

PRODUCT SPECIFICATION

Boo. Hambon
☐ Tentative Specification
☐ Preliminary Specification
■ Approval Specification

MODEL NO.: N156B6 SUFFIX: P0B

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your consignature and comments.	firmation with your

Approved By	Checked By	Prepared By
楊竣傑	陳逸銘	王淑玲
2011-02-08	2011-01-27	2011-01-25
14:13:10 CST	13:39:01 CST	15:56:06 CST

9 February 2011 Version 2.0 1 / 27

CONTENTS

1. GENERAL DESCRIPTION		4
1.1 OVERVIEW		4
1.2 GENERAL SPECIFICATION	0NS	4
2. MECHANICAL SPECIFICATI	ONS	4
2.1 CONNECTOR TYPE		4
3. ABSOLUTE MAXIMUM RATI	NGS	6
3.1 ABSOLUTE RATINGS O	F ENVIRONMENT	6
3.2 ABSOLUTE RATINGS OF	F ENVIRONMENT (OPEN CELL)	5
	E RATINGS	
3.3.1 TFT LCD MODUL	E	7
	ONS	
	GRAM	
4.2. INTERFACE CONNECT	IONS	8
4.3 ELECTRICAL CHARACT	TERISTICS	11
4.3.1 LCD ELETRONICS	S SPECIFICATION	11
4.3.2 LED CONVERTER	SPECIFICATION	13
4.4 LVDS INPUT SIGNAL TI	MING SPECIFICATIONS	15
4.4.1 LVDS DC SPECIFI	CATIONS	15
4.4.2 LVDS DATA FORM	MAT	15
4.4.3 COLOR DATA INP	UT ASSIGNMENT	16
4.5 DISPLAY TIMING SPECI	IFICATIONS	17
4.6 POWER ON/OFF SEQUE	NCE	18
5. OPTICAL CHARACTERISTIC	cs	19
5.1 TEST CONDITIONS		19
5.2 OPTICAL SPECIFICATION	ONS	19
6. PACKING		23
6.1 CMO OPEN CELL LABE	L	23
6.2 Package Reliability		
6.3 CARTON		24
6.4 PALLET		25
7. PRECAUTIONS		26
7.1 HANDLING PRECAUTION	DNS	26
7.2 STORAGE PRECAUTION	NS	26
7.3 OPERATION PRECAUTION	ONS	26
Appendix. EDID DATA STRU	JCTURE	錯誤! 尚未定義書籤。
Appendix. OUTLINE DRAWI	NG	27

Version 2.0 9 February 2011 2 / 27

REVISION HISTORY

Version	Date	Page	Description
2.0	Jan.11, 2011	All	Approval spec Ver.2.0 was first issued.

Version 2.0 9 February 2011 3 / 27

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

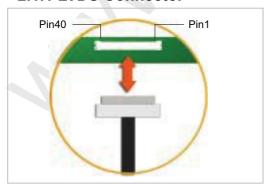
1.1 OVERVIEW

N156B6-P0B is a 15.6" (15.547" diagonal) TFT Liquid Crystal Display with LED Driver ICs and a 40-pins-and-1ch-LVDS circuit board. This product supports 1366 x 768 HD mode and can display 262,144 colors. The backlight unit is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.547 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.252 (H) x 0.252 (V)	mm	-
Pixel Arrangement	RGB vertical stripe		-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), Glare	-	_

2. MECHANICAL SPECIFICATIONS


	item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H) with PCB	353.13	353.63	354.13	mm	
	Horizontal (H) w/o PCB	353.13	353.63	354.13	mm	
Size	Vertical (V) with PCB	247.29	248.29	249.29	mm	
Size	Vertical (V) w/o PCB	201.84	202.84	203.84	mm	
	Thickness (T) with PCB	-	1.7	1.8	mm	(1)(2)
	Thickness (T) w/o PCB	-	1.27		mm	
	Weight	_	215	220	g	
I/F connector mounting position The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal.						

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

2.1 CONNECTOR TYPE

2.1.1 LVDS Connector

Please refer Appendix Outline Drawing for detail design.

