

Approval

TFT LCD Approval Specification

MODEL NO.: N184H6-P02

Customer:	
Approved by:	
Note:	

核准時間	部門	審核	角色	投票
2010-02-08 17:13:27	NB 產品管理處	楊 2010.02.08 竣 傑	Director	Accept

Approval

②

- CONTENTS -	
REVISION HISTORY	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL) 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	5 MODULE)
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL	7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD OPEN CELL 5.2 LED CONVERTER OUTPUT PIN ASSIGNMENT 5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.3 COLOR DATA INPUT ASSIGNMENT	10
6. CONVERTER SPECIFICATION 6.1 ABSOLUTE MAXIMUM RATINGS 6.2 RECOMMENDED OPERATING RATINGS 6.3 LED CONVERTER OUTPUT RATINGS	13
7. INTERFACE TIMING 7.1 INPUT SIGNAL TIMING SPECIFICATIONS 7.2 POWER ON/OFF SEQUENCE	16
8. OPTICAL CHARACTERISTICS 8.1 TEST CONDITIONS 8.2 OPTICAL SPECIFICATIONS 8.3 FLICKER ADJUSTMENT	19
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	23
10. DEFINITION OF LABELS 10.1 CMO OPEN CELL LABEL 10.2 CMO CARTON LABEL	25
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	26
12. MECHANICAL DRAWING 2 / 27	27

Approval

②

REVISION HISTORY

Version	Date	Section	Description
Ver. 2.0	Jan, 29 '10	-	N184H6-P02 Approval Specifications was first issued ∘

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The N184H6-P02 is a 18.4-inch TFT LCD cell with driver ICs and a 40-pin-and-2ch-LVDS circuit board._The product supports 1920 x 1080 FHD mode and can display up to 262,144 colors._The backlight unit is not built in.

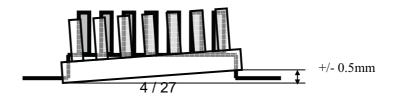
1.2 FEATURES

- FHD (1920 x 1080 pixels) resolution
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock
- LED converter embedded

1.3 APPLICATION

- -TFT LCD Notebook
- -TFT LCD Monitor
- -TFT LCD TV

1.4 GENERAL SPECIFICATIONS


Item	Specification	Unit	Note
Active Area	408.96 (H) x 230.04 (V) (18.47" diagonal)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 (H) x 3 (R.G.B.) x 1080 (V)	pixel	-
Pixel Pitch	0.213 (H) x 0.213 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Glare, N2T (Reflection rate< 0.5%), 3H	-	-

1.5 MECHANICAL SPECIFICATIONS

С		Min.	Тур.	Max.	Unit	Note
	Horizontal (H) with PCB	417.58	417.78	417.98	mm	
	Horizontal (H) w/o PCB 417.58 Vertical (V) with PCB 294.422		417.78	417.98	mm	
Size			295.422	296.422	mm	
Size	Vertical (V) w/o PCB	237.725	238.725	239.725	mm	
	Thickness (T) with PCB	-	2.4	2.64	mm	(1)(2)
	Thickness (T) w/o PCB	-	1.43	1.55	mm	
	Weight	-	299	314	g	
	/F connector mounting					
	position	the screen center	within ±0.5mm as	s the horizontal.		

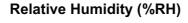
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

Issued Date: Jan. 29, 2010 Model No .: N184H6-P02

Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C Min. and 60 °C Max.

Issued Date: Jan. 29, 2010 Model No.: N184H6-P02

Approval

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing. Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item		Va	lue		
	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V _{cc}	-0.3	+4.0	V	(1)
Logic Input Voltage	Vı	-0.3	V _{CC} +0.3	V	(1)

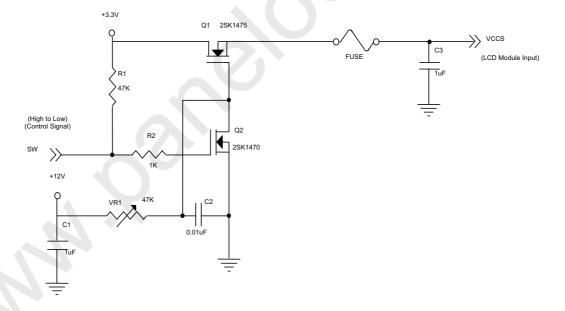
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD OPEN CELL

