27C128	27C64	27C32	27C16
27256	256 27128		2732	2716
V _{PP}	V _{PP}	V _{PP}		
A12	A12	A12		
A7	A7	A7	A7	A7
A6	A6	A6	A6	A6
A5	A5	A5	A5	A 5
A4	A4	A4	A4	A4
A3	A3	A3	АЗ	АЗ
A2	A2	A2	A2	A2
A1	A1	A1	A1	A1
A0	A0	A0	A0	A0
00	00	00	00	00
01	O ₁	01	01	O ₁
02	02	02	02	02
GND	GND	GND	GND	GND

27C16 2716	27C32 2732	27C64 2764	27C128 27128	27C256 27256
		V _{CC} PGM	V _{CC}	V _{CC} A14
Vcc	V _{CC}	NC	A13	A13
A8	A8	A8	A8	A8
A9	A9	A9	A9	A9
V _{PP}	A11	A11	A11	A11
ŌĒ	OE/VPP	ŌĒ	ŌĒ	ŌĒ
A10	A10	A10	A10	A10
CE/V _{PP}	CE	CE	CE	CE
07	07	07	07	07
Oe	06	6 O6 O6		06
05	05	05	05	05
04	04	04	04	04
О3	Oз	03	O ₃	О3

TL/D/9181-2

Order Number NMC27C512AQ See NS Package Number J28A-Q

Note: National's socket compatible EPROM pin configurations are shown in the blocks adjacent to the NMC27C512A pins.

Commercial Temp Range (0°C to +70°C)

 $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)
NMC27C512AQ90	90
NMC27C512AQ120	120
NMC27C512AQ150	150
NMC27C512AQ200	200

Extended Temp Range (-40°C to +85°C)

 $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)
NMC27C512AQE120	120

Military Temp Range (-55°C to +125°C)

 $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)			
NMC27C512AQM150	150			

0°C to +70°C

Absolute Maximum Ratings (Note 1)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

-10°C to +80°C Temperature Under Bias

-65°C to +125°C Storage Temperature

All Input Voltages and A9 with

+6.5V to -0.6VRespect to Ground

All Output Voltages with

 V_{CC} + 0.3 to GND - 0.6V Respect to Ground

VPP Supply Voltage and A9 with

+ 13.0 V to -0.6 VRespect to Ground 1.0W **Power Dissipation**

Lead Temperature (Soldering, 10 sec.)

300°C ESD Rating to be determined.

Operating Conditions (Note 7)

5V ±10% **V_{CC}** Power Supply

Temperature Range

NMC27C512AQ90, 120, 150, 200

NMC27C512AQE120

-40°C to +85°C -55°C to +125°C NMC27C512AQM150

Read Operation

DC Electrical Characteristics

	trical Characteris	Conditions	Min	Typ (Note 2)	Max	Units
Symbol		$V_{IN} = V_{CC}$ or GND			10	μΑ
i _{Ll}	Input Load Current				10	μΑ
lLO	Output Leakage Current	$V_{OUT} = V_{CC}$ or GND $\overline{CE} = V_{IH}$		15	50	mA
l _{CC1} (Note 10)	V _{CC} Current (Active) TTL Inputs	$\overline{CE} = V_{IL}$, $f = 5 \text{ MHZ}$ All inputs = V_{IH} or V_{IL} I/O = 0 mA		15		
I _{CC2} (Note 10)	V _{CC} Current (Active) CMOS Inputs	CE = GND, f = 5 MHz All Inputs = V _{CC} or GND, I/O = 0 mA		10	30	mA
ICCSB1	V _{CC} Current (Standby) TTL Inputs	CE = VIH		0.1	1	mA
ICCSB2	V _{CC} Current (Standby) CMOS Inputs	CE = V _{CC}		0.5	100	μΑ
V _{IL}	Input Low Voltage		-0.1	<u></u>	0.8	V
	Input High Voltage		2.0		V _{CC} +1	V
VIH		I _{OL} = 2.1 mA			0.45	<u> </u>
V _{OL1}	Ouput Low Voltage		2.4			<u>v</u>
V _{OH1}	Output High Voltage	$I_{OH} = -400 \mu\text{A}$	 	<u> </u>	0.1	V
Vol2	Output Low Voltage	l _{OL} = 0 μA	1 24	 	 	V
V _{OH2}	Output High Voltage	l _{OH} = 0 μA	V _{CC} -0.1	<u> </u>	<u> </u>	<u> </u>

