

TFT LCD Approval Specification

MODEL NO.: N154I1-P0B

Customer :	
Approved by :	
Note:	

2007-04-16 13:31:50 CST	Approve by Dept. Mgr.(QA RA)	ys_lai(賴育賢 /54881/52755/43154)	Department Manager(QA RA)	Accept
2007-04-09 14:44:03 CST	Approve by Director	hj_mao(毛旭仁/13070)	Director	Accept

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	CMO MODULE)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL		7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL		9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.3 COLOR DATA INPUT ASSIGNMENT		10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		13
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS 7.3 FLICKER ADJUSTMENT		15
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD		20
9. DEFINITION OF LABELS		23
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		24
11. MECHANICAL DRAWING		25

Approval

REVISION HISTORY

Version	Date	Section	Description
Ver. 2.0	April, 10 '07	-	N154I1-P0B Approval Specifications was first issued •

Issued Date: April. 10, 2007

Model No.: N154I1-P0B Approva

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The N154I1-P0B is a 15.4-inch TFT LCD cell with driver ICs and a 30-pin-and-1ch-LVDS circuit board.

The product supports 1280 x 800 WXGA mode and can display up to 262,144 colors. The backlight unit is not built in.

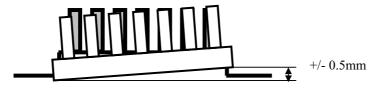
1.2 FEATURES

- WXGA (1280 x 800 pixels) resolution
- DE (Data Enable) only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance

1.3 APPLICATION

- -TFT LCD Notebook
- -TFT LCD Monitor
- TFT LCD TV

1.4 GENERAL SPECIFICATIONS


Item	Specification	Unit	Note
Diagonal Size	15.4	inch	
Active Area	331.2 (H) x 207.0 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.2588 (H) x 0.2588 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H),Anti-glare	-	-

1.5 MECHANICAL SPECIFICATIONS

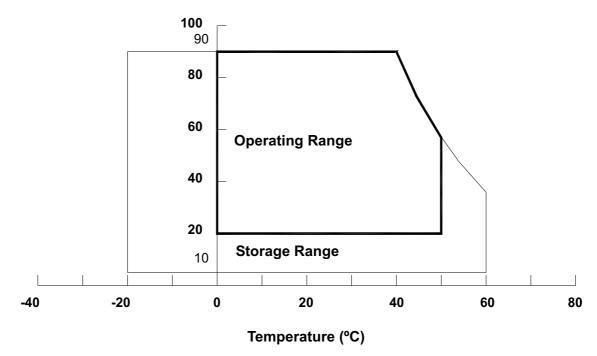
Item	Min.	Тур.	Max.	Unit	Note
Weight	-	272.8	282.8	g	-
I/F connector mounting	The mounting in	clination of the	connector makes		(2)
position	the screen cente	r within ±0.5mm a	s the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

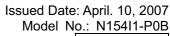
(2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE)


Itom	Svmbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.


- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C Min. and 50 °C Max.

Relative Humidity (%RH)

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing. Storage temperature range: 25±5 °C. Storage humidity range: 50±10%RH.

Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Svmbol	Value	9	Unit	Note	
item	Symbol		Min Max		Note	
Power Supply Voltage	V_{CC}	-0.3	+4.0	V	(4)	
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)	

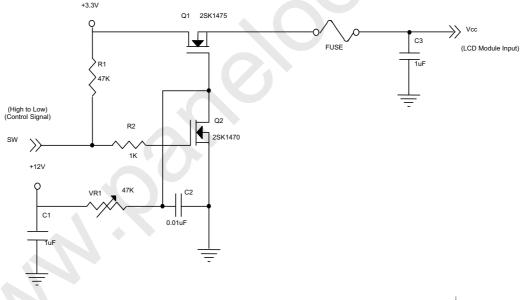
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