Ta = 25 ± 2 °C

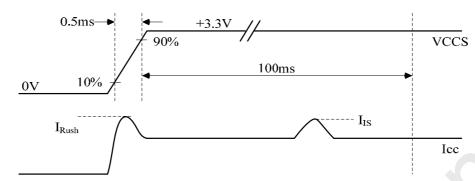

Parameter	Symbol		Value		Unit	Note	
Farameter		Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RP}		50		mV	-
Rush Current		I _{RUSH}			1.5	Α	(2)
Initial Stage Current		I _{IS}			1.0	Α	(2)
Davies Comply Company	White	lcc	360	390	420	mA	(3)a
Power Supply Current	Black	icc	480	570	640	mA	(3)b
LVDS Differential Input High	Threshold	V _{TH(LVDS)}			+100	mV	(4), V _{CM} =1.2V
LVDS Differential Input Low	V _{TL(LVDS)}	-100			mV	(4) V _{CM} =1.2V	
LVDS Common Mode Voltag	V_{CM}	1.125		1.375	V	(4)	
LVDS Differential Input Volta	V _{ID}	100		600	mV	(4)	
Terminating Resistor		R _T		100		Ohm	-

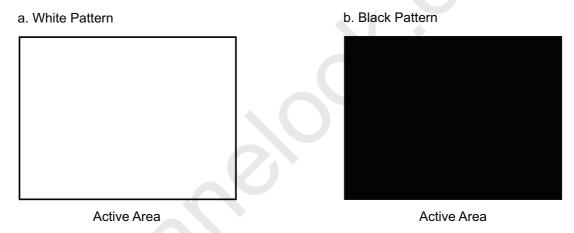
Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

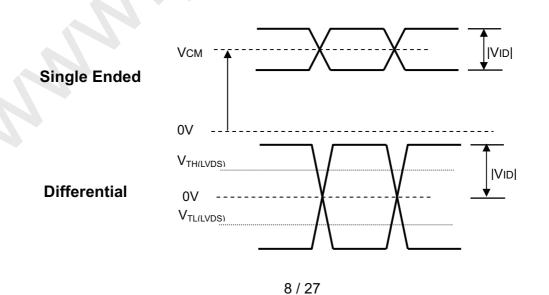
 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



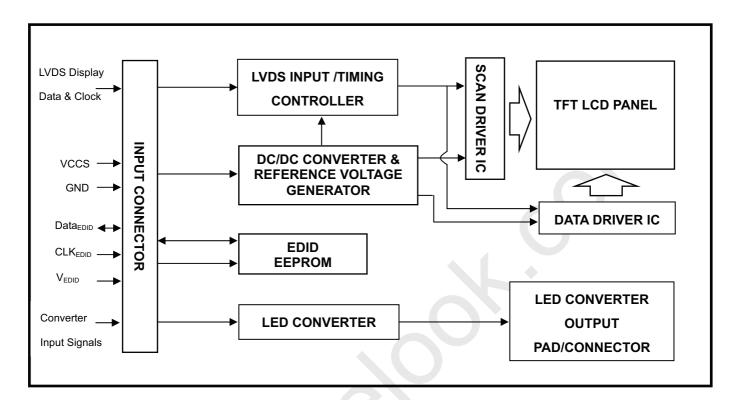

Issued Date: Jan. 29, 2010 Model No.: N184H6-P02 Approval

VCCS rising time is 0.5ms


www.panelook.com

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The parameters of LVDS signals are defined as the following figures.



Approval

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

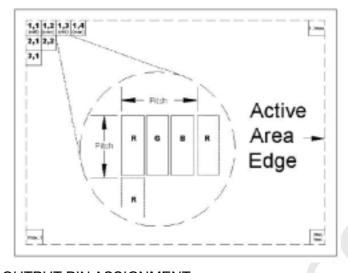
Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD OPEN CELL

Pin	Symbol	Description	Polarity	Remark
1	NC	Non-Connection (Reserved for supplier)	-	
2	Vcc	Power Supply +3.3 V (typical)		
3	Vcc	Power Supply +3.3 V (typical)		
4	V_{EDID}	DDC 3.3V Power		
5	NC	Non-Connection (Reserved for CMO)		
6	CLK _{EDID}	DDC Clock		
7	DATA _{EDID}	DDC Data		
8	RXO0-	LVDS Differential Data Input (Odd)	Negative	
9	RXO0+	LVDS Differential Data Input (Odd)	Positive	
10	Vss	Ground		
11	RXO1-	LVDS Differential Data Input (Odd)	Negative	
12	RXO1+	LVDS Differential Data Input (Odd)	Positive	
13	Vss	Ground		
14	RXO2-	LVDS Differential Data Input (Odd)	Negative	
15	RXO2+	LVDS Differential Data Input (Odd)	Positive	
16	Vss	Ground		
17	RXOC-	LVDS Clock Data Input (Odd)	Negative	
18	RXOC+	LVDS Clock Data Input (Odd)	Positive	
19	Vss	Ground		
20	RxE0-	LVDS Differential Data Input (Even)	Negative	
21	RxE0+	LVDS Differential Data Input (Even)	Positive	
22	Vss	Ground		
23	RxE1-	LVDS Differential Data Input (Even)	Negative	
24	RxE1+	LVDS Differential Data Input (Even)	Positive	
25	Vss	Ground		
26	RxE2-	LVDS Differential Data Input (Even)	Negative	
27	RxE2+	LVDS Differential Data Input (Even)	Positive	
28	Vss	Ground		
29	RXEC-	LVDS Clock Data Input (Even)	Negative	
30	RXEC+	LVDS Clock Data Input (Even)	Positive	
31	LED_GND	LED Ground		
32	LED_GND	LED Ground		
33	LED_GND	LED Ground		
34	NC	Non-Connection		
35	LED_PWM	PWM Control Signal of LED Converter		
36	LED_EN	Enable Control Signal of LED Converter		
37	NC	Non-Connection		
38	LED_VCCS	LED Power		
39	LED_VCCS	LED Power		
40	LED_VCCS	LED Power		

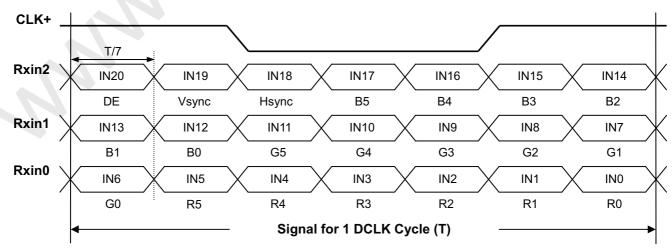
Note (1) Connector Part No.: I-PEX 20455-040E-12 or equivalent


Note (2) User's connector Part No: I-PEX 20453-040T-01 or equivalent

Note (3) The first pixel is odd as shown in the following figure.

Approval

②


www.panelook.com

5.2 LED CONVERTER OUTPUT PIN ASSIGNMENT

Pin	Symbol	Description								
1	V _L	LED converter output voltage								
2	V _L	LED converter output voltage								
3	V _L	LED converter output voltage								
4	NC	No connection								
5	CH1	LED converter feedback channel 1								
6	CH2	LED converter feedback channel 2								
7	CH3	LED converter feedback channel 3								
8	CH4	LED converter feedback channel 4								
9	CH5	LED converter feedback channel 5								
10	CH6	LED converter feedback channel 6								
11	CH7	LED converter feedback channel 7								
12	CH8	LED converter feedback channel 8								

Note (1) Connector Part No.: FCI-59453-12110EDHLF or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

11 / 27

Issued Date: Jan. 29, 2010 Model No.: N184H6-P02

Approval

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color			Re						Gre							ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:		:	•	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:		÷	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	÷			:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:		(:)):	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		\Box	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

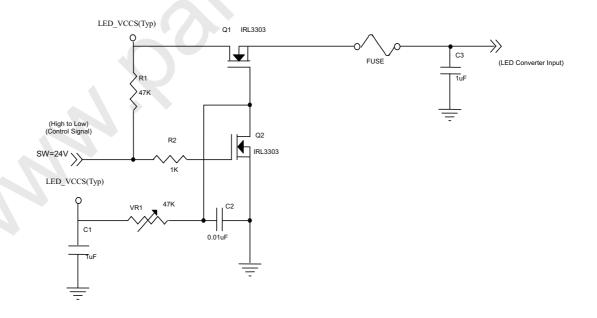
Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. CONVERTER SPECIFICATION

6.1 ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings
LED_VCCS	-0.3~28V
LED_PWM	-0.3V~5.5V
LED_EN	-0.3V~5.5V

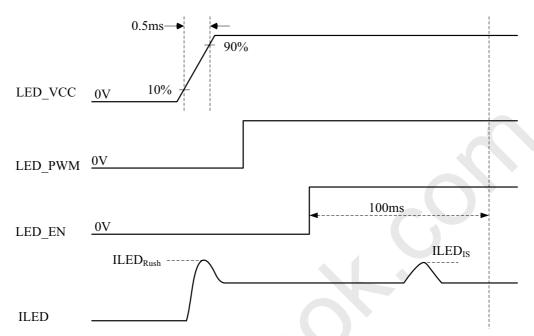

6.2 RECOMMENDED OPERATING RATINGS

Parame	Symbol		Value	Unit	Note		
raiailie	etei	Symbol	Min.	Тур.	Max.	Offit	Note
Converter Input power su	ipply voltage	LED_Vccs	6	12	21	V	-
Converter Rush Current		ILED _{RUSH}	-	-	1.5	Α	(1)
Converter Initial Stage Cu	urrent	ILED _{IS}	-	-	1.5	Α	(1)
EN Control Level	Backlight On		2		5	V	ı
Liv Control Level	Backlight Off		0		0.5	V	ı
PWM Control Level	PWM High Level		2		5	V	ı
F VVIVI COITII OI Level	PWM Low Level		0	-	0.15	V	ı
PWM Control Duty Ratio		10		100	%	ı	
F WW Control Duty Ratio		5	1	100	%	(2)	
PWM Control Permissive	VPWM_pp	-	-	100	mV	-	
PWM Control Frequency	f _{PWM}	190	210	1K	Hz	(3)	

Note (1) ILED $_{\mbox{\scriptsize RUSH}}$: the maximum current when LED_VCCS is rising,

 $ILED_{IS}$: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.



VLED rising time is 0.5ms

- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- Note (3) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range
$$(N+0.33)*f \leq f_{\text{PWM}} \leq (N+0.66)*f$$

$$N: \text{Integer} \ (N \geq 3)$$

$$f: \text{Frame rate}$$

Approval

6.3 LED CONVERTER OUTPUT RATINGS

Parameter	Symbol		Value	Unit	Note	
Farantetei	Syllibol	Min.	Тур.	Max.	Offic	Note
Converter output voltage	V_L	25.2	28.8	31.5	V	
Converter output current	ΙL	152	160	168	mA	
Converter feedback channel current	I _{CH}	19	20	21	mA	

Approval

7. INTERFACE TIMING

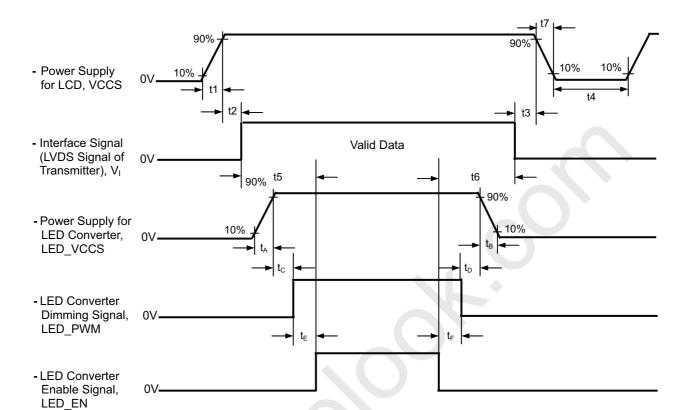

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	62	69.25	72.7	MHz	-
	Vertical Total Time	TV	1082	1111	1350	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	31	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2002	2080	2400	Tc	-
	Horizontal Active Display Period	THD	1920	1920	1920	Tc	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Tc	_

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM



Approval

7.2 POWER ON/OFF SEQUENCE

Timing Specifications:

 $0.5 \leq$ t1 \leq 10 ms

 $0 \le t2 \le 50 \text{ ms}$

 $0 \le t3 \le 50 \text{ ms}$

 $t4 \ge 500 \text{ ms}$

 $t5 \ge 200 \text{ ms}$

 $t6 \ge 200 \text{ ms}$

 $0.5 \le t7 \le 10 \text{ ms}$

 $0.5 \leq t_A \leq 10 \text{ ms}$

 $0 < t_B \leq 10 \text{ ms}$

 $t_C \, \geqq \, 10 \; ms$

 $t_D \ge 10 \text{ ms}$

 $t_{E}\,\geq\,10\;ms$

 $t_F \, \geqq \, 10 \; ms$

Approval

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD VCCS to 0 V.
- Note (3) The backlight must be turned on after the power supply for the logic and the interface signal is valid.

 The backlight must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Please follow the LED converter power sequence as above. If the customer could not follow, it might cause backlight flash issue during display ON/OFF or damage the LED backlight controller

Doc. No.:

Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

Approval

8. OPTICAL CHARACTERISTICS

8.1 TEST CONDITIONS

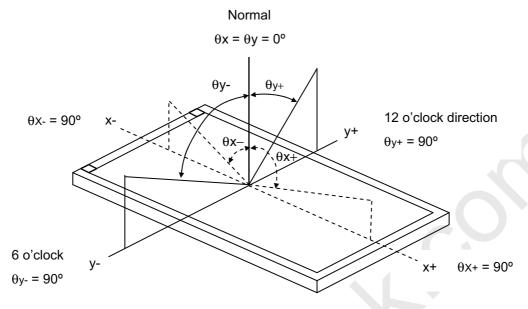
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{cc}	3.3	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						

8.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Dod	Rcx			0.639		-		
	Red	Rcy			0.330		-		
	Green	Gcx	0 00 0		0.277		-		
Color	Green	Gcy	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	Тур -	0.575	Typ +	-	(0) (6)	
Chromaticity	Blue	Всх	CS-2000T Standard light source "C"	0.03	0.153	0.03	-	(0),(6)	
	Diue	Всу	Standard light source C		0.113		-		
	White	Wcx			0.313		-		
	vviiite	Wcy			0.343		-		
Center Transmit	tance	T%	$\theta_{x}=0^{\circ}$, $\theta_{Y}=0^{\circ}$	4.59	5.40			(1), (8)	
Contrast Ratio		CR	CS-2000T, CMO BLU	300	500		-	(1), (3)	
Response Time	T_{R}		$\theta_x=0^\circ$, $\theta_Y=0^\circ$		2	8	ms	(4)	
response fine		T_F	0 _x -0 , 0 _Y -0		6	12	ms	(+)	
Transmittance uniformity		δΤ%	θ_x =0°, θ_Y =0° BM-5A		1.25	1.40	-	(1), (7)	
	Harizontal	θ_x +		40	45				
Viewing Angle	Horizontal	θ _x -	CR≥10	40	45		Dog	(1), (3)	
	Vartical	θ _Y +	BM-5A	15	20		Deg.	(6)	
	Vertical	θ _Y -		40	45				

- Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
 - 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMO.
 - 2. Calculate cell's spectrum.
 - 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample.