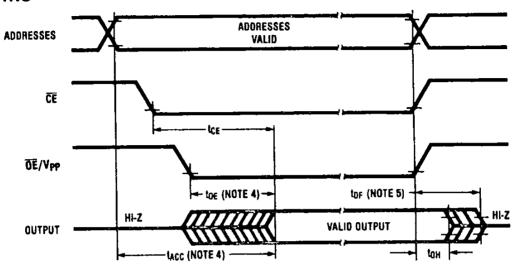
AC Electrical Characteristics

Symbol	Parameter	Conditions	NMC27C512A 90		NMC27C512A 120 E120		NMC27C512A 150 M150		NMC27C512A 200		Units
Oyinize.			Min	Max	Min	Max	Min	Max	Min	Max	
tACC	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		90		120		150		200	ns
	CE to Output Delay	OE = VIL		90		120		150		200	ns
t _{CE}	OE to Output Delay	CE = VIL		40		50		60	<u></u>	75	ns
t _{OE}	OE High to Output Float	CE = V _{IL}	0	40	0	40	0	50		60	ns
фон	Output Hold from Addresses, Œ or ŌĒ, Whichever Occurred First	CE = OE = V _{IL}	0		0		0		0		ns

Capacitance T_A = +25°C, f = 1 MHz (Note 3)

Symbol	Parameter	Conditions	Тур	Max	Units
C _{IN}	Input Capacitance	V _{IN} = 0V	4	6	рF
Соит	Output Capacitance	V _{OUT} = 0V	8	12	pF

AC Test Conditions


Output Load 1 TTL Gate and $C_L = 100 \text{ pF (Note 9)}$

Input Rise and Fall Times ≤5 ns
Input Pulse Levels 0.45V to 2.4V
Timing Measurement Reference Level

Inputs 1V and 2V Outputs 0.8V and 2V

TL/D/9181-3

AC Waveforms

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Typical values are for T_A = +25°C and nominal supply voltages.

Note 3: This parameter is only sampled and is not 100% tested.

Note 4: OE may be delayed up to tACC-tOE after the falling edge of CE without impacting tACC.

Note 5: The the compare level is determined as follows:

High to TRI-STATE, the measured V_{OH1} (DC) -0.10V.

Low to TRI-STATE, the measured VOL1 (DC) +0.10V.

Note 6: TRI-STATE may be attained using $\overline{\text{OE}}$ or $\overline{\text{CE}}$.

Note 7: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μF ceramic capacitor be used on every device between V_{CC} and GND.

Note 8: The outputs must be restricted to VCC +0.3V to avoid latch-up and device damage.

Note 9: 1 TTL Gate: $l_{OL} = 1.6$ mA, $l_{OH} = -400$ μ A.

CL: 100 pF includes fixture capacitance.

Note 10: Vpp may be connected to VCC except during programming.

Programming Characteristics

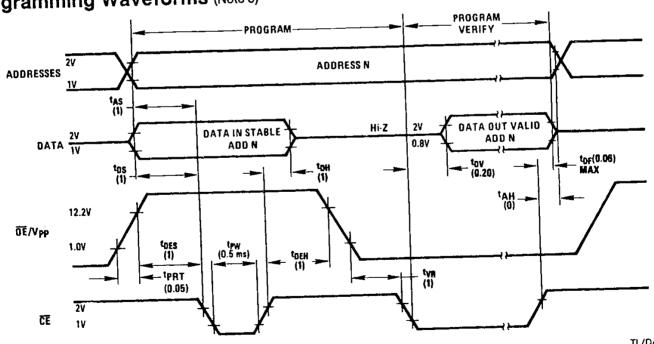
 $T_A = \pm 25$ °C ± 5 °C, $V_{CC} = 6V \pm 0.25V$, $V_{PP} = 12.5 \pm 0.3V$ (Notes 2, 3 & 4)

<u> </u>	$\pm 5^{\circ}$ C, $V_{CC} = 6V \pm 0.25V$, $V_{PP} = 12.5 \pm 0.3$	Conditions	Min	Тур	Max	Units
Symbol			1	· · · · · · · · · · · · · · · · · · ·		μs
AS	Address Setup Time		1			μS
OES	OE Setup Time					μs
tos	Data Setup Time		1			
t _{AH}	Address Hold Time		0	<u> </u>		μs
	Data Hold Time		1		 	μs
t _{DH}	Output Enable to Output Float Delay	CE = V _{IL}	0		60	ns
t _{DF}	Program Pulse Width		0.5	0.5	10	ms
t _{PW}	OE Hold Time		1			μs
torr	Data Valid from CE	OE = V _{IL}		<u> </u>	200	ns
t _{DV}	OE Pulse Rise Time During Programming		50	ļ		ns
t _{VR}	V _{PP} Recovery Time		1	 	 	μs
IPP	V _{PP} Supply Current During Programming Pulse	CE = V _{IL} OE = V _{PP}			30	mA
lcc	V _{CC} Supply Current			<u> </u>	10	mA