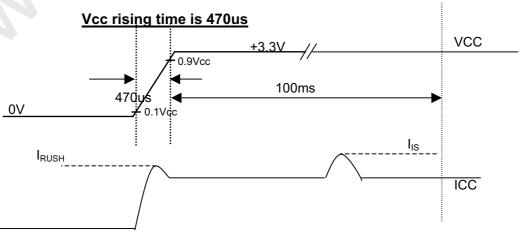
Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Global LCD Panel Exchange Center

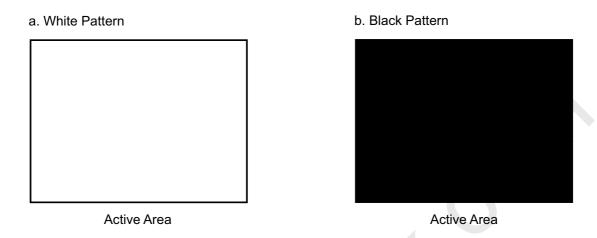

Paramet		Cymphol		Value		Unit	Note
Paramet	er	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Permissive Ripple Voltage	ge	V_{RP}	-	-	100	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Initial Stage Current		I _{IS}			1.0	Α	(2)
Dower Supply Current	White		-	240	-	mA	(3)a
Power Supply Current	Black	- Icc	-	330	-	mA	(3)b
LVDS Differential Input F	V _{TH(LVDS)}	-	-	+100	mV	(4), V _{CM} =1.2V	
LVDS Differential Input L	V _{TL(LVDS)}	-100	-	-	mV	(4) V _{CM} =1.2V	
LVDS Common Mode Vo	V_{CM}	1.125	-	1.375	V	(4)	
LVDS Differential Input \	V _{ID}	100		600	mV	(4)	
Terminating Resistor		R⊤		100		Ohm	

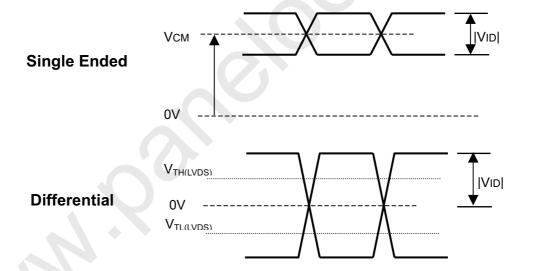

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH} : the maximum current when VCC is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

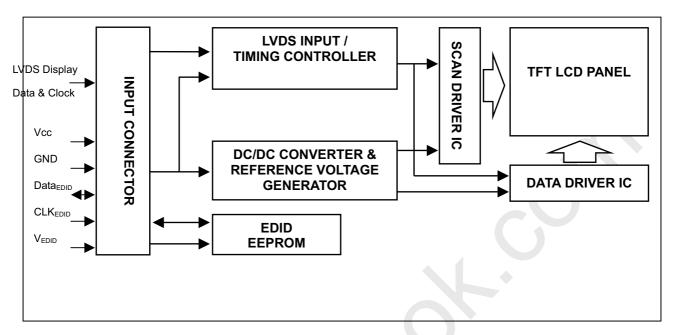




Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The parameters of LVDS signals are defined as the following figures.

