NDF10N62Z, NDP10N62Z # N-Channel Power MOSFET 620 V, 0.65 Ω #### **Features** - Low ON Resistance - Low Gate Charge - Zener Diode-protected Gate - 100% Avalanche Tested - These Devices are Pb-Free and RoHS Compliant #### ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Rating | Symbol | NDF10N62Z | NDP10N62Z | Unit | |--|-----------------------------------|--------------|--------------|------| | Drain-to-Source Voltage | V_{DSS} | 620 (Note 1) | | V | | Continuous Drain Current, $R_{\theta JC}$ | I _D | 10 (N | 10 (Note 2) | | | Continuous Drain Current
R _{0JC} , T _A = 100°C | I _D | 5.7 (N | 5.7 (Note 2) | | | Pulsed Drain Current,
V _{GS} @ 10 V | I _{DM} | 36 (Note 2) | | Α | | Power Dissipation, R _{θJC} (Note 1) | P _D | 36 | 125 | W | | Gate-to-Source Voltage | V _{GS} | ± | 30 | V | | Single Pulse Avalanche
Energy, I _D = 10 A | E _{AS} | 300 | | mJ | | ESD (HBM)
(JESD22-A114) | V _{esd} | 3900 | | V | | RMS Isolation Voltage (t = 0.3 sec., R.H. \leq 30%, T _A = 25°C) (Figure 14) | V _{ISO} | 4500 | | V | | Peak Diode Recovery | dv/dt | 4.5 (Note 3) | | V/ns | | Continuous Source
Current (Body Diode) | Is | 10 | | Α | | Maximum Temperature for
Soldering Leads | TL | 260 | | °C | | Operating Junction and
Storage Temperature Range | T _J , T _{stg} | -55 to 150 | | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces) - 2. Limited by maximum junction temperature - 3. $I_S \leq$ 10 A, di/dt \leq 200 A/ μ s, V_{DD} = 80% BV $_{DSS}$ ## ON Semiconductor® #### http://onsemi.com | V _{DSS} | R _{DS(ON)} (TYP) @ 5 A | |------------------|---------------------------------| | 620 V | 0.65 Ω | A = Location Code Y = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |------------|----------|----------------| | NDF10N62ZG | TO-220FP | 50 Units/Rail | | NDP10N62ZG | TO-220AB | In Development | ### THERMAL RESISTANCE | Parameter | Symbol | NDF10N62Z | NDP10N62Z | Unit | |---|--------|-----------|-----------|------| | Junction-to-Case (Drain) | | 3.4 | 1.0 | °C/W | | Junction-to-Ambient Steady State (Note 4) | | 50 | 50 | | | Characteristic | Test Conditions | | Symbol | Min | Тур | Max | Unit | |--|---|------------|-----------------------------------|-----|------|------|----------| | OFF CHARACTERISTICS | | | | | • | | | | Drain-to-Source Breakdown Voltage | $V_{GS} = 0 \text{ V, I}_{D} = 1 \text{ mA}$ | 1 | BV _{DSS} | 620 | | | V | | Breakdown Voltage Temperature
Coefficient | Reference to 25°C,
I _D = 1 mA | | $\Delta BV_{DSS}/ \ \Delta T_{J}$ | | 0.6 | | V/°C | | Drain-to-Source Leakage Current | 25 | | I _{DSS} | | | 1 | μΑ | | | V _{DS} = 620 V, V _{GS} = 0 V | 125°C | | | | 50 | | | Gate-to-Source Forward Leakage | V _{GS} = ±20 V | | I _{GSS} | | | ±10 | μА | | ON CHARACTERISTICS (Note 5) | | | | | • | | • | | Static Drain-to-Source
On-Resistance | V _{GS} = 10 V, I _D = 5.0 / | A | R _{DS(on)} | | 0.65 | 0.75 | Ω | | Gate Threshold Voltage | V _{DS} = V _{GS} , I _D = 100 μ | А | V _{GS(th)} | 3.0 | | 4.5 | V | | Forward Transconductance | V _{DS} = 15 V, I _D = 10 A | | 9FS | | 7.9 | | S | | DYNAMIC CHARACTERISTICS | • | | | | • | | | | Input Capacitance | V _{DS} = 25 V, V _{GS} = 0 V,
