

TFT LCD Preliminary Specification

MODEL NO.: N121I1 - L02

Liquid Crystal E	Display Division
QRA Division.	OA Head Division.
Approval	Approval

1 / 23

 \oslash

- CONTEN	TS -
REVISION HISTORY	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT	11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	18
8. PRECAUTIONS 8.1 HANDLING PRECAUTIONS 8.2 STORAGE PRECAUTIONS 8.3 OPERATION PRECAUTIONS	22
9. PACKING 9.1 CARTON 9.2 PALLET	23
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL 10.2 CARTON LABEL	25

2 / 23

OPTOELECTRONICS CORP.

Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

Preliminary

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 0.0	Mar. 16,'04	All	All	Tentative specification first issued.
Ver 1.0	Apr. 05,'04	4	1.5	Change weight from 305g to 300g
		14	6.2	Change power sequence to
				$0 < t2 \leq 50 \text{ msec}$
				$0 < t3 \leq 50 \text{ msec}$
		6	2.2	Change lamp current from 7.0 to 6.5mA
		8	3.2	Modify note(2)(3) for lamp current
		20	9.1	Change module input direction to horizontal.
			Outline	Change connector distance to 107± 1.0mm
		-	drawing	Change connector distance to 1071 1.0mm

3 / 23

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N121I1 -L02 is a 12.1" TFT Liquid Crystal Display module with single CCFL Backlight unit and 20 pins LVDS interface. This module supports 1280 x 800 Wide-XGA mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction. The inverter module for Backlight is not built in.

1.2 FEATURES

- Thin and light weight
- WXGA (1280 x 800 pixels) resolution
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	261.12 (H) x 163.2 (V) (12.1" diagonal)	mm	(1)
Bezel Opening Area	264.12 (H) x 166.2 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.204 (H) x 0.204 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (2H), glare type	-	-

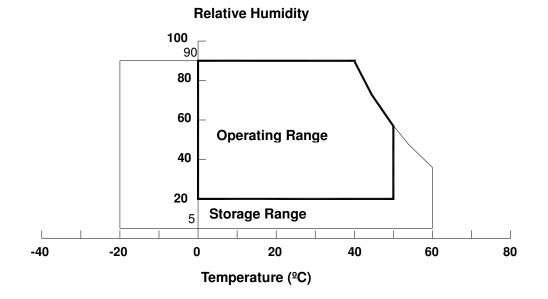
1.5 MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	275.3	275.8	276.3	mm	
Module Size	Vertical(V)	177.5	178	178.5	mm	(1)
	Depth(D)	-	5.2	5.5	mm	
N	/eight	-	300	315	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


ltem	Symbol	Va	Unit	Note	
lieni	Symbol	Min.	Max.	Onit	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	(200)	G	(3), (5)
Vibration (Non-Operating)	V _{NOP}	-	(1.5)	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C Min. and 50 °C Max.

Note (3) 3ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.

Note (4) 10 ~ 500Hz, 0.5 Hr/cycle, 0.5hr each X, Y, Z,

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

5 / 23

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
liem	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vcc	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	Vcc+0.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	Value		Note
Item	Symbol	Min.	Max.	Unit	NOLE
Lamp Voltage	VL	-	(2.5K)	V _{RMS}	(1), (2), I _L = (6.0) mA
Lamp Current	١L	-	(6.5)	mA _{RMS}	(1), (2)
Lamp Frequency	FL	-	(80)	KHz	(1), (2)

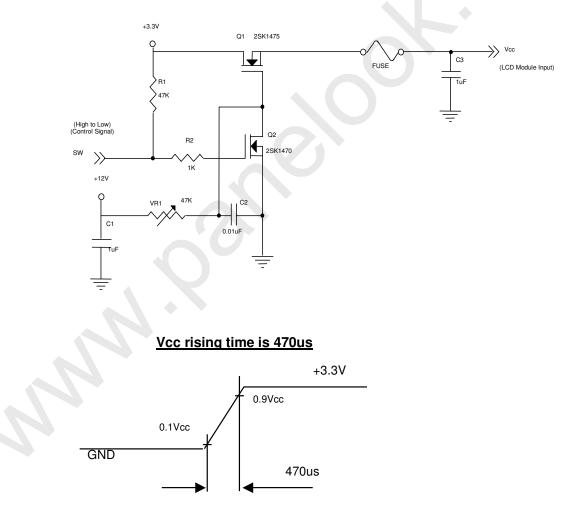
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to Section 3.2 for further information).