Issued Date: April. 10, 2007



Model No.: N154I1-P0B

Approval

4. BLOCK DIAGRAM

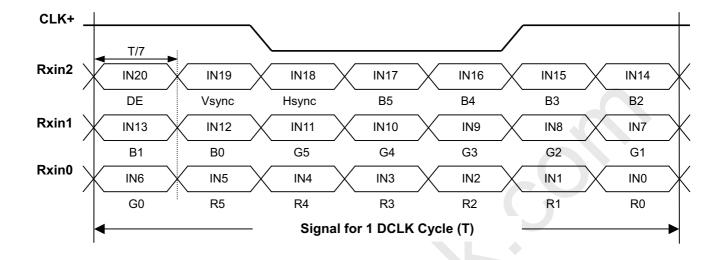
4.1 TFT LCD MODULE

Approval

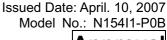
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	Vss	Ground		-
2	Vcc	Power Supply +3.3 V (typical)		-
3	Vcc	Power Supply +3.3 V (typical)		-
4	V_{EDID}	DDC 3.3V Power		-
5	NC	-	-	-
6	CLK _{EDID}	DDC Clock		-
7	DATA _{EDID}	DDC Data		-
8	RXin0-	LVDS Differential Data Input	Negative	
9	RXin0+	LVDS Differential Data Input	Positive	_
10	Vss	Ground		-
11	RXin1-	LVDS Differential Data Input	Negative	
12	RXin1+	LVDS Differential Data Input	Positive	
13	Vss	Ground		-
14	RXin2-	LVDS Differential Data Input	Negative	
15	RXin2+	LVDS Differential Data Input	Positive	-
16	Vss	Ground		-
17	CLK-	LVDS Clock Data Input	Negative	,
18	CLK+	LVDS Clock Data Input	Positive	•
19	Vss	Ground		-
20	NC	NC	NC	NC
21	NC	NC	NC	NC
22	NC	NC	NC	NC
23	NC	NC	NC	NC
24	NC	NC	NC	NC
25	NC	NC	NC	NC
26	NC	NC	NC	NC
27	NC	NC	NC	NC
28	NC	NC	NC	NC
29	NC	NC	NC	NC
30	NC	NC	NC	NC


Note (1) Connector Part No.: JAE-FI-XB30SL-HF11 or equivalent parts.

Note (2) User's connector Part No: JAE-FI-X30C2L or equivalent parts.



Approval

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

Global LCD Panel Exchange Center

Approval

5.3 COLOR DATA INPUT ASSIGNMENT

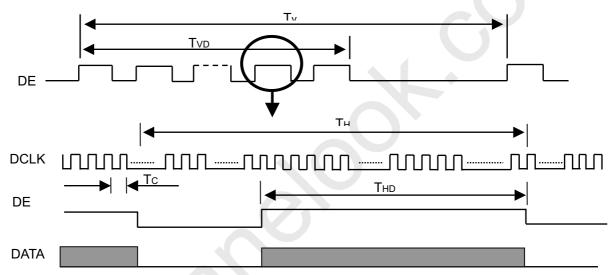
The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Todo data input.		Data Signal																
	Color		Red Green Blue																
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	i	: [•	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	·		. :	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:) ;	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0 <	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		:)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

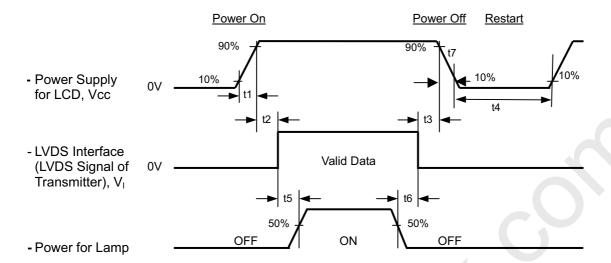
6. INTERFACE TIMING


Global LCD Panel Exchange Center

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	-	71	80	MHz	-
	Vertical Total Time	TV	810	823	1000	TH	-
DE	Vertical Addressing Time	TVD	800	800	800	TH	-
DE	Horizontal Total Time	TH	1360	1440	1600	Tc	-
	Horizontal Addressing Time	THD	1280	1280	1280	Tc	-


INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Timing Specifications:

 $0.5 \leq t1 \leq 10 \text{ ms}$

 $0 \le t2 \le 50 \text{ ms}$

 $0 \le t3 \le 50 \text{ ms}$

 $t4 \ge 500 \text{ ms}$

 $t5 \ge 200 \text{ ms}$

 $t6 \ge 200 \text{ ms}$

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time is better to follow 5ms≤t7≤300 ms.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{cc}	3.3	V			
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Inverter Current	l	6	mA			
Inverter Driving Frequency	FL	61	KHz			

