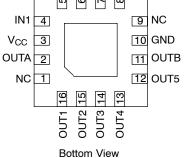
Keypad Multiplexer

The NLSF2500 is a keyboard multiplexer fabricated in sub-micron silicon CMOS Technology. The NLSF2500 is designed to operate over wide operating voltage, with minimum power consumption and very low voltage drop from V_{CC}. The device saves dozens of active and passive components and permits operating voltage far lower than the standard diode scheme.

Features

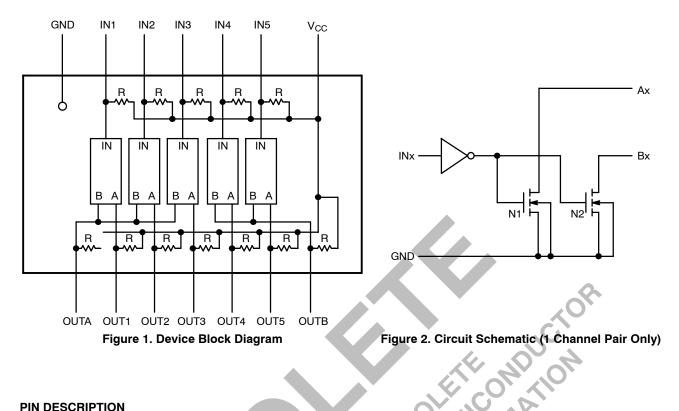
- Single Supply Operation
- Optimized for 1.8 V to 3.6 V V_{CC}
- Tiny 3 x 3 mm QFN-16 Package
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Very Low Voltage Drop
- Permits Operation Down to 1.65 V
- Near Zero Static Power
- ESD Protection: Human Body Model (HBM); > 3000 V,
- Machine Model (MM); >300 V
- Latchup Maximum Rating: 200 mA
- Pin-to-Pin Compatible with CM2500
- This is a Pb–Free Device

Typical Applications


- Cell Phones
- PDAs
- MP3 players

ON Semiconductor®

http://onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

NLSF2500

PIN DESCRIPTION

Pin	Name	Function Description		
1	NC	Not Internally Connected		
2	OUTA	Combined "Functional OR" Output of IN1, IN2, and IN3		
3	V _{CC}	Supply Pin		
4	IN1	Input 1 from Switch to be Multiplexed		
5	IN2	Input 2 from Switch to be Multiplexed		
6	IN3	Input 3 from Switch to be Multiplexed		
7	IN4	Input 4 from Switch to be Multiplexed		
8	IN5	Input 5 from Switch to be Multiplexed		
9	NC	Not Internally Connected		
10	GND	Ground		
11	OUTB	Combined "Functional OR" Output of IN4 and IN5		
12	OUT5	Output 5 for Keyboard Interface Lines		
13	OUT4	Output 4 for Keyboard Interface Lines		
14	OUT3	Output 3 for Keyboard Interface Lines		
15	OUT2	Output 2 for Keyboard Interface Lines		
16	OUT1	Output 1 for Keyboard Interface Lines		

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{CC}	DC Supply Voltage	–0.5 to +7.0	V
VI	DC Input Voltage	$0 \le V_{CC} \le V_{CC} + 0.5$	V
Vo	DC Output Voltage	– 0.5 to + 7.0	V
I _{IK}	DC Input Diode Current VI < GND	±50	mA
Ι _{ΟΚ}	DC Output Diode Current V _O = GND	- 50	mA
Ι _Ο	DC Output Sink Current	± 50	mA
I _{CC}	DC Supply Current per Supply Pin	± 100	mA
I _{GND}	DC Ground Current per Ground Pin	± 100	mA
T _{STG}	Storage Temperature Range	– 65 to + 150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature under bias	+ 150	°C
θ_{JA}	Thermal Resistance	80	°C/W
PD	Power Dissipation in Still Air at 85°C	800	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0125 in	
V _{ESD}	ESD Test Voltage Human Body Model (Note 1) Machine Model (Note 2)	> 3000 > 300	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect ELS OP SHO device reliability.

1. Tested to EIA/JESD22-A114-A.

2. Tested to EIA/JESD22-A115-A.

RECOMMENDED OPERATING CONDITIONS

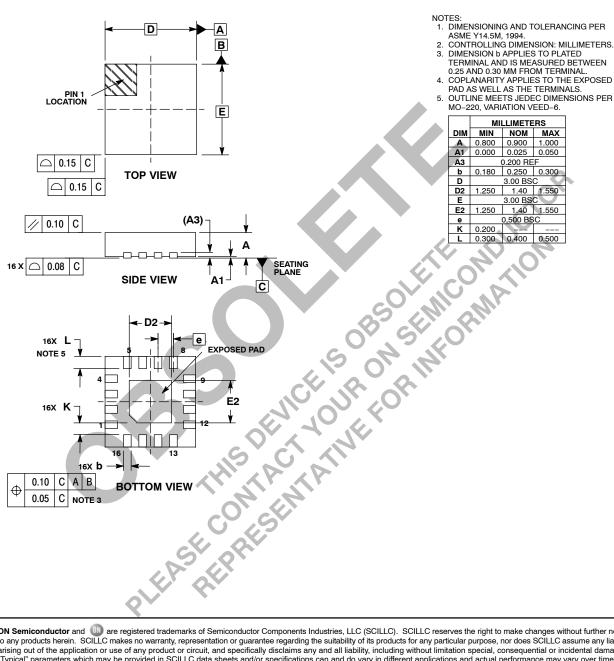
Symbol	Characteristics	Min	Max	Unit			
V _{CC}	Positive DC Supply Voltage	1.5	5.5	V			
V _{IN}	DC Input Voltage	GND	V _{CC} + 0.5	V			
V _{OUT}	DC Output Voltage	GND	5.5	V			
T _A	Operating Temperature Range	40	85	°C			
DC CHARACTERISTICS							

DC CHARACTERISTICS

Symbol	Parameter	Condition	V _{CC}	Min	Max	Unit
V _{IL}	Input Logic Low Voltage		1.65 – 3.6	0.3 * V _{CC}		V
VIH	Input Logic High Voltage		1.65 – 3.6		0.7 * V _{CC}	V
R _{OUT}	OUT _x Pullup Resistance		1.65 – 3.6	50	150	kΩ
R _{IN} 2.7	INx Pullup Resistance	PIN = GND	2.7	50	150	kΩ
R _{IN} 1.8	INx Pullup Resistance	PIN = GND	1.8	100	360	kΩ
VD	Voltage Drop	INx = GND, I_{OUT} = 100 μ A			100	mV
I _{CC}	Quiescent Current	All I/O Floating	1.65 – 3.6		10	μΑ
١L	Output Leakage Current	INx = Floating			1.0	μΑ
CP	I/O Pin Capacitance	1.0 MHz	2.5		15	pF

ORDERING INFORMATION

	Device Nomenclature						
Device Order Number	Circuit Indicator	Technology	Device Function	Package Suffix	Tape and Reel Suffix	Package Type	Tape & Reel Size [†]
NLSF2500MN1R2G	NL	SF	2500	MN1	R2	QFN-16 (Pb-Free)	3000


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLSF2500

PACKAGE DIMENSIONS

QFN-16 3*3*0.85 MM, 0.5 P CASE 485AE-01 ISSUE O

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product customer application. By customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products for any sother application in which the failure of the SCILLC product customer application in which the failure of the SCILLC product customer application in which the failure of the SCILLC product customer application is a subject to customer application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death applicatio experiment. SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative