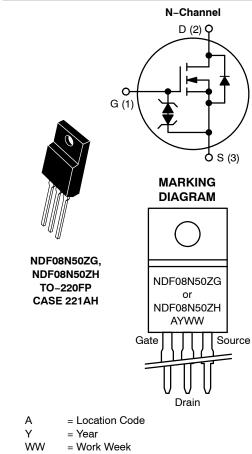
N-Channel Power MOSFET 500 V, 0.85 Ω

Features


- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} (MAX) @ 3.6 A
500 V	0.85 Ω

G, H = Pb-Free, Halogen-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NDF08N50ZG	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail
NDF08N50ZH	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF08N50Z	Unit
Drain-to-Source Voltage	V _{DSS}	500	V
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Ι _D	8.5	А
Continuous Drain Current $R_{\theta JC}$ T _A = 100°C (Note 1)	۱ _D	5.4	A
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	34	A
Power Dissipation	PD	35	W
Gate-to-Source Voltage	V _{GS}	±30	V
Single Pulse Avalanche Energy, $I_D = 7.5 \text{ A}$	E _{AS}	190	mJ
ESD (HBM) (JESD 22–A114)	V _{esd}	3500	V
$\label{eq:RMS} \begin{array}{l} \text{RMS Isolation Voltage} \\ (t=0.3 \; \text{sec.}, \; \text{R.H.} \leq 30\%, \\ T_{\text{A}} = 25^{\circ}\text{C}) \; (\text{Figure 14}) \end{array}$	V _{ISO}	4500	V
Peak Diode Recovery (Note 2)	dV/dt	4.5	V/ns
MOSFET dV/dt	dV/dt	60	V/ns
Continuous Source Current (Body Diode)	I _S	7.5	A
Maximum Temperature for Soldering Leads	ΤL	260	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

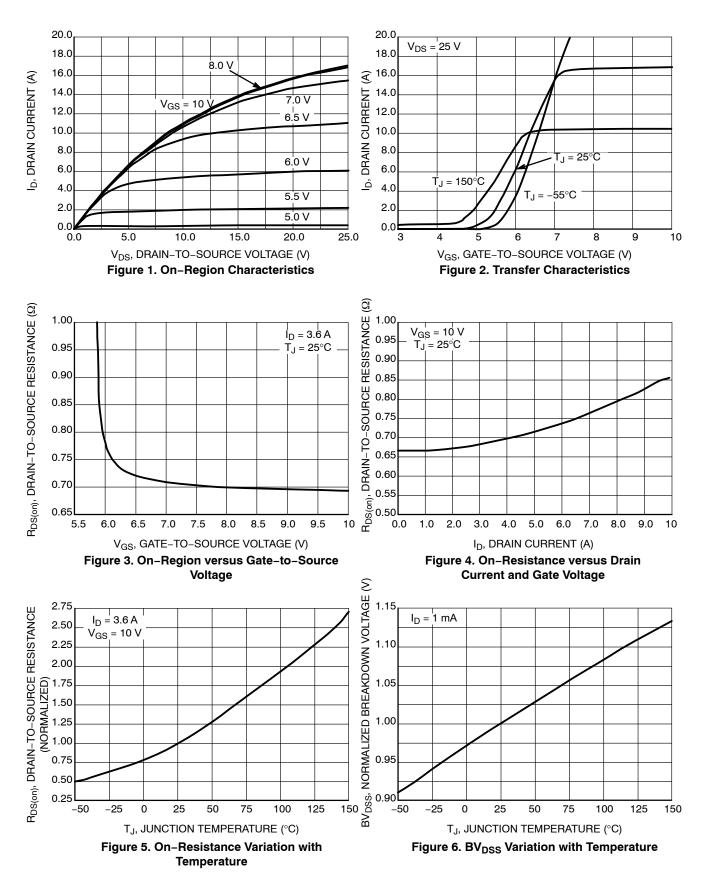
1. Limited by maximum junction temperature