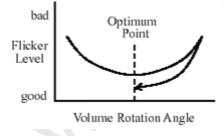
7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			0.600		-	
	Neu	Rcy			0.345		-	
	Green	Gcx	0 00 0		0.295		-	
Color	Green	Gcy	θ_x =0°, θ_Y =0° CS-1000T	Тур -	0.528	Typ +	-	(0) (6)
Chromaticity	Blue	Bcx	Standard light source "C"	0.03	0.140	0.03	-	(0),(6)
	Dide	Всу	Standard light source C		0.168		-	
	White	Wcx			0.308		-	
	vviiite	Wcy			0.355		-	
Center Transmittance		T%	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	7.9	8.5	-		(1), (8)
Contrast Ratio		CR	CS-1000T, CMO BLU	300	400	-	-	(1), (3)
Response Time		T_R	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	_	5 10		ms	(4)
response fille		T_F	0 _x =0_, 0 _Y =0	-	11	16	ms	(4)
Transmittance uniformity		δΤ%	θ_x =0°, θ_Y =0° BM-5A	-	1.25	1.4	-	(1), (7)
	Horizontal	θ_{x} +		40	45	-		
Viewing Angle	Tionzonial	θ_{x} -	CR≥10	40	45	-	Deg.	(1), (2)
	Vertical	θ _Y +	BM-5A	10	15	-	Deg.	(6)
	vertical	θ _Y -		30	35	-		

Approval

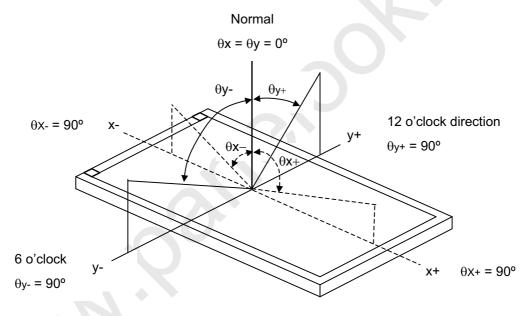
7.3 Flicker Adjustment


(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.



Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

- 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMO.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample.

Note (2) Definition of Viewing Angle (θx , θy):

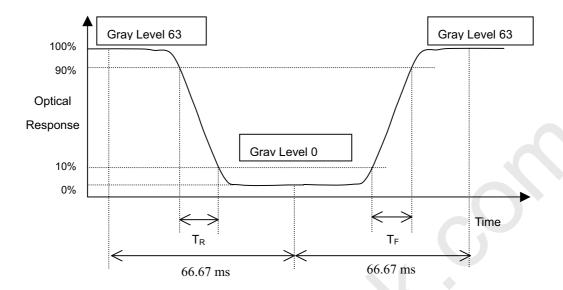
Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

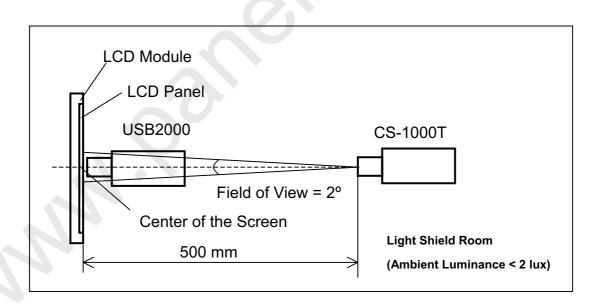
L63: Luminance of gray level 63

L 0: Luminance of gray level 0


CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

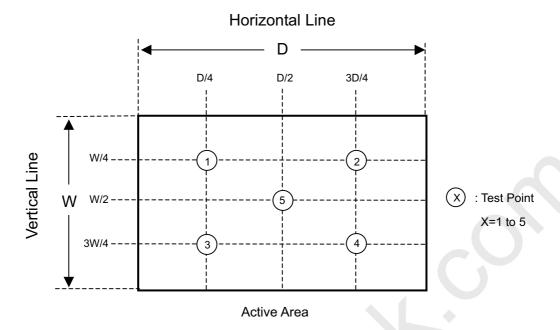
17 / 26



Note (4) Definition of Response Time (T_R, T_F):

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


Note (7) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 5 points

$$\delta T\% = \frac{\text{Maximum } [T\%(1), T\%(2), ... T\%(9)]}{\text{Minimum } [T\%(1), T\%(2), ... T\%(9)]}$$

Approval

Note (8) Definition of Transmittance(T%):

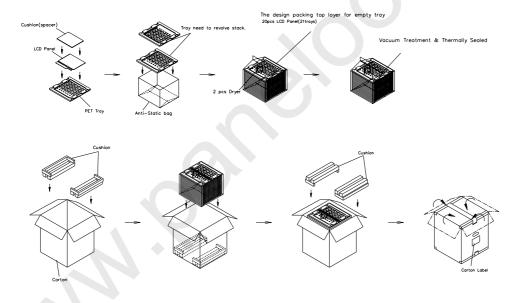
Module is without signal input.

BLU is Supplied by CMO.

Approval

8. PACKAGING

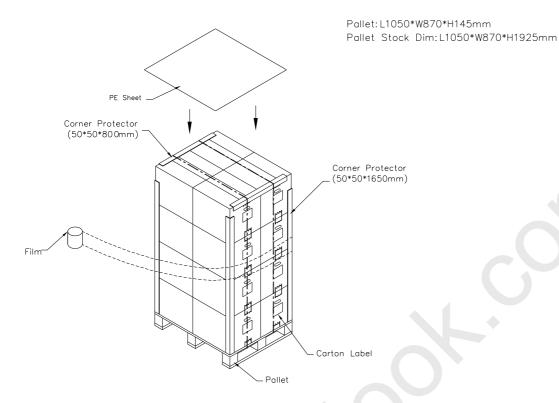
8.1 PACKING SPECIFICATIONS

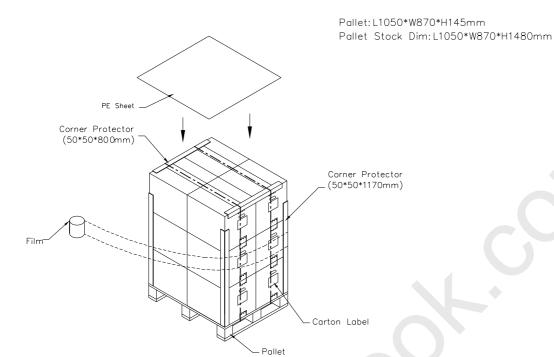

- (1) 20 open cells / 1 Box
- (2) Box dimensions:524mm(L) X 432mm(W) X 445mm(H)
- (3) Weight: approximately 11.436Kg (20 open cells per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items

Test Item	Test Conditions	Note
	ISTA STANDARD	
Dooking	Random, Frequency Range: 1 – 200 Hz	
Packing Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
vibration	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	


(2) Packing method.


- (1) 20 LCD+PCBA/1 box
- (2) Carton dimensions : 524(L)x432(W)x445(H)mm
- (3) Weight :approximately 10.88kg(20 Cells per box).

