The **NDR550** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

1. Package Dimension (QCC8C)

2. Marking

3. Equivalent LC Model and Test Circuit

NDR550

Laser Marking

4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

5. Typical Frequency Response

6. Temperature Characteristics

Center 433.920 MHz

Span Ø.75Ø MHz

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	$V_{ m DC}$	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	°C
Operating Temperature Range	T_{A}	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
ist	Maximum Unit□ □ ℃		aximum (J n	it[] []	°C
iet	m Unit	t[]		$^{\circ}$		Maxi
Unitl		xim	u	m Un	itŪ	
	bsolute Fre	que	n	cy f _C	4	3
	433.995 MHz				8	4
	3.995 МНД	45	43	3	.99	5
	0	95	М	Hz		
	845 433.995 MHz[] []	3.99	5	MHz		
433.995 MHzl	Toleranc	e fro	m	433		92 MHz
±75 kHz ll lns	sertion Loss IL 1.4 1.8 dB [8 dB			
	oaded Q Q _J 9,200					
	Ω Loaded Q Q _L 1,200	and published the			Q	Q_L
	00 [[,20	0	0 0		ded
	1,200 [1,2	00	0 0		d Q

r e T₀ 15 45℃

| Turnover Frequency f₀ f₀ kHz
| Turnover Fr

- **s Reserved.** The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$. Frequency aging
- the change in f_C with time and is s 3. pecified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +6
- 3. pecified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +6 °C. Typically, aging is greatest
- 3. the first year after manufacture, decreasing in subsequent years. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . Th
- 4. e nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$. This equivalent RLC model approximates resonator performance near the reson
- ant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capa