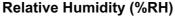
Connector Part No.: IPEX-20455-040E-12; TYCO- 5-2069716-3 User's connector Part No: IPEX-20453-040T-01 or equivalent

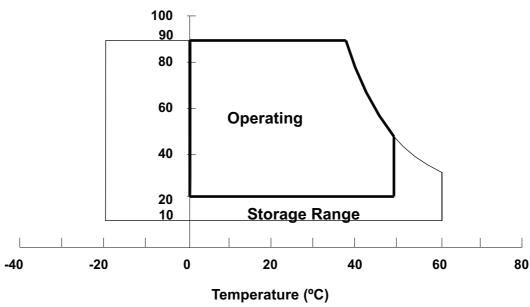
4 / 27 Version 2.0 9 February 2011

2.1.2 LED Light-Bar Connector

Faxconn	GB5RF101-110M-7H (10pin look1ng)
北京鑫達意通	1-050010-0
信盛	STM: M5K24022P10A (10 Pin下接觸)

Version 2.0 9 February 2011 5 / 27


3. ABSOLUTE MAXIMUM RATINGS


3.1 ABSOLUTE RATINGS OF ENVIRONMENT (Based on CMI Module)

Item	Symbol	Value		Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

- Note (1) (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
 - (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

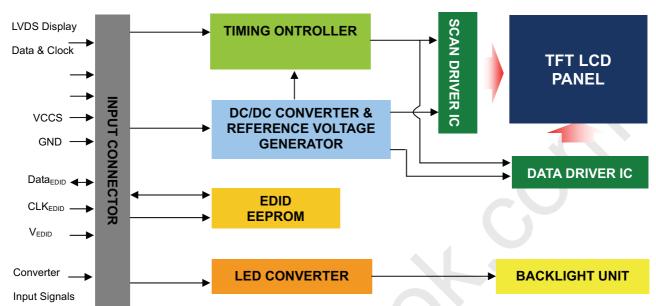
Shelf life: 30days

3.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

3.3.1 TFT LCD MODULE

Item	Item Symbol Value		Unit	Note	
Kom	Cymbol	Min.	Max.	OTIL	11010
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)
Converter Input Voltage	LED_VCCS	-0.3	24	V	(1)
Converter Output Voltage	LED+	-0.3	30.6	V	(1)
Converter Control Signal Voltage	LED_PWM,	-0.3	3.6	V	(1)
Converter Control Signal Voltage	LED_EN	-0.3	3.6	V	(1)

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".



PRODUCT SPECIFICATION

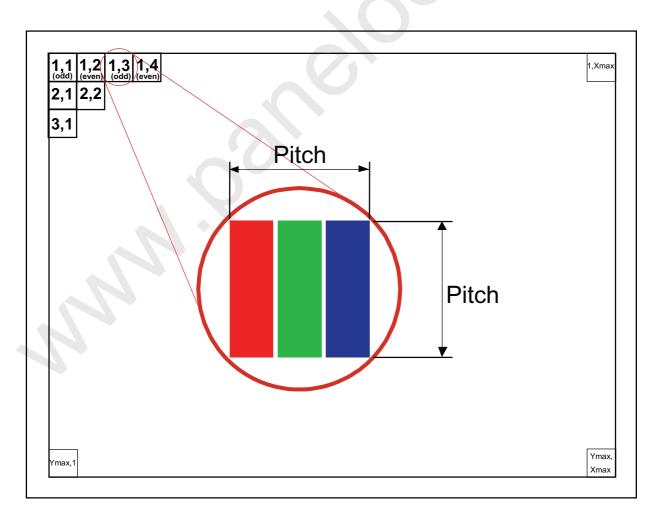
4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

421 PIN ASSIGNMENT

4.2.1	IN ASSIGN	IVIENI	
Pin	Symbol	Description	Remark
1	NC	No Connection (Reserve)	
2	VCCS	Power Supply (3.3V typ.)	
3	VCCS	Power Supply (3.3V typ.)	
4	VEDID	DDC 3.3V power	
5	NC	No Connection (Reserved for CMI test)	
6	CLKEDID	DDC clock	
7	DATAEDID	DDC data	
8	Rxin0-	LVDS differential data input	R0-R5, G0
9	Rxin0+	LVDS differential data input	No-N3, G0
10	VSS	Ground	
11	Rxin1-	LVDS differential data input	G1~G5, B0, B1
12	Rxin1+	LVDS differential data input	G1~G5, B0, B1
13	VSS	Ground	
14	Rxin2-	LVDS Differential Data Input	B2-B5,HS,VS, DE
15	Rxin2+	LVDS Differential Data Input	B2-B3,113,V3, DE
16	VSS	Ground	
17	RxCLK-	LVDS differential clock input	LVDS CLK
18	RxCLK+	LVDS differential clock input	LVDS CLK
19	VSS	Ground	
20	NC	No Connection (Reserve)	
21	NC	No Connection (Reserve)	
22	VSS	Ground	
23	NC	No Connection (Reserve)	


Version 2.0 9 February 2011 8 / 27

PRODUCT SPECIFICATION

24	NC	No Connection (Reserve)	
25	VSS	Ground	
26	NC	No Connection (Reserve)	
27	NC	No Connection (Reserve)	
28	VSS	Ground	
29	NC	No Connection (Reserve)	
30	NC	No Connection (Reserve)	
31	LED_GND	LED Ground	
32	LED_GND	LED Ground	
33	LED_GND	LED Ground	
34	NC	No Connection (Reserve)	
35	LED_PWM	PWM Control Signal of LED Converter	
36	LED_EN	Enable Control Signal of LED Converter	
37	NC	No Connection (Reserve)	
38	LED_VCCS	LED Power Supply	
39	LED_VCCS	LED Power Supply	
40	LED_VCCS	LED Power Supply	

Note (1) The first pixel is odd as shown in the following figure.

Version 2.0 9 February 2011 9 / 27

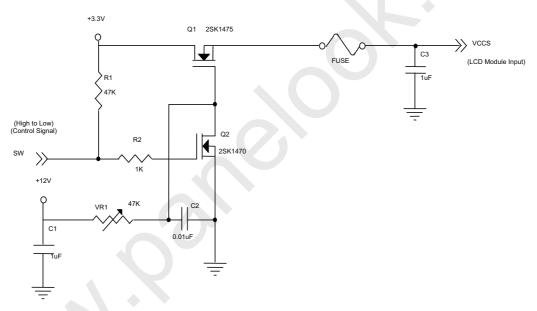
4.2.2 LED CONVERTER OUTPUT PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	LED+	LED Light Bar Input Power Supply	
2	LED+	LED Light Bar Input Power Supply	
3	NC	No Connection (Reserve)	
4	LED-	LED Light Bar Feedback Channel	
5	LED-	LED Light Bar Feedback Channel	
6	LED-	LED Light Bar Feedback Channel	
7	LED-	LED Light Bar Feedback Channel	
8	LED-	LED Light Bar Feedback Channel	
9	LED-	LED Light Bar Feedback Channel	
10	NC	No Connection (Reserve)	

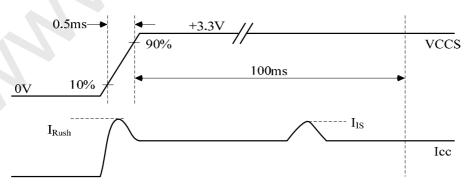
PRODUCT SPECIFICATION

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 TFT LCD OPEN CELL


Parameter		Cymbol		Value	Unit	Note	
		Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		vccs	3.0	3.3	3.6	V	(1)-
Ripple Voltage		V_{RP}	-	50	-	mV	(1)-
Inrush Current		I _{RUSH}	-	-	1.5	Α	(1),(2)
Dower Cumply Current	Mosaic	loo	253	288	323	mA	(3)a
Power Supply Current	Black	lcc	320	360	400	mA	(3)b

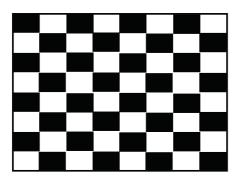
Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.