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

 $\langle p \rangle$

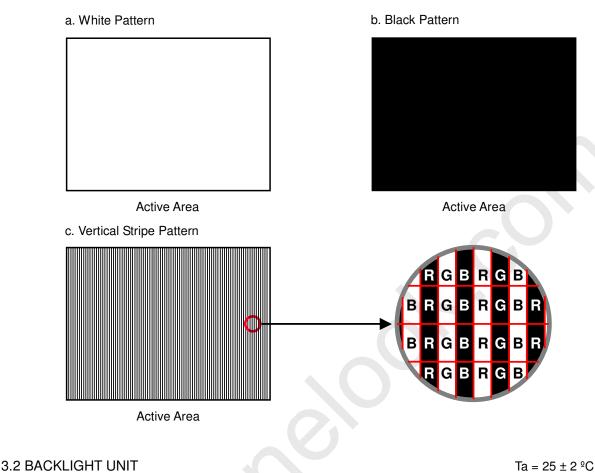

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

						la = 25 :	±2ºC
Parameter	Symbol		Value			Note	
Falailletei	Symbol	Min.	Тур.	Max.	Unit	NOLE	
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V _{RP}	-	-	100	mV	-
Rush Current		I _{RUSH}	-	-	(1.5)	А	(2)
	White		-	(340)		mA	(3)a
Power Supply Current	Black	lcc	-	(410)		mA	(3)b
	Vertical Stripe		-	(440)		mA	(3)c
Differential Input Voltage for	"H" Level	VIH	-	-	+100	mV	-
LVDS Receiver Threshold "L" Level		VIL	-100	-	-	mV	-
Terminating Resistor		RT	-	100		Ohm	-

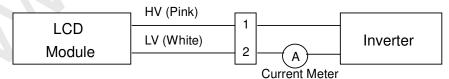
Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:


Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 \pm 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

7 / 23

屏库:全球液晶屏交易中心



CHIMEI OPTOELECTRONICS CORP. Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	NOLE
Lamp Input Voltage	VL	(548)	(610)	(673)	V _{RMS}	I _L = 6.0 mA
Lamp Current		(2.0)	(6.0)	(6.5)	m۸	(1),(2)
Lamp Gurrent	IL I	(3.0)	(0.0)	(6.5)	mA _{RMS}	(1),(3)
Lamp Turn On Voltage	Vs	-	-	1,300 (25 deg C)	V _{RMS}	(4)
Lamp rum on voltage	vs	-	-	1,550 (0 deg C)	V _{RMS}	(4)
Operating Frequency	FL	40	-	80	KHz	(5)
Lamp Life Time	L _{BL}	10,000	-	-	Hrs	(7)
Power Consumption	PL	-	(3.66)	-	W	(4), I _L = 6.0 mA

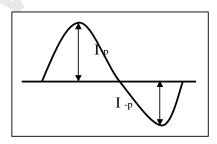
Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

Note (2) for burst mode inverter design

- Note (3) for continuous mode inverter design
- Note (4) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (5) The lamp frequency may generate interference with horizontal synchronous frequency from the

8 / 23

display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

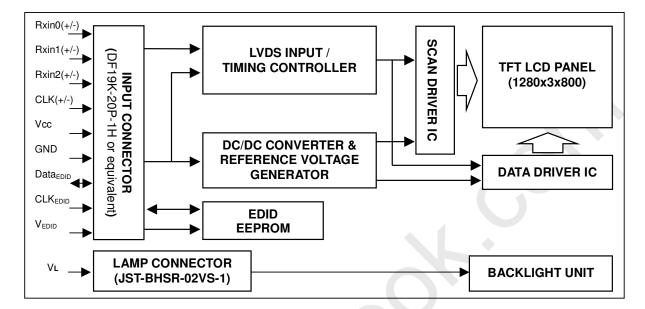

Note (6) $P_L = I_L \times V_L$

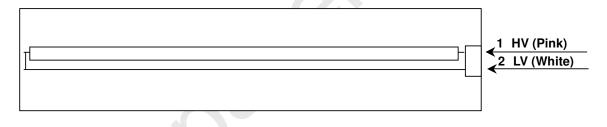
- Note (7) The lifetime of lamp is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 6.0 mA_{RMS} until one of the following events occurs:
 - (a) When the brightness becomes $\leq 50\%$ of its original value.
 - (b) When the effective ignition length becomes $\leq 80\%$ of its original value. (Effective ignition length is defined as an area that the brightness is less than 70% compared to the center point.)
- Note (8) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid generating too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.


