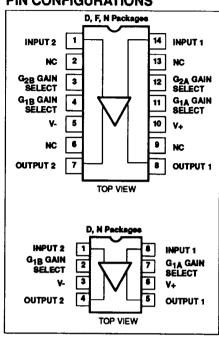
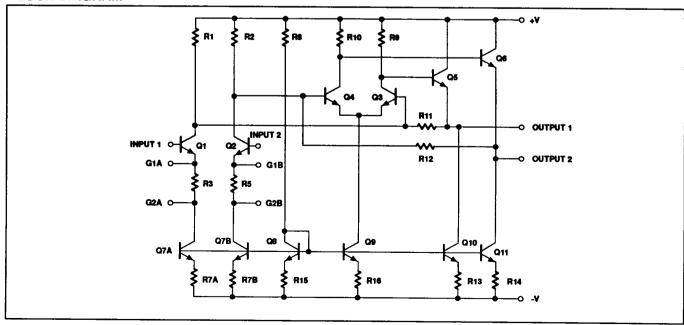
DESCRIPTION

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass. low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems. and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.


FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available


APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATIONS

BLOCK DIAGRAM

NE592

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
14-Pin Plastic DIP	0 to +70°C	NE592N14	0405
14-Pin Cerdip	0 to +70°C	NE592F14	0581
14-Pin SO	0 to +70°C	NE592D14	0175
8-Pin Plastic DIP	0 to +70°C	NE592N8	0404
8-Pin SO	0 to +70°C	NE592D8	0174

NOTES:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

T_A=+25°C, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
Vcc	Supply voltage	±8	V
V _{IN}	Differential input voltage	±5	٧
V _{CM}	Common-mode input voltage	±6	V
lout	Output current	10	mA
TA	Operating ambient temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C
PDMAX	Maximum power dissipation,		
1	TA=25°C (still air)1		
	F-14 package	1.17	w
	D-14 package	0.98	w
	D-8 package	0.79	l w
	N-14 package	1.44	w
	N-8 package	1.17	w

NOTES:

2. Derate above 25°C at the following rates:

F-14 package at 9.3mW/°C D-14 package at 7.8mW/°C D-8 package at 6.3mW/°C N-14 package at 11.5mW/°C N-8 package at 9.3mW/°C

April 15, 1992 94

NE592

DC ELECTRICAL CHARACTERISTICS

T_A=+25°C V_{SS}=+6V, V_{CM}=0, unless otherwise specified. Recommended operating supply voltages V_S=+6.0V. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Тур	Max	
A _{VOL}	Differential voltage gain,					
	standard part			1		
	Gain 1 ¹	$R_L=2k\Omega$, $V_{OUT}=3V_{P-P}$	250	400	600	V/V
	Gain 2 ^{2, 4}		80	100	120	V/V
	High gain part		400	500	600	V/V
R _{IN}	Input resistance					
	Gain 1 ¹			4.0		kΩ
	Gain 2 ^{2, 4}		10	30		kΩ
C _{IN}	Input capacitance ²	Gain 2 ⁴		2.0		pF
los	Input offset current			0.4	5.0	μА
IBIAS	Input bias current			9.0	30	μА
V _{NOISE}	Input noise voltage	BW 1kHz to 10MHz		12		μV _{RMS}
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	60	86		dB
	Gain 2 ⁴	V _{CM} ±1V, f=5MHz		60		dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	ΔV _S =±0.5V	50	70		dB
Vos	Output offset voltage					1
	Gain 1	R _{L≂∞}			1.5	Ιv
	Gain 2 ⁴	R _L ∞∞			1.5	V
	Gain 3 ³	R _L =∞		0.35	0.75	l v
V _{CM}	Output common-mode voltage	R∟≕∞	2.4	2.9	3.4	V
V _{OUT}	Output voltage swing	R _L =2kΩ	3.0	4.0		v
	differential					
Rout	Output resistance			20		Ω
lcc	Power supply current	R∟≕∞		18	24	mA

NOTES:

April 15, 1992 95

Gain select Pins G_{1A} and G_{1B} connected together.
 Gain select Pins G_{2A} and G_{2B} connected together.
 All gain select pins open.

^{4.} Applies to 14-pin version only.

NE592

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics $V_{SS}=\pm 6$ V, $V_{CM}=0$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified. Recommended operating supply voltages $V_S=+6.0$ V. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Тур	Max	1
Avol	Differential voltage gain,					
	standard part					
	Gain 1 ¹	R _L =2kΩ, V _{OUT} =3V _{P-P}	250		600	V/V
	Gain 2 ^{2, 4}		80		120	\ v _\ v
	High gain part		400	500	600	V/V
R _{IN}	Input resistance		-			
	Gain 2 ^{2, 4}		8.0			kΩ
los	Input offset current				6.0	μА
IBIAS	Input bias current				40	μА
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	50			dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	ΔV _S =±0.5V	50			dB
	Output offset voltage					
Vos	Gain 1 Gain 2 ⁴	R _L ≕∞			1.5	l v
	Gain 2 ³	-			1.5 1.0	
V _{OUT}	Output voltage swing differential	R _L =2kΩ	2.8			V
lcc	Power supply current	R∟≕∞			27	mA

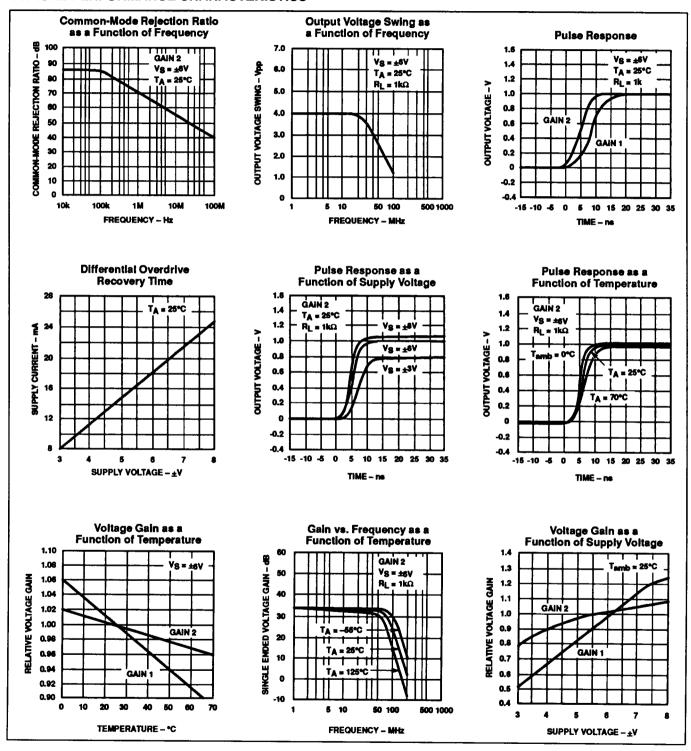
NOTES:

- 1. Gain select Pins G_{1A} and G_{1B} connected together.
- 2. Gain select Pins G_{2A} and G_{2B} connected together.
- 3. All gain select pins open.
- 4. Applies to 10- and 14-pin versions only.

AC ELECTRICAL CHARACTERISTICS

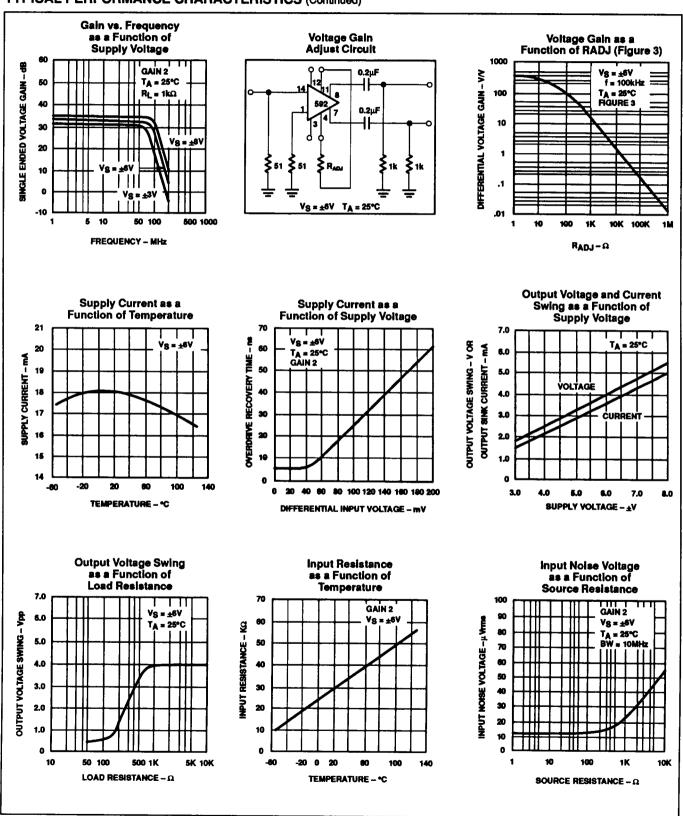
 $T_{A}=+25^{\circ}C\ V_{SS}=+6V,\ V_{CM}=0$, unless otherwise specified. Recommended operating supply voltages $V_{S}=\pm6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Тур	Max	7
	Bandwidth					
BW	Gain 1 ¹			40		MHz
	Gain 2 ^{2, 4}			90		MHz
	Rise time					
t _R	Gain 1 ¹	V _{OUT} =1V _{P-P}		10.5	12	ns
	Gain 2 ^{2, 4}			4.5		ns
	Propagation delay					
t PD	Gain 1 ¹	V _{OUT} =1V _{P-P}		7.5	10	ns
	Gain 2 ^{2, 4}			6.0		ns

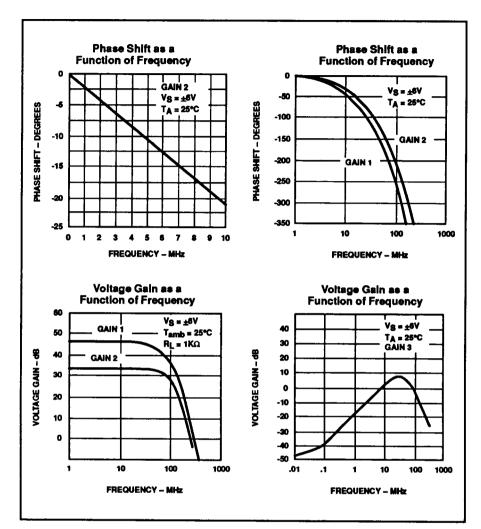

NOTES:

- 1. Gain select Pins G_{1A} and G_{1B} connected together.
- 2. Gain select Pins G2A and G2B connected together.
- 3. All gain select pins open.
- 4. Applies to 10- and 14-pin versions only.

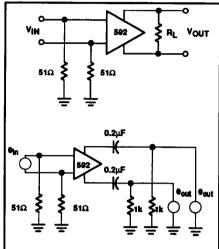
April 15, 1992 96


NE592

TYPICAL PERFORMANCE CHARACTERISTICS

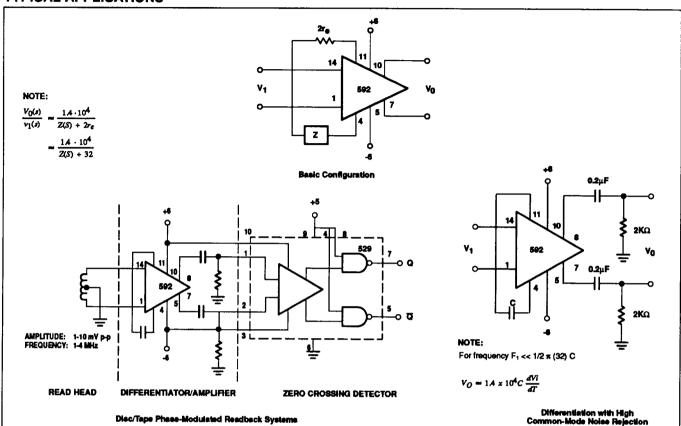


NE592


TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

NE592

TEST CIRCUITS $T_A = 25$ °C, unless otherwise specified.



April 15, 1992

99

NE592

TYPICAL APPLICATIONS

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V ₀ (s) TRANSFER V ₁ (s) FUNCTION
o——————————	LOW PASS	$\frac{1.4 \times 10^4}{L} \qquad \left[\frac{1}{s + R/L}\right]$
○RC	HIGH PASS	$\frac{1.4 \times 10^4}{R} \qquad \left[\frac{s}{s+1/RC} \right]$
∞————————————————————————————————————	BAND PASS	$\frac{1.4 \times 10^4}{L} \qquad \left[\frac{8}{s^2 + R/Ls + 1/LC} \right]$
o	BAND REJECT	$\frac{1.4 \times 10^4}{R} \qquad \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$

Signetics

Packaging Information

T.90-20

Military Products

SIGNETICS STANDARD PACKAGE DESCRIPTIONS

All Military package case outlines and physical dimensions conform with the current revision MIL-M-38510, Appendix C, except for package types which are not included in that specifica-

The physical dimensions for standard package types which are not included in Appendix C are included herein in Appendix C format. Case outline letters are assigned to these packages according to JEDEC Publication 101 as follows:

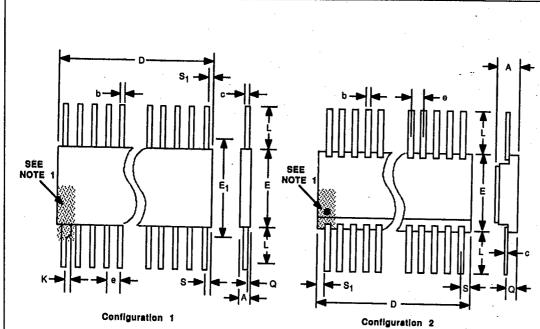
- Leadless chip carriers Dual-in-line packages U;
- Flat packages
- All other configurations

A case outline suffix number is assigned herein for identification purposes only, and is not marked on the product.

Signetics Military products are offered in a wide range of package configurations to optimally fit our customer needs.

- Dual-in-line Packages; Frit glass sealed CERDIP (F package family) with 8-40 leads, and side-brazed ceramic (I package family) with 48-64 leads.
- Flat Packages; Frit glass sealed alumina CERPAC (W package family) with 14-28 leads, and brazed leaded ceramic (Q package family) with 52 leads.
- · Ceramic Chip Carriers; triple laminated, metal-lidded LCC (G package family) with 20-68 terminals.
- Pin Grid Array; metal-lidded ceramic pin grid (P package (amily) with 68-100 leads.
- Shown in Table 1 are the case outline letters assigned according to Appendix C of MIL-M-38510 and JEDEC publication 101. Unless otherwise noted, all package types are Configuration 1 and all lead finishes are hot solder dip Finish "A".

Table 1


Package Description	Type Designation	Case Outline	Theta-JC °C/Watt4
	D-4	Р	28
8DIP3	Ď-1		1 28
14DIP3	D-2	C E V	28 28
16DIP3		7	28
18DIP3	D-6		28
20DIP3	D-8	R W	28
22DIP4	D-7		28 28
24DIP3	D-9	L X² J	28
24DIP4	D-11	X ²	28
24DIP6	D-3	J	20
28DIP6	D-10	, X ²	28
40DIP6	D-5	X² Q X² X² X²	28
48DIP6	D-14 ¹	X ²	28 28 28
50DIP9	D-12 ¹	X ² .	28
64DIP9	Ď-131	X ²	28
64DIF9			22
14FLAT	F-2	D F 9 S K Y ²	22
16FLAT	F-5) F	22
18FLAT	F-10	Υ ²	22
20FLAT	F-9	S	22 22
24FLAT	F-6	Į K_	22
28FLAT	F-11	Y2	22
52FLAT	F-11 Y-1	Y ²	22
	<u> </u>	U ²	20
18LLCC	C-9	١	20
20LLCC	C-2 ³ C-4 ³	2 3 U ² U ² U ²	20
28LLCC	C-4°	1 112	20
32LLCC	C-12	1 112	20
44LLCC	G-5 G-7	1 02	20
68LLCC	C-7		
68PGA	P-AB	Z ² Z ²	20
84PGA	P-AB] Z ²	20

NOTES:

NOTES:
1. Configuration 2.
2. Per JEDEC publication 101.
3. Dimension A (LLCC thickness) is 75mils maximum.
4. See RADC test report RADC-TR-86-97 for thermal resistance confidence and derating.

Packaging Information

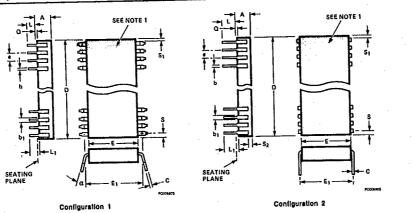
CASE OUTLINES Y (FLAT PACKAGES)

NOTES:

- A lead tab (enlargement) or index dot is located within the shaded area shown at Pin 1. Other pin numbers proceed sequentially from Pin 1 counterclockwise (as viewed from the top of the device).
- 2. This dimension allows for off-center lid, meniscus, and glass overrun.
- 3. The reference pin spacing is 0.050 between centerlines. Each pin centerline is located within ± 0.005 of its logitudinal position relative to the first and last pin numbers.
 4. This dimension is measured at the point of exit of the lead

- body.

 5. This dimension applied to all four corner pins.

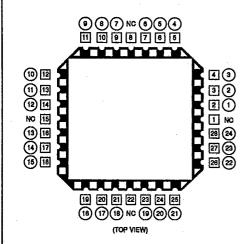

 6. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish.

OUTLINE		Y 1			
CONFIGURATION	2		1		
NO. LEADS	52		52		NOTES
SIG. PKG.	QP		HOTES		
SYMBOL	INCHES				
STMBOL	Min	Max]		
A	0.045	0.100			
b	0.015	0.026	6		
C	0.008	0.015	6		
D		1.330	2		
E	0.620	0.660			
е	0.050 BSC		3		
L.	0.250	0.370] . [
Q	0.054	0.0666	4		
S .		0.045	5		
S 1	0.005		5		

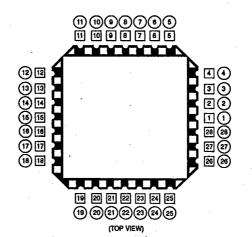
T-90-20

Packaging Information

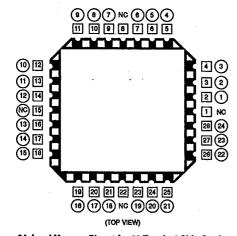
CASE OUTLINES X (DUAL IN-LINE PACKAGES)



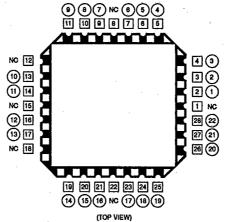
- 1. An index notch is located within the shaded area shown. Pin 1 is adjacent to the notch to the immediate left (as viewed from the top of the device) and other pin numbers proceed sequentially from Pin 1 counterclockwise.
- 2. The minimum limit for Dimension b1 is 0.023 inches for all four corner pins.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- 4. This dimension is measured at the centerline of the leads for Configuration 2.
- 5. The reference pin spacing is 0.100 between centerlines. Each pin centerline is located within ±0.010 of its longitudinal position relative to the first and last pin numbers.
- 6. This dimension is measured from the seating plane to the base plane.
- 7. This dimension applies to all four corner pins.
- 8. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish.


D

Packaging Information


LEADLESS CHIP CARRIER (LLCC) PINOUTS

24-Lead Logic Pinout for 28 Terminal Chip Carrier



28-Lead Pinout for 28 Terminal Chip Carrier for all Device Types

24-Lead Memory Pinout for 28 Terminal Chip Carrier

- ☐ ≃ Chip Carrier Terminal Number
- O = Dual In-Line Lead Number NC = No Connect

22-Lead Memory Pinout for 28 Terminal Chip Carrier