Note (2) I_{RUSH}: the maximum current when VCCS is rising

I_{IS}: the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

VCCS rising time is 0.5ms



Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

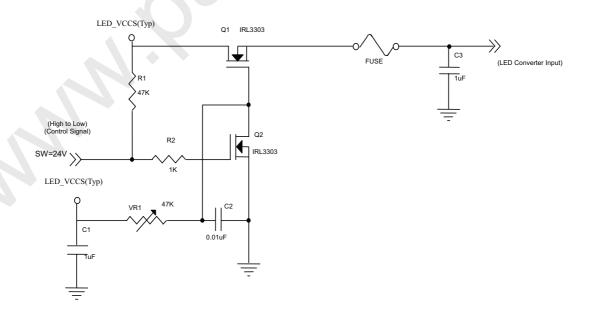
a. Mosaic Pattern

Active Area

b. Black Pattern

Active Area

PRODUCT SPECIFICATION

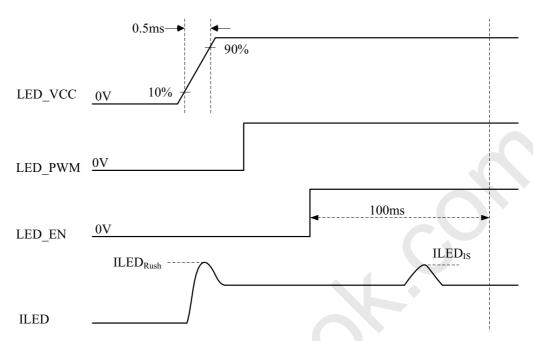

4.3.2 LED CONVERTER SPECIFICATION

Doros	Cymphol		Value		Lleit	Note	
Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	LED_Vccs	6.0	12.0	21.0	V		
Converter Inrush Cu	ILED _{RUSH}	-	-	1.5	А	(1)	
EN Control Lovel	Backlight On		2.3	-	3.3	V	
EN Control Level	Backlight Off		0	-	0.5	V	
DWM Control Lovel	PWM High Level		2.3	-	3.3	V	
PWM Control Level	PWM Low Level		0	-	0.5	V	
DWW O D	2.4.		10	-	100	%	
PWM Control Duty F	Katio		5	-	100	%	(2)
PWM Control F Voltage	VPWM_pp	-		100	mV		
PWM Control Frequ	f _{PWM}	190		2K	Hz	(3)	
LED Power Current	ILED	253	301	357	mA	(4)	

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.


Version 2.0 13 / 27 9 February 2011

VLED rising time is 0.5ms

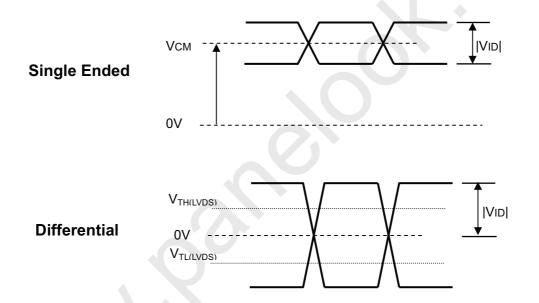
- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range
$$(N+0.33)*f \leq f_{\text{PWM}} \leq (N+0.66)*f$$

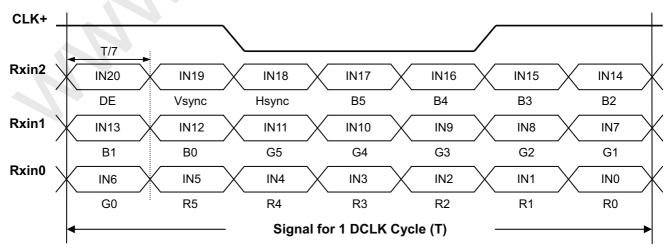
$$N: \text{Integer } (N \geq 3)$$

$$f: \text{Frame rate}$$

Note (4) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.


PRODUCT SPECIFICATION

4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS


4.4.1 LVDS DC SPECIFICATIONS

Parameter	Symbol		Value	Unit	Note	
	,	Min.	Min. Typ. Max.			
LVDS Differential Input High Threshold	$V_{TH(LVDS)}$	-	-	+100	mV	(1), V _{CM} =1.2V
LVDS Differential Input Low Threshold	$V_{TL(LVDS)}$	-100	-	-	mV	(1) V _{CM} =1.2V
LVDS Common Mode Voltage	V_{CM}	1.125	-	1.375	V	(1)
LVDS Differential Input Voltage	V _{ID}	100	-	600	mV	(1)
LVDS Terminating Resistor	R_T	-	100	-	Ohm	-

Note (1) The parameters of LVDS signals are defined as the following figures.

4.4.2 LVDS DATA FORMAT

Version 2.0 15 / 27 9 February 2011

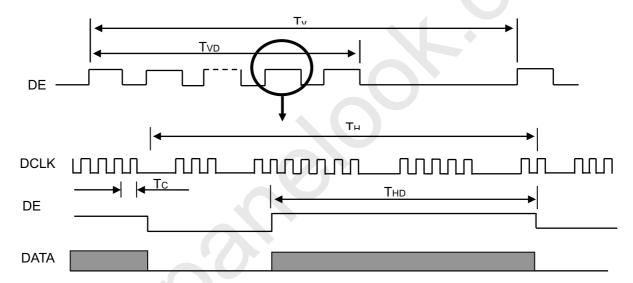
4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color			Re						Gre							ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0 <	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of					:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

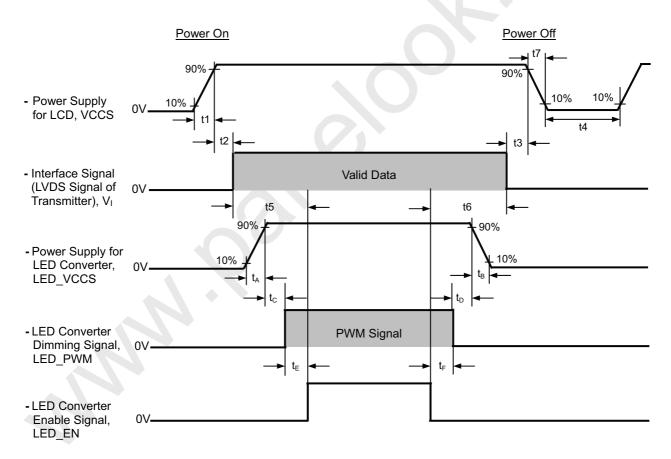

The input signal timing specifications are shown as the following table and timing diagram.

Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	62.4	69.3	72.8	MHz	-
	Vertical Total Time	TV	772	788	793	TH	-
	Vertical Active Display Period	TVD	768	768	768	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	20	TV-TVD	TH	-
DE	Horizontal Total Time	TH	1456	1466	1492	Tc	-
	Horizontal Active Display Period	THD	1366	1366	1366	Tc	-
	Horizontal Active Blanking Period	THB	TH-THD	100	TH-THD	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM



PRODUCT SPECIFICATION

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Cumbal		Value		Linit	Note			
Symbol	Min.	Тур.	Max.	Unit	Note			
t1	0.5	-	10	Ms				
t2	0	-	50	Ms				
t3	0	-	50	Ms				
t4	500	-	-	Ms				
t5	200	-	-	Ms				
t6	200	-	-	Ms				
t7	0.5	-	10	Ms				
t _A	0.5	-	10	Ms				
t _B	0		10	Ms				
t _C	10	-	-	Ms				
t _D	10	-	-	Ms				
t _∈	10	-	-	Ms				
t⊧	10	-	-	Ms				

- Note (1) Please don't plug or unplug the interface cable when system is turned on.
- Note (2) Please avoid floating state of the interface signal during signal invalid period.
- Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

Version 2.0 18 / 27 9 February 2011

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	°C					
Ambient Humidity	На	50±10	%RH					
Supply Voltage	V _{cc}	3.3	V					
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"							

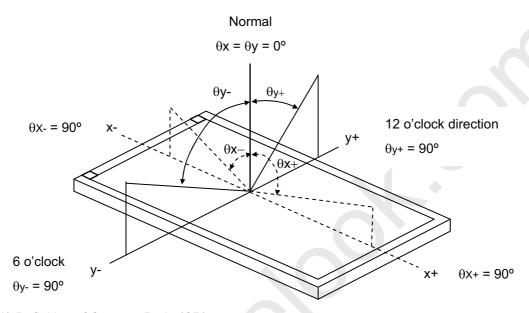
The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Center Transmittance		T%	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	5.3	6.3			(1), (5), (8)
Contrast Ratio		CR	CS-1000T, CMO BLU	500	650			(1),(3),(5)
Transmittance uniformity		δΤ%	θ_x =0°, θ_Y =0° BM-5A		>	1.25		(1), (5), (7)
Response Time		T_R	0 -00 0 -00	-	3	8	ms	(4)
Response Time	;	T_F	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	-	8	13	ms	(4)
	Red	Rcx			0.633		ı	
	Reu	Rcy			0.327		-	
	Green	Gcx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		0.285		-	
Color		Gcy	CS-1000T	Тур	0.568	Typ.+	-	(0), (5)
Chromaticity	Dive	Всх	Standard light source	0.03	0.155	0.03	-	
	Blue	Всу	"C"		0.118		-	
	White	Wcx			0.315		ı	
	vviille	Wcy			0.345		-	
	l lawi-austal	θ_{x} +		40	45	-		
Viewing Angle	Horizontal	θ _x -	CR≥10	40	45	-	Dos	(4) (2) (5)
	Vartical	θ_{Y}^{+}	BM-5A	15	20	-	Deg.	(1),(3),(5)
	Vertical	θ _Y -		40	45	-		

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

- 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"


Version 2.0 9 February 2011 19 / 27

PRODUCT SPECIFICATION

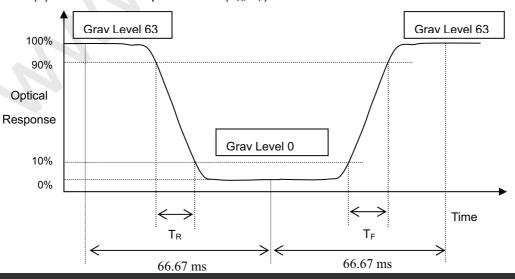
Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample.

Note (2) Definition of Viewing Angle (θx , θy):

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

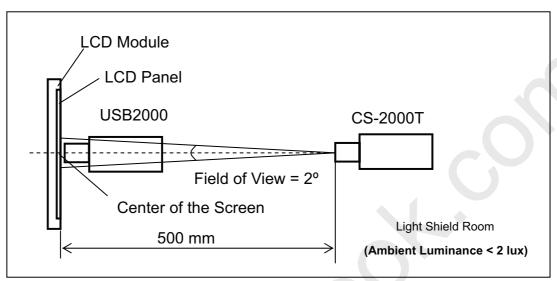
L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (4) Definition of Response Time (T_R, T_F):

Version 2.0 9 February 2011 20 / 27


The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

PRODUCT SPECIFICATION

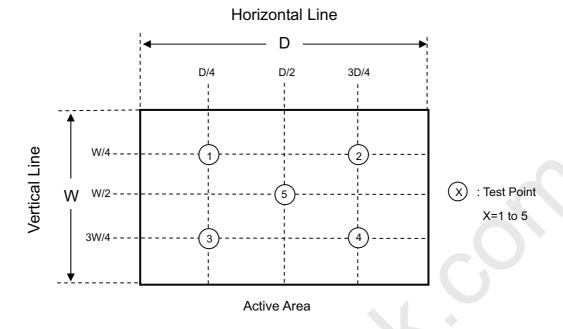
Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 5 points

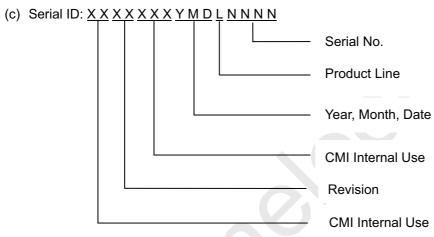
$$\delta T\% = \frac{\text{Maximum } [T\%(1), T\%(2), ... T\%(5)]}{\text{Minimum } [T\%(1), T\%(2), ... T\%(5)]}$$


Note (7) Definition of Transmittance (T%):

Module is without signal input.