Approval

9. DEFINITION OF LABELS

Global LCD Panel Exchange Center

9.1 CMO PANEL LABEL

The barcode nameplate is pasted on each cell as illustration for CMO internal control.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

(a) Model Name: N154I2 -P0B

(b) Carton ID: CMO internal control

(c) Quantities: 20

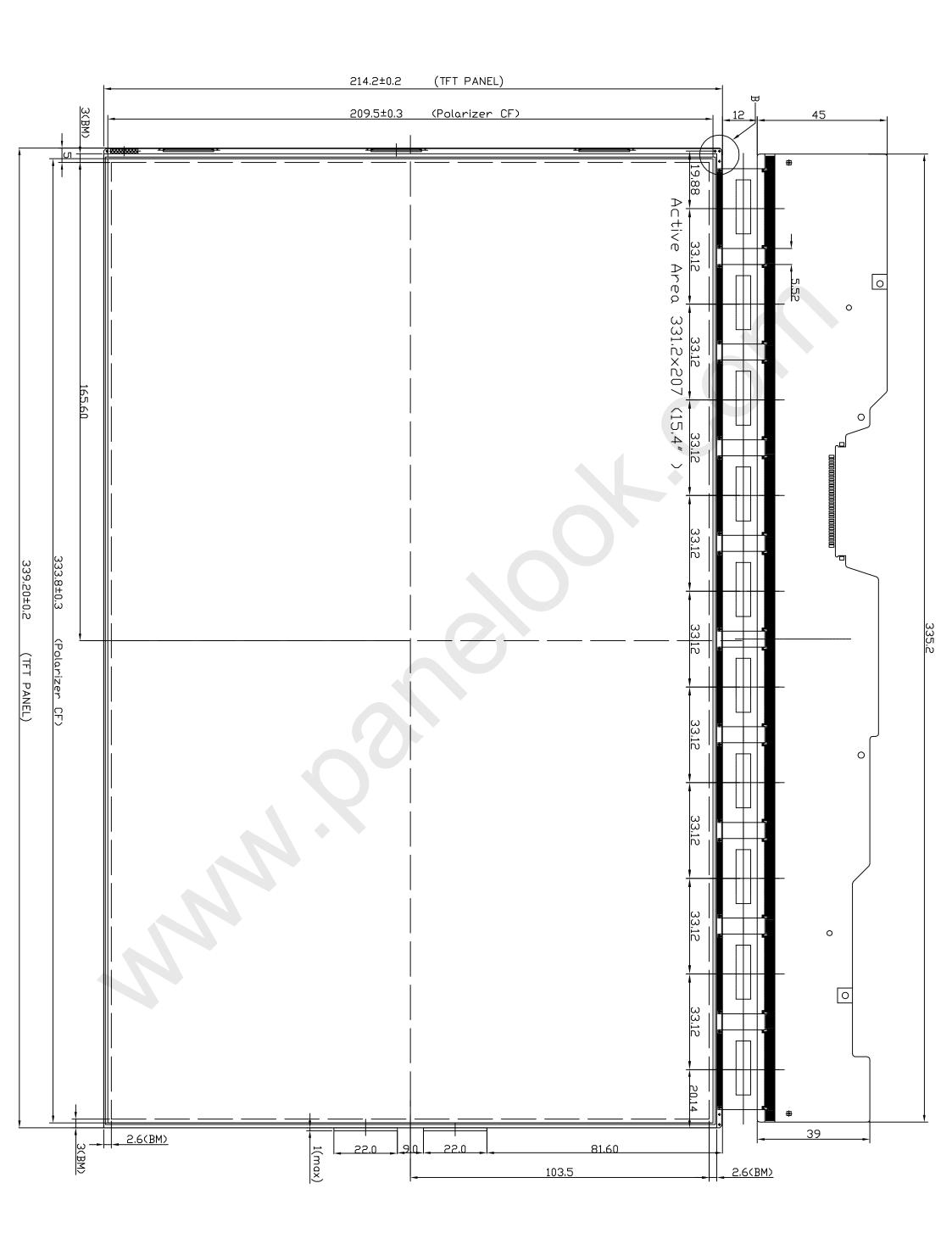
Global LCD Panel Exchange Center

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

10.2 SAFETY PRECAUTIONS


- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

Approval

11. MECHANICAL DRAWING