2. I_{SD} = 7.5 Å, di/dt \leq 100 Å/ $\mu s,$ V_{DD} \leq $BV_{DSS},$ T_{J} = +150°C

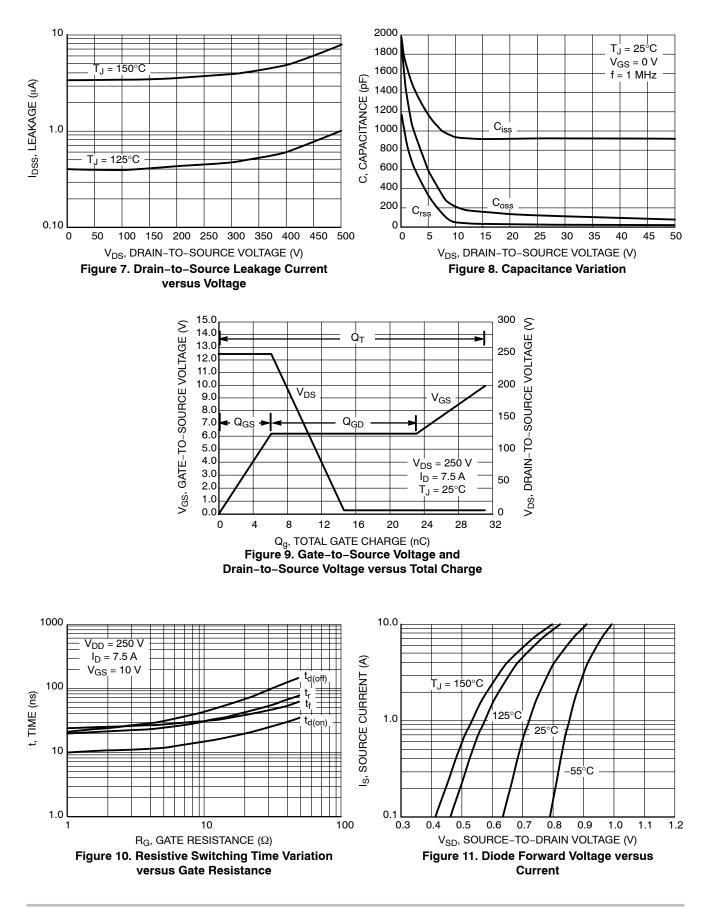
THERMAL RESISTANCE

Parameter	Symbol	NDF08N50Z	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	3.6	°C/W
Junction-to-Ambient Steady State (Note 3)	$R_{\theta JA}$	50	