f = 1.0 MHz | | C _{iss} | | 1425 | | pF | | Output Capacitance | | | C _{oss} | | 150 | | | | Reverse Transfer Capacitance | | | C _{rss} | | 35 | | | | Total Gate Charge | | | Q_g | | 47 | | nC | | Gate-to-Source Charge | V _{DD} = 310 V, I _D = 10 <i>i</i> | ۹, | Q_{gs} | | 9.3 | | | | Gate-to-Drain ("Miller") Charge | V _{GS} = 10 V | | Q_{gd} | | 25 | | | | Plateau Voltage | | | | | 6.4 | | V | | Gate Resistance | | | R_{g} | | 1.5 | | Ω | | RESISTIVE SWITCHING CHARACTER | ISTICS | | | | | | | | Turn-On Delay Time | | | t _{d(on)} | | 15 | | ns | | Rise Time | V _{DD} = 310 V, I _D = 10 <i>i</i> | Α, | t _r | | 31 | | 1 | | Turn-Off Delay Time | V_{GS} = 10 V, R_{G} = 5 Ω | | t _{d(off)} | | 40 | | 1 | | Fall Time | | | t _f | | 21 | | <u> </u> | | SOURCE-DRAIN DIODE CHARACTER | RISTICS (T _C = 25°C unless oth | erwise not | ed) | | | | | | Diode Forward Voltage | I _S = 10 A, V _{GS} = 0 V | , | V _{SD} | | | 1.6 | V | | Reverse Recovery Time | V _{GS} = 0 V, V _{DD} = 30 ' | v | t _{rr} | | 395 | | ns | | Reverse Recovery Charge | $I_S = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ | | Q _{rr} | | 3.0 | | μС | ^{4.} Insertion mounted ^{5.} Pulse Width \leq 380 $\mu s,$ Duty Cycle \leq 2%. #### TYPICAL CHARACTERISTICS Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. BVDSS Variation with Temperature #### **TYPICAL CHARACTERISTICS** Figure 7. Drain-to-Source Leakage Current vs. Voltage Figure 8. Capacitance Variation Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 10. Resistive Switching Time Variation vs. Gate Resistance Figure 11. Diode Source Current vs. Forward Voltage Figure 12. Maximum Rated Forward Biased Safe Operating Area for NDF10N62Z #### TYPICAL CHARACTERISTICS Figure 13. Thermal Impedance for NDF10N62Z Figure 14. Isolation Test Diagram Measurement made between leads and heatsink with all leads shorted together. ^{*}For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### TO-220FP CASE 221D-03 **ISSUE K** #### TO-220AB CASE 221A-09 **ISSUE AE** - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH - 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03 | | INCHES | | MILLIMETERS | | |-----|-----------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.617 | 0.635 | 15.67 | 16.12 | | В | 0.392 | 0.419 | 9.96 | 10.63 | | С | 0.177 | 0.193 | 4.50 | 4.90 | | D | 0.024 | 0.039 | 0.60 | 1.00 | | F | 0.116 | 0.129 | 2.95 | 3.28 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.118 | 0.135 | 3.00 | 3.43 | | J | 0.018 | 0.025 | 0.45 | 0.63 | | K | 0.503 | 0.541 | 12.78 | 13.73 | | L | 0.048 | 0.058 | 1.23 | 1.47 | | N | 0.200 BSC | | 5.08 BSC | | | Q | 0.122 | 0.138 | 3.10 | 3.50 | | R | 0.099 | 0.117 | 2.51 | 2.96 | | S | 0.092 | 0.113 | 2.34 | 2.87 | | U | 0.239 | 0.271 | 6.06 | 6.88 | PIN 1. GATE 2. DRAIN SOURCE #### NOTES - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE | | INCHES | | MILLIMETERS | | | |-----|--------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | | В | 0.380 | 0.405 | 9.66 | 10.28 | | | С | 0.160 | 0.190 | 4.07 | 4.82 | | | D | 0.025 | 0.035 | 0.64 | 0.88 | | | F | 0.142 | 0.161 | 3.61 | 4.09 | | | G | 0.095 | 0.105 | 2.42 | 2.66 | | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | | J | 0.014 | 0.025 | 0.36 | 0.64 | | | K | 0.500 | 0.562 | 12.70 | 14.27 | | | L | 0.045 | 0.060 | 1.15 | 1.52 | | | N | 0.190 | 0.210 | 4.83 | 5.33 | | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | | R | 0.080 | 0.110 | 2.04 | 2.79 | | | S | 0.045 | 0.055 | 1.15 | 1.39 | | | T | 0.235 | 0.255 | 5.97 | 6.47 | | | U | 0.000 | 0.050 | 0.00 | 1.27 | | | ٧ | 0.045 | | 1.15 | | | | Z | | 0.080 | | 2.04 | | STYLE 5: PIN 1. GATE DRAIN 3. SOURCE DRAIN ON Semiconductor and 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative