VOLTAGE CONVERTER

■ GENERAL DESCRIPTION

The NJU7662 is a voltage converter incorporated CR oscillator, voltage-level-shifter and power-MOS, which generates a polarity-converted negative voltage or twofold voltage of an operating voltage ranging from +1.5 to +10V.

The application circuit of negative voltage converter requires only two capacitors, and positive twofold voltage converter requires two capacitors, two resistors and one diode as external components.

The oscillation frequency of the internal oscillator is 10kHz and the negative voltage converter (on no-load condition) achieves extremely high-efficiency voltage conversion rate of 99.9%.

■ PACKAGE OUTLINE

NJU7662D

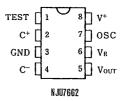
NJU7662M

■ FEATURES

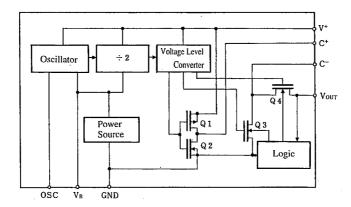
- · Polarity-converted Negative Voltage Output
- Twofold Positive Voltage Output
- Operating Voltage --- + 4.5 to +20.0V
- High-efficiency Voltage Conversion Rate-- 99.9%
 (No-load, Negative Voltage Converter)
- High-efficiency Power Conversion Rate-- 96%

(Negative Voltage Converter)

- Cascade Connection Available
 - 2n-1 times voltage outputs for negative voltage
 - 2n times voltage outputs for positive voltage
- Few External Components
 - --- 2 Capacitors, (Negative Voltage Converter) ·
 - --- 2 Capacitors, 2 Resistors and 1 Diode


(Positive Voltage Converter)

Package Outline


DIP/DMP8

C-MOS Technology

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION
1	TEST	Testing Terminal (Normally,non connection)
2	C⁺	Charge Pump Capacitor (+) Connecting Terminal
3	GND	Ground Terminal
4	C-	Charge Pump Capacitor (-) Connecting Terminal
5	Vout	Voltage Output Terminal
6	V _R	Voltage Regulator Control Terminal
7	OSC	Oscillation Capacitor Connecting Terminal
8	V*	Power Supply Terminal (+)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	22	V	
Input Voltage	Vin	−0.3~ (V++0.3) @V+<7	v	
Input Voltage	1 10	$(V^+-7)^{\sim} (V^++0.3)$ @V+>7		
Output Short		CONTINUITY @V+<5.5		
Danier Diminute	PD	(DIP-8) 500	mW	
Power Dissipation		(DMP-8) 300		
Operating Temperature Range	Торг	-40~85		
Storage Temperature Range	Tsig	-65~+I50	°C	

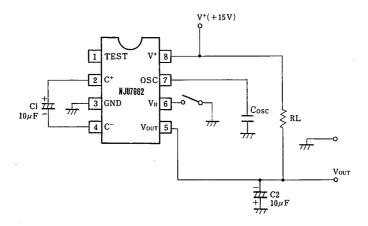
■ ELECTRICAL CHARACTERISTICS (Negative Voltage Output)

(Ta=25°C, V+=15V, Cosc=0)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
0	I ⁺ 1	$R_L = \infty, V_R = OPEN$			250	600	μΑ
Operating Current	I ⁺ 2	V*=5V, R _L ∞	V _R =GND		20	150	μΑ
Operating Voltage	V ⁺ _{HI}	R _L =10k Ω	V _R =OPEN	5.5		· 20	V
	V+LO		V _R =GND	4.5		6	v
Output Resistance	Rol	I our=20mA	V _R =OPEN		60	100	Ω
(Note 1)	Ro2	V+=5V, I our=3mA, VR=GND			125	200	Ω
Oscillation Frequency	Fo				10		kHz
Power Conversion Rate	PEF	R _{L=} 2kΩ		93	96		%
Voltage Conversion Rate	VEF	R _L =∞		97	99.9		%
Oscillation Terminal	Iosc1	V+=15V, (Vosc=8~15V)			4.0		μΑ
Input Current	losc2	V+=5V, (Vosc=0~5)			0.5		μΑ

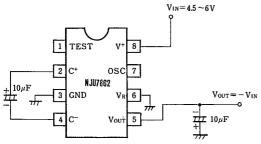
(Note 1) The twofold positive converter requires 100Ω series resistor on power source terminal, therefore the output resistance increases to 200Ω .

■ MEASUREMENT CIRCUIT


The measurement circuit diagram of negative voltage converter is shown bellow.

No. 6 terminal must connect to GND or Open according to the operating voltage as follows:

 $V^+ \le 6V$Connect to GND

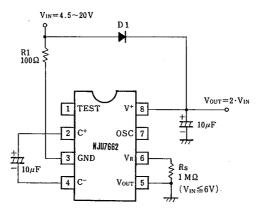

V⁺ ≥ 6V......OPEN

The oscillation frequency can be lowered by connecting external capacitor on the No.7 terminal, furthermore it can be also driven by external clock generator.

APPLICATION CIRCUITS

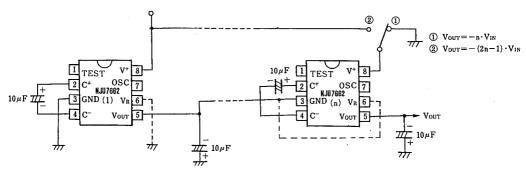
(1-1) Negative Voltage Output 1 4.5 to 6.0V operation

(1-2) Negative Voltage Output 2 6.0 to 20.0V operation



(Note 2) No.6 terminal must connect to GND or Open according to the operating voltage as follows:

 V^{+} < 6V......Connect to GND


V⁺ ≥ 6V.....OPEN

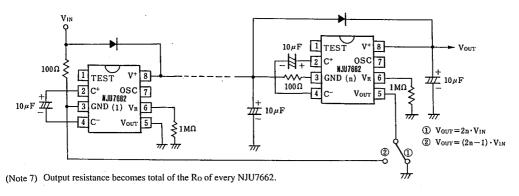
(2) Twofold Positive Voltage Output

(Note 3) In the twofold positive voltage output application, R1, Rs and D1 are required for start-up.

(3) Cascade Connection (Negative Voltage Output)

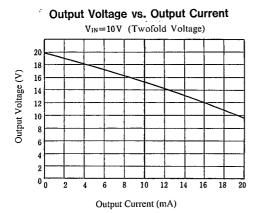
(Note 4) No.6 terminal must connect to GND or Open according to the operating voltage as follows:

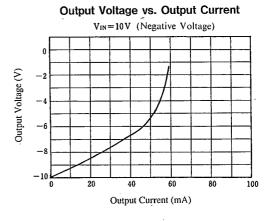
 $V^+ < 6V$Connect to GND

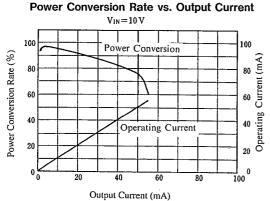

(Note 5) Output resistance becomes total of the Ro of every NJU7662.

(Note 6) In case of the cascade connection (Negative Voltage Output), No.6 terminals (after second IC's) must connect as follows, according to V+ - GND Voltage.

V* - GND < 6.0V......GND

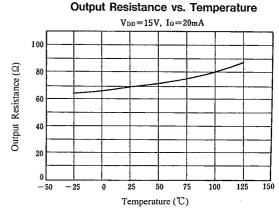

V+ - GND≥ 6.0V......OPEN


(4) Cascade Connection (Positive Voltage Output)




6

■ TYPICAL CHARACTERISTICS



NJU7662

MEMO^{aSheet4U.com}

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.