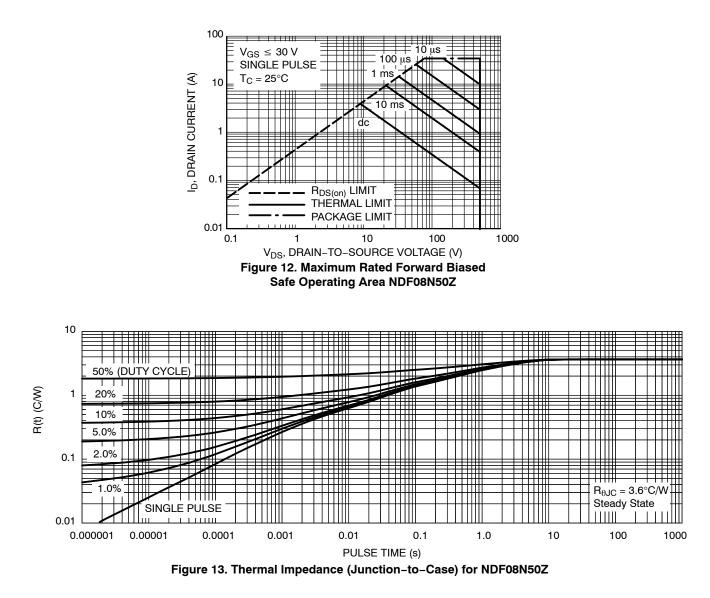
3. Insertion mounted

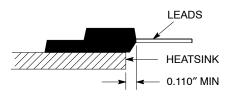

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Test Conditions		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-		-	-	-
Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 1 mA		BV _{DSS}	500			V
Breakdown Voltage Temperature Co- efficient	Reference to 25°C, I _D = 1 mA		$\Delta BV_{DSS}/\Delta T_J$		0.6		V/°C
Drain-to-Source Leakage Current	V_{DS} = 500 V, V_{GS} = 0 V	25°C	I _{DSS}			1	μA
		150°C				50	1
Gate-to-Source Forward Leakage	V _{GS} = ±20 V		I _{GSS}			±10	μA
ON CHARACTERISTICS (Note 4)			•		-	•	
Static Drain-to-Source On-Resistance	V _{GS} = 10 V, I _D = 3.6 A	4	R _{DS(on)}		0.69	0.85	Ω
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 100 μA		V _{GS(th)}	3.0	3.9	4.5	V
Forward Transconductance	V _{DS} = 15 V, I _D = 3.75 A		9fs		6.0		S
DYNAMIC CHARACTERISTICS							-
Input Capacitance (Note 5)	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		C _{iss}	730	912	1095	pF
Output Capacitance (Note 5)			C _{oss}	95	120	140	
Reverse Transfer Capacitance (Note 5)			C _{rss}	15	27	35	
Total Gate Charge (Note 5)			Qg	16	31	46	nC
Gate-to-Source Charge (Note 5)			Q _{gs}	3	6.2	9	1
Gate-to-Drain ("Miller") Charge (Note 5)	V_{DD} = 250 V, I_D = 7.5 A, V_{GS} = 10 V		Q _{gd}	8	17	25	
Plateau Voltage			V _{GP}		6.3		V
Gate Resistance			R _g		3.0		Ω
RESISTIVE SWITCHING CHARACTER	RISTICS						
Turn-On Delay Time	V_{DD} = 250 V, I _D = 7.5 A, V _{GS} = 10 V, R _G = 5 Ω		t _{d(on)}		13		ns
Rise Time			t _r		23		
Turn-Off Delay Time			t _{d(off)}		31		1
Fall Time			t _f		29		1
SOURCE-DRAIN DIODE CHARACTE	RISTICS (T _C = 25°C unless oth	nerwise no	ted)		•		
			,		1	1	


Diode Forward Voltage	$I_{\rm S}$ = 7.5 A, $V_{\rm GS}$ = 0 V	V _{SD}		1.6	V
Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 30 V	t _{rr}	295		ns
Reverse Recovery Charge	I _S = 7.5 A, di/dt = 100 A/μs	Q _{rr}	1.85		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Width ≤ 380 µs, Duty Cycle ≤ 2%.
5. Guaranteed by design.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

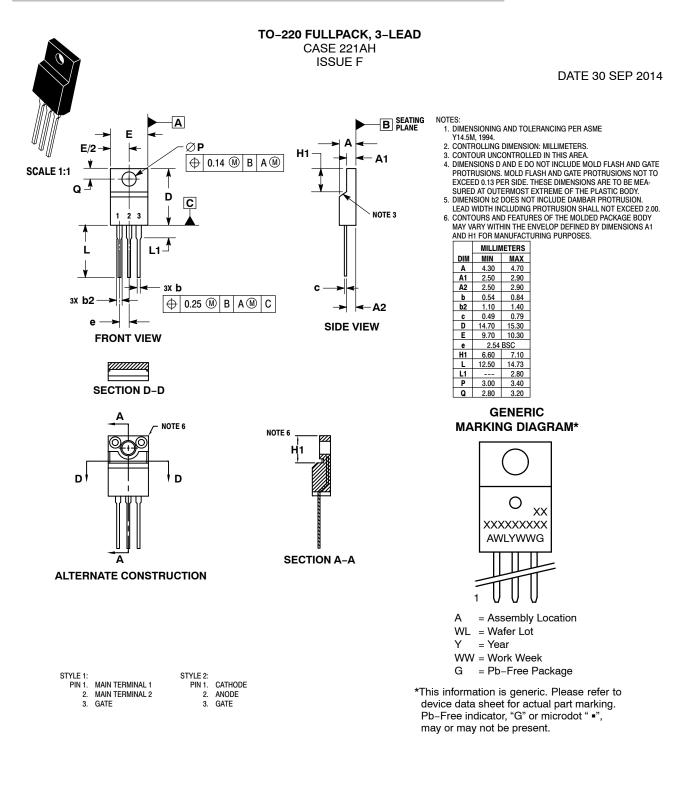


Figure 14. Isolation Test Diagram

Measurement made between leads and heatsink with all leads shorted together.

*For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON52577E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	N: TO-220 FULLPACK, 3-LEAD				
ON Semiconductor and una are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convex any license under its patent rights nor the					

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative