1024-BIT LOW POWER BIPOLAR RAM (1024X1)

82LS10/93L415 (0.C.) 82LS11/93L425 (T.S.)

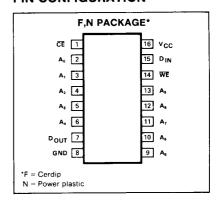
82LS10/82LS11-F,N, • 93L415/93L425-F,N

DESCRIPTION

This family of low power 1024x1 Rams with a typical access time of 30ns, are ideal for cache buffer applications and for systems requiring very high speed main memory.

These products require a single +5V power supply and feature very low current pnp input structures. They include on-chip decoding and a chip enable input for ease of memory expansion, and feature either open collector or tri-state outputs for optimization of word expansion in bused organizations.

All devices are available in the commercial temperature range (0°C to +75°C), and military temperature range (-55°C to +125°C).

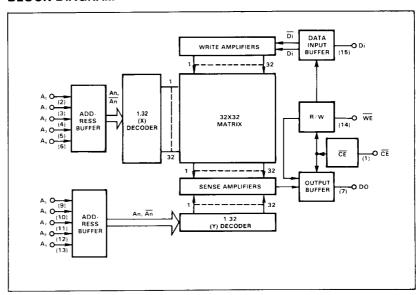

FEATURES

- · Address access time: 45ns max
- . Write cycle time: 45ns max
- Power dissipation: 0.2mW/bit typ
- Input loading: -250μA max
- On-chip address decoding
- Output options:
 82LS10, 93L415: Open collector
 82LS11, 93L425: Tri-state
- Non-inverting output
- Blanked output during Write
- Fully TTL compatible

APPLICATIONS

- · High speed main frame
- Cache memory
- Buffer storage
- · Writable control store

PIN CONFIGURATION



TRUTH TABLE

	CÉ	WE	D	POUT						
MODE	CE	WE	DIN	82LS10/93L415	82LS11/93L425					
Read	0	1	х	Stored data	Stored data					
Write low	0	0	0	1	High-Z					
Write high	0	0	1	1	High-Z					
Disabled	1	×	x	1	High-Z					

X = Don't care

BLOCK DIAGRAM

www.DataSheet4U.com

DataShe

DataSheet4U.com

1024-BIT LOW POWER BIPOLAR RAM (1024X1)

11759 82LS10/93L415 (0.C.)
11762 82LS11/93L425 (T.S.)

82LS10/82LS11-F,N • 93L415/93L425-F,N

ABSOLUTE MAXIMUM RATINGS

	PARAMETER ¹	RATING	UNIT
Vcc	Supply voltage	+7	Vdc
VIN	Input voltage	+5.5	Vđc
	Output voltage	•	Vdc
Vон	High 82LS10/93L415	+5.5	
Vo	Off-state 82LS11/93L425	+5.5	
	Temperature range		l ∘c
T_A	Operating		
	N Grade	0 to +75	
	S Grade	-55 to +125	•
T_{STG}	Storage	-65 to +150	

DC ELECTRICAL CHARACTERISTICS⁹ N Grade: 0°C≤TA≤+75°C, 4.75V≤V_{CC}≤5.25V S Grade: -55°C≤TA≤+125°C, 4.5V ≤V_{CC}≤5.5V

	PARAMETER	TEST CONDITIONS		32LS10/ 3L415/		SI SI	UNIT			
	TANAMETER	1201 00110110110	Min	Typ ²	Max	Min	Typ ²	Max	UNII	
J. PPM VIH VIC	Input voltage Low ¹ High ¹ Clamp ^{1,3}	V _{CC} = Min V _{CC} = Max V _{CC} = Min, I _{IN} = -12mA	2.1	-1.0	.85 -1.5	2.1	-1.0	. 80 -1.5	٧	
V _{OL} Vон	Output voltage Low1.4 High (Tri-state)1.5	$V_{CC} = Min$ $I_{OL} = 16mA$ $I_{OH} = -2mA$	2.4	0.35	0.45	2.4	0.35	0.50	V	
lic lin	Input current Low High	V _{IN} = 0.45V Sheet4 V _{IN} = 5.5V	J.com	-10 1	-250 25		-10 1	-250 40	μА	
lolk lo(off)	Output current Leakage (Open collector) ⁶ Hi-Z state (Tri-state) ⁶	V _{CC} = Max V _{OUT} = 5.5V V _{OUT} = 5.5V V _{OUT} = 0.45V		1 1 -1	40 60 -60		1 1 -1	60 100 -100	μ Α μ Α	
los lcc	Short circuit (Tri-state)7 Vcc supply current8	$V_{OUT} = 0V$ $V_{CC} = Max$ $0 < T_A < 25^{\circ}C$ $T_A \ge 25^{\circ}C$ $T_A \le 0^{\circ}C$	~20		-100	-20)		-100 75	mA mA	
Cin Cout	Capacitance Input Output	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		7			4		pF	

www.DataSheet4U.com

BIPOLDR MEMORY

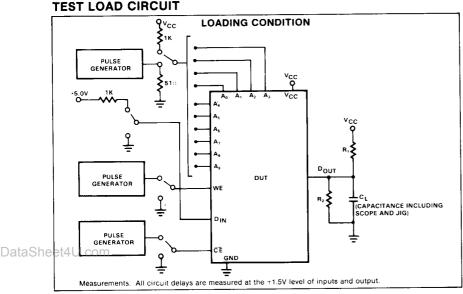
1024-BIT LOW POWER BIPOLAR RAM (1024X1)

82L\$10/93L415 (O.C.) 82LS11/93L425 (T.S.

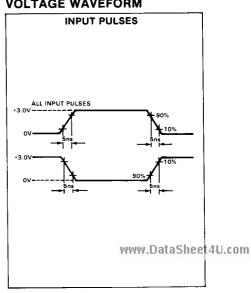
82LS10/82LS11-F,N, • 93L415/93L425-F,N

AC ELECTRICAL CHARACTERISTICS 9 R₁ = 270 Ω , R₂ = 600 Ω , C_L = 30pF, See ac test load N Grade: 0° C ≤T_A≤+75° C, 4.75V≤V_{CC}≤5.25V

S Grade:-55°C ≤ T_A +125°C, 4.5V ≤V_{CC}≤5.5V

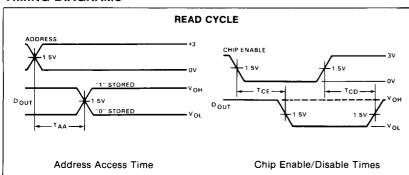

			N82LS10 N82LS11		\$82L\$10 \$82L\$11		N93L415 N93L425			S93L415 S93L425					
PARAMETER	TO	FROM	Min	Typ ²	Max	Min	Typ ²	Max	Min	Typ ²	Max	Min	Typ ²	Max	
Access time TAA Address TCE Chip enable	Output Output	Address Chip enable		30 15	45 30		30 15	70 45		30	60 40			70 45	ns
T _{CD} Disable time	Output	Chip enable		15	30		15	45			40			50	ns
T _{WD} Response time	Output	Write enable		20	30		20	45			45			45	ns
Twn Write recovery time				20	30		20	45			45			55	ns
Setup and hold time TWSA Setup time TWHA Hold time	Write enable	Address	5 5	0		10 10	0		5 5	0		10 10			ns
TWSD Setup time TWHD Hold time	Write enable	Data in	40 5	30 0		55 5	35 0		50 5			60 10			
Twsc Setup time Twhc Hold time	Write enable	CE	5 5	0		5 5	0		5 5			10 10			
Pulse width Twp Write enable10			35	25		50	25		45			50			ns

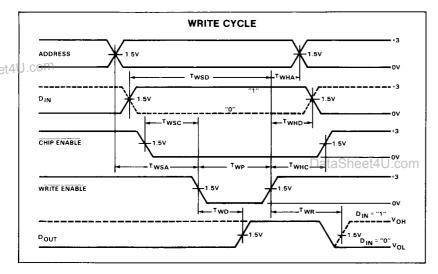
DataShe


NOTES

- 1. All voltage values are with respect to network ground terminal.
- 2. All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$.

- 3. Test each input one at a time.
- 4. Measured with a logic low stored. Output sink current is supplied through a resistor to Vcc
- 5. Measured with V_{IL} applied to \overline{CE} and a logic high stored.
- 6. Measured with VIH applied to CE.
- 7. Duration of the short circuit should not exceed 1 second.
- 8. Icc is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 9. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
 - θ_{JA} junction to ambient at 400fpm air flow-50° C/watt θ JA junction to ambient-still air-90° C/watt
- θ JA junction to case-20° C/watt
- 10. Minimum required to guarantee a Write into the slowest bit




VOLTAGE WAVEFORM

82LS10/82LS11-F.N. • 93L415/93L425-F.N

TIMING DIAGRAMS

MEMORY TIMING DEFINITIONS

- Delay between end of Write Enable pulse and when Data Output becomes valid. (Assuming Address still valid-not as shown.)
- Delay between beginning of Chip TCE Enable low (with Address valid) and when Data Output becomes valid.
- Delay between when Chip Enable TCD becomes high and Data Output is in off state.
- T_{AA} Delay between beginning of valid Address (with Chip Enable low) and when Data Output becomes valid.
- Required delay between begin-Twsc ning of valid Chip Enable and beginning of Write Enable pulse.
- TWHD Required delay between end of Write Enable pulse and end of valid Input Data.
- Width of Write Enable pulse. Twp Required delay between begin-TWSA ning of valid Address and begin-
- ning of Write Enable pulse. Required delay between begin-Twsp ning of valid Data Input and end of
- Write Enable pulse. Delay between beginning of Write Twp
- Enable pulse and when Data Output is in off state.
- Twhc Required delay between end of Write Enable pulse and end of Chip Enable.
- Required delay between end of TWHA Write Enable pulse and end of

valid Address.

BIPOLAR MEMORY