Doc. No.:

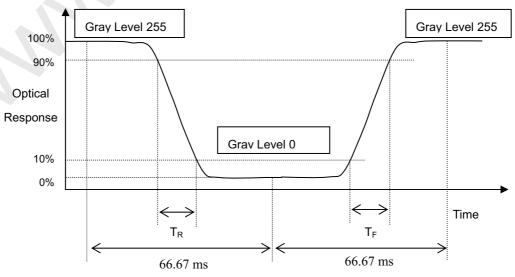
Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

Approval

Note (2) Definition of Viewing Angle (θx , θy):

Note (3) Definition of Contrast Ratio (CR):

$$CR_{AVE}$$
= [CR(1)+ CR(2)+ CR(3)+ CR(4)+ CR(5)] / 5


CR_{max}=Max value of CR at whole Viewing Angle

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Gmax: Luminance of gray max at the center point of panel.

Gmin: Luminance of gray min at the center point of panel.

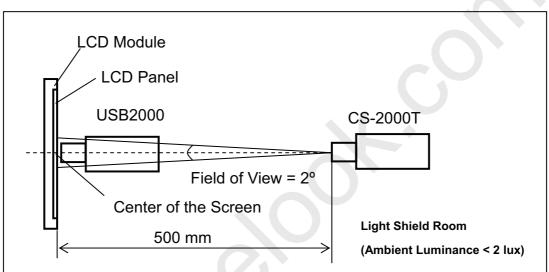
20 / 27

Doc. No.:

Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

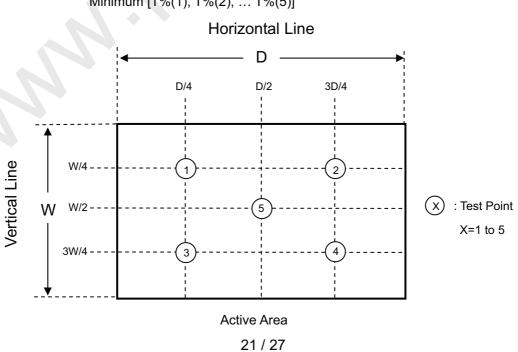
Approval

Note (5) Definition of Luminance of White (L_C):


Measure the luminance of gray level 255 at center point

$$L_C = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

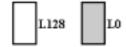
Note (7) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 5 points

Doc. No.: Issued Date: Sep. 7, 2009

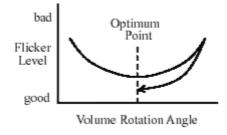
Model No.: N154C6-P04

Note (8) Definition of Transmittance (T%):


Module is without signal input.

BLU is supplied by CMO.

8.3 Flicker Adjustment


(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.

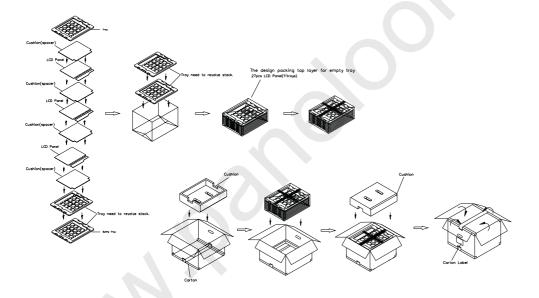
Doc. No.:

Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS


- (1) 27 open cells / 1 Box
- (2) Box dimensions: 570mm(L) X 450mm(W) X 320mm(H)
- (3) Weight: approximately 18.3Kg (27 open cells per box)

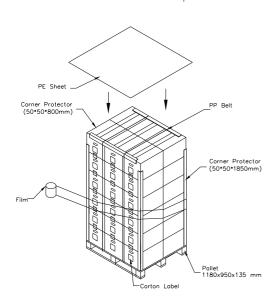
9.2 PACKING METHOD

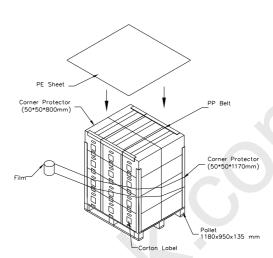
(1) Carton Packing should have no failure in the following reliability test items

,	•	
Test Item	Test Conditions	Note
	ISTA STANDARD	
Dooking	Random, Frequency Range: 1 – 200 Hz	
Packing	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
Vibration	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	

(2) Packing method.

- (1) Carton dimensions : 570(L)x450(W)x320(H)mm
- (2) 27 LCD Cells+PCB/Carton




Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

Approval

Air Transportation

Doc. No.:

Issued Date: Sep. 7, 2009 Model No.: N154C6-P04

Approval

10. DEFINITION OF LABELS

10.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Barcode definition:

Serial ID: CM-18H62-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
18H62	Model number	N184H6-P02=18H62
Х	Revision code	C1:1 ,C2:2
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	0~12=1~C
XX	Module location	Tainan, Taiwan=TN
L	Module line #	0~12=1~C
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

10.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

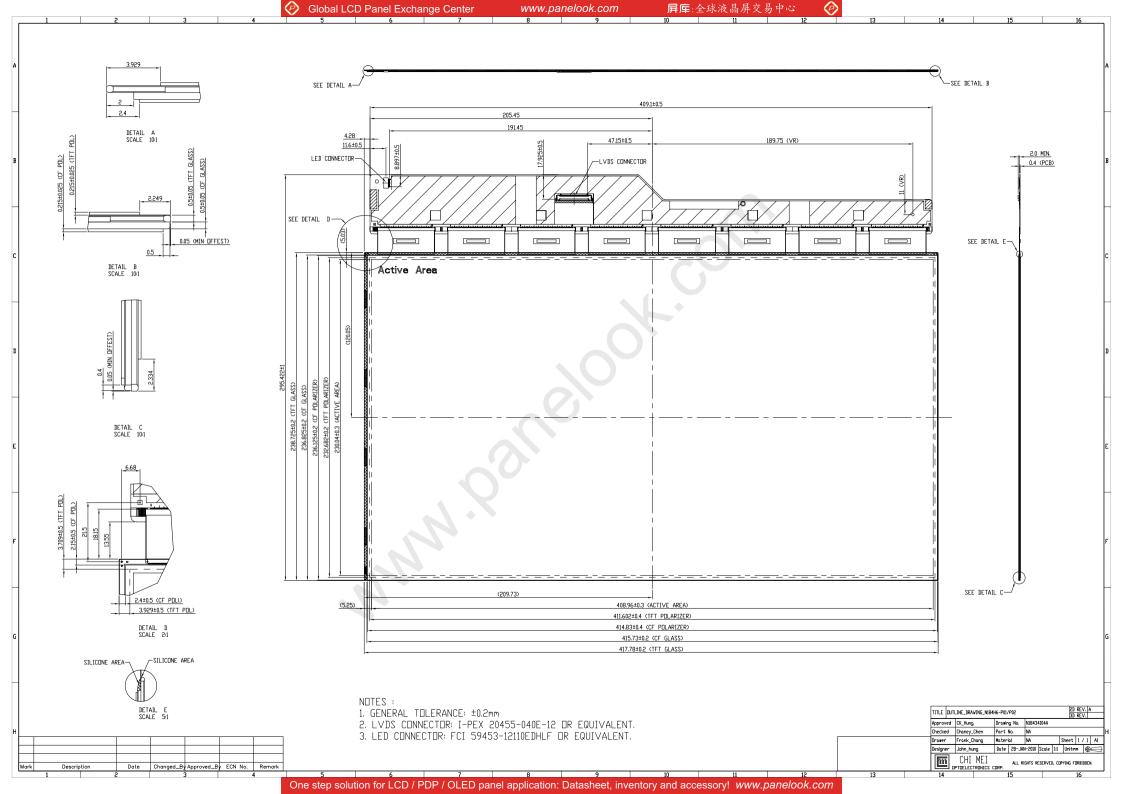
(a) Model Name: N184H6 -P02

(b) Carton ID: CMO internal control

(c) Quantities: 27

Doc. No.:

Issued Date: Sep. 7, 2009 Model No.: N154C6-P04


11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