BLU is supplied by CMO.

Note (8) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.


6. PACKING

6.1 CMI OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMI internal control.

- (a) Model Name: N156B6 P0B
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.

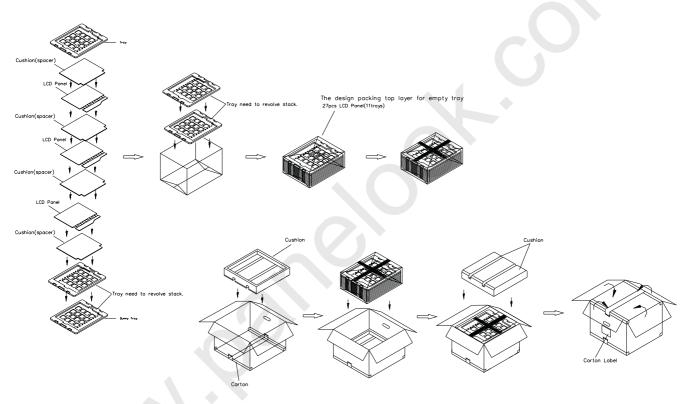
Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.



6.2 Package Reliability

(1) Carton Packing should have no failure in the following reliability test items

Test Item	Test Conditions	Note
	ISTA STANDARD	
Dooking	Random, Frequency Range: 1 – 200 Hz	
Packing Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
Vibration	Right & Left: 10 minutes (X)	-
	Back & Forth 10 minutes (Y)	

6.3 CARTON

- (1) Carton Dimensions: 475(L)x390(W)x320(H)mm
- (2) 27 LCD Cells+PCB/Carton

Figure. 6-3 Packing method

PRODUCT SPECIFICATION

6.4 PALLET

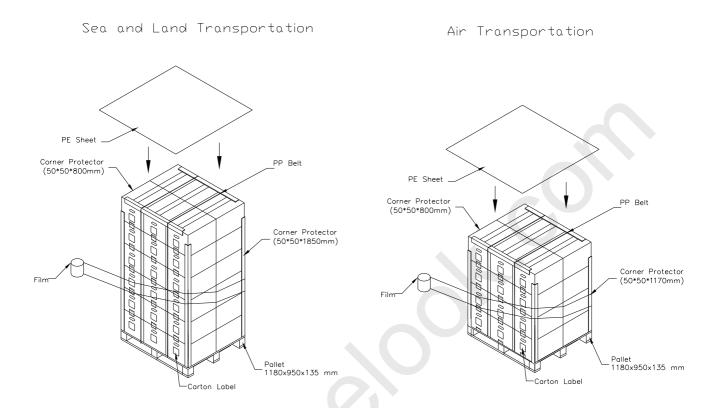


Figure. 6-4 Packing method

26 / 27

PRODUCT SPECIFICATION

7. PRECAUTIONS

7.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

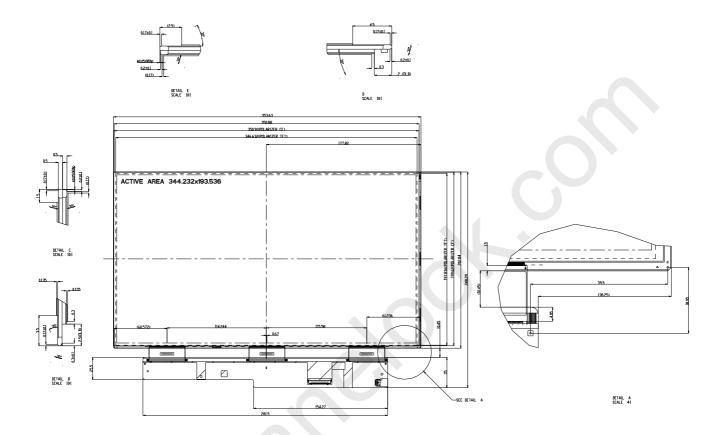
7.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

7.3 OPERATION PRECAUTIONS

Version 2.0

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.


assembling with converter. Do not disassemble the module of insert anything into the backlight unit.

9 February 2011

Appendix. OUTLINE DRAWING