AC Test Conditions

Input Pulse Levels

6V ± 0.25V 12.5 ± 0.3V VPP ≤5 ns Input Rise and Fall Times


0.45V to 2.4V

Timing Measurement Reference Level Inputs

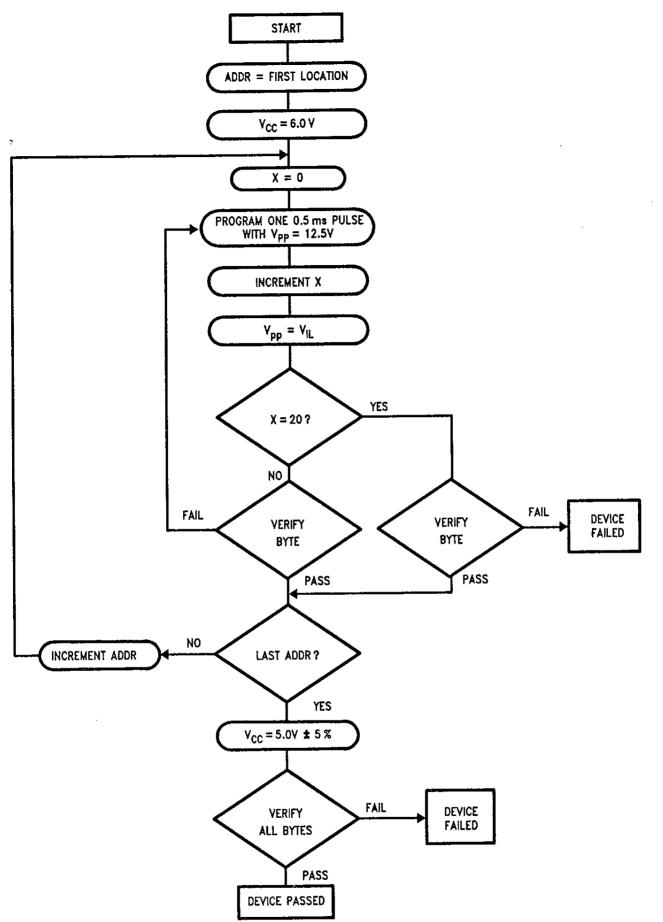
Outputs

1V and 2V 0.8V and 2V

Programming Waveforms (Note 3)

TL/D/9181-5

Note: All times shown in parentheses are minimum and in μs unless otherwise specified.


Note 1: National's standard product warranty applies only to devices programmed to specifications described herein.

Note 2: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. The EPROM must not be inserted into or removed from a

Note 3: The maximum allowable voltage which may be applied to the Vpp pin during programming is 13V. Care must be taken when switching the Vpp supply to prevent overshoot exceeding this 13V maximum specification. At least a 0.1 µF capacitor is required across Vpp, Vcc to GND to suppress spurious voltage transients which may damage the device.

Note 4: Programming and program verify are tested at nominal power supply voltages.

Interactive Programming Flow Chart

Functional Description

DEVICE OPERATION

The five modes of operation of the NMC27C512A are listed in Table I. It should be noted that all inputs for the five modes are at TTL levels. The power supplies required are V_{CC} and V_{PP} . The V_{PP} power supply must be at 12.5V during the three programming modes, and must be at 5V in the other two modes. The V_{CC} power supply must be at 6V during the three programming modes, and at 5V in the other two modes.

Read Mode

The NMC27C512A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from $\overline{\text{CE}}$ to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been low and addresses have been stable for at least t_{ACC} – t_{OE} .

The sense amps are clocked for fast access time. $V_{\rm CC}$ should therefore be maintained at operating voltage during read and verify. If $V_{\rm CC}$ temporarily drops below the spec. voltage (but not to ground) an address transition must be performed after the drop to insure proper output data.

Standby Mode

The NMC27C512A has a standby mode which reduces the active power dissipation by over 99%, from 220 mW to 0.55 mW. The NMC27C512A is placed in the standby mode by applying a CMOS high signal to the $\overline{\text{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tying

Because NMC27C512A are usually used in larger memory arrays, National has provided a 2-line control function that

accommodates this use of multiple memory connections. The 2-line control function allows for:

- a) the lowest possible memory power dissipation, and
- b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 20) be decoded and used as the primary device selecting function, while \overline{OE} (pin 22) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming

CAUTION: Exceeding 13V on pin 1 (V_{PP}) will damage the NMC27C512A.

Initially, and after each erasure, all bits of the NMC27C512A are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The NMC27C512A is in the programming mode when the V_{PP} power supply is at 12.5V and $\overline{\text{OE}}$ is at V_{IH}. It is required that at least a 0.1 μF capacitor be placed across V_{PP}, V_{CC} to ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, an active low, TTL program pulse is applied to the $\overline{\text{CE}}$ input. A program pulse must be applied at each address location to be programmed. Any location may be programmed at any time—either individually, sequentially, or at random. The

TABLE I. Mode Selection

Pins Mode	CE (20)	OE/V _{PP} (22)	V _{CC} (28)	Outputs (11–13, 15–19)
Read	V _{IL}	VIL	5	D _{OUT}
Standby	V _{IH}	Don't Care	5	HI-Z
Program	Pulsed VIH to VIL	V _{PP}	6	D _{IN}
Program Verify	V _{IL}	V _{IL}	6	D _{OUT}
Program Inhibit	V _{IH}	V _{PP}	6	Hi-Z

Functional Description (Continued)

NMC27C512A is designed to be programmed in either of two ways: single pulse programming, where each address is programmed with a 10 ms pulse; or interactive programming, where each address is programmed with a series of 0.5 ms pulses until it verifies (up to a maximum of 20 pulses or 10 ms). Only the interactive programming method has been tested. The NMC27C512A must not be programmed with a DC signal applied to the $\overline{\text{CE}}$ input.

Programming multiple NMC27C512A in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled NMC27C512A may be connected together when they are programmed with the same data. A low level TTL pulse applied; to the $\overline{\text{CE}}$ input programs the paralleled NMC27C512A.

Program Inhibit

Programming multiple NMC27C512A in parallel with different data is also easily accomplished. Except $\overline{\text{CE}}$ all like inputs (including $\overline{\text{OE}}$) of the parallel NMC27C512A may be common. A TTL low level program pulse applied to an NMC27C512A $\overline{\text{CE}}$ input with V_{PP} at 12.5V will program that NMC27C512A. A TTL high level $\overline{\text{CE}}$ input inhibits the other NMC27C512A from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify may be performed with V_{PP} at 12.5V. Except during programming and program verify, V_{PP} must be at V_{CC} .

Manufacturer's Identification Code

The NMC27C512A have a manufacturer's identification code to aid in programming. When the device is inserted in an EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code.

The Manufacturer's Identification code, shown in Table II, specifically identifies the manufacturer and the device type. The code for NMC27C512A is "8F04", where "8F" designates that it is made by National Semiconductor, and "04" designates a 256k part.

The code is accessed by applying 11.4V to 12.0V to address pin A9. Addresses A1-A8, A10-A14, and all control pins are held at V_{IL} . Address pin A0 is held at V_{IL} for the manufacturer's code, and held at V_{IH} for the device code. The code is read on the eight data pins, O_0 - O_7 . Proper code access is only guaranteed at 25°C \pm 5°C.

ERASURE CHARACTERISTICS

The erasure characteristics of the NMC27C512A are such that erasure begins to occur when exposed to light with

wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000Å-4000Å range. Data shows that constant exposure to room-level fluorescent lighting could erase the typical NMC27C512A in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. Opaque labels should be placed over the NMC27C512A window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents.

The recommended erasure procedure for the NMC27C512A is exposure to short wave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of 15W-sec/cm².

The NMC27C512A should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. Table III shows the minimum NMC27C512A erasure time for various light intensities.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed, or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

SYSTEM CONSIDERATION

The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer-the standby current level, the active current level, and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between V_{CC} and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 μF bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The bulk, capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces.

TABLE II. Manufacturer's Identification Code

Pins	A ₀ (21)	0 ₇ (12)	0 ₆ (13)	0 ₅ (14)	0 ₄ (15)	0 ₃ (16)	0 ₂ (17)	0 ₁ (18)	0 ₀ (19)	Hex Data
Manufacturer Code	V _{IL}	1	0	0	0	1	1	1	1	8F
Device Code	V _{IL}	0	0	0	0	0	1	0	0	04

Functional Description (Continued)

TABLE III. Minimum NMC27C512A Erasure Time

Light Intensity (Micro-Watts/cm²)	Erasure Time (Minutes)
15,000	20
10,000	25
5,000	50