9 / 23



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

屏库:全球液晶屏交易中心

Issued Date: Apr. 05, 2004 Model No.: N121I1 -L02 Preliminary

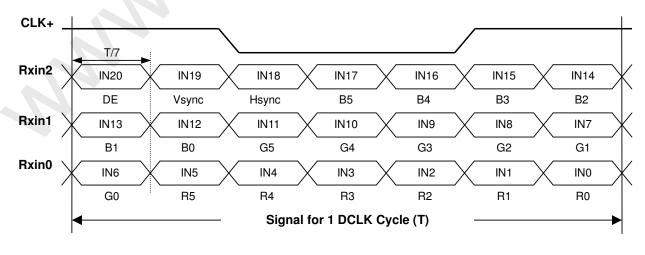
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	VDD	Power Supply +3.3 V		-
2	VDD	Power Supply +3.3 V		-
3	GND	Ground		-
4	GND	Ground		
5	Rxin0-	LVDS Differential Data Input	Negative	R0~R5,G0-
6	Rxin0+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	Rxin1-	LVDS Differential Data Input	Negative	
9	Rxin1+	LVDS Differential Data Input	Positive	G1~G5,B0,B1
10	GND	Ground		
11	Rxin2-	LVDS Differential Data Input	Negative	
12	Rxin2+	LVDS Differential Data Input	Positive	B2~B5,Hsync,Vsync,DE
13	GND	Ground		
14	CLK-	LVDS Clock Data Input	Negative	LVDS Level
15	CLK+	LVDS Clock Data Input	Positive	
16	GND	Ground		
17	V _{EDID}	DDC +3.3 V		
18	NC			
19	CLK _{EDID}	DDC Clock		
20	Data _{EDID}	DDC Data	-	-

Note (1) Connector Part No.: DF19K-20P-1H or equivalent

Note (2) User's connector Part No: DF19G-20S-1C or equivalent


5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Ground	White

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

11 / 23

 $\langle p \rangle$

Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

5.4 COLOR DATA INPUT ASSIGNMENT

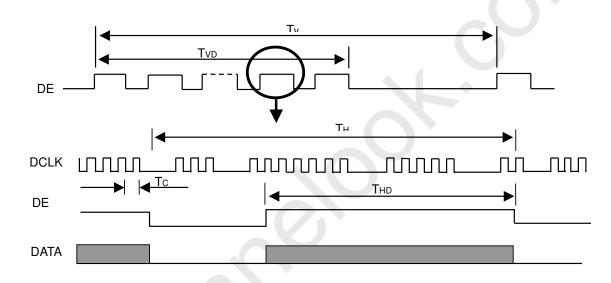
The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color		Red			Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:				:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	÷	:	:	1	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:					:		:	:	:		:		:	:
Of	:	:	:	:	:		:	:	5:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:			:		:	:	:	:	:	:	:	:	:		:	:
Of	:	:		:	:	:		:	:	:	:	:	:	:	:	:		:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

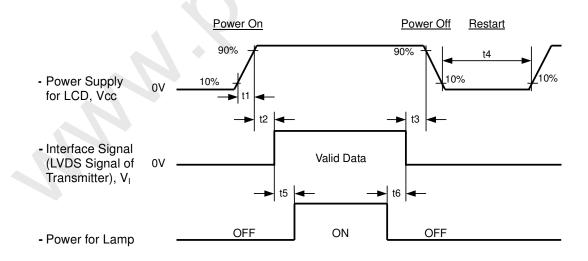
Note (1) 0: Low Level Voltage, 1: High Level Voltage

12 / 23

 $\langle p \rangle$


6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	-	71	80	MHz	-
DE	Vertical Total Time	TV	802	823	1050	TH	-
	Vertical Addressing Time	TVD	800	800	800	TH	-
	Horizontal Total Time	TH	1380	1440	1680	Tc	-
	Horizontal Addressing Time	THD	1280	1280	1280	Tc	-

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

13 / 23

Timing Specifications:

 $0.5ms < t1 \leq 10 msec$

- 0 < t2 \leq 50 msec
- 0 < t3 \leq 50 msec
 - t4 \geq (500) msec
 - t5 \geq 200 msec
 - t6 \geq 200 msec
- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.

14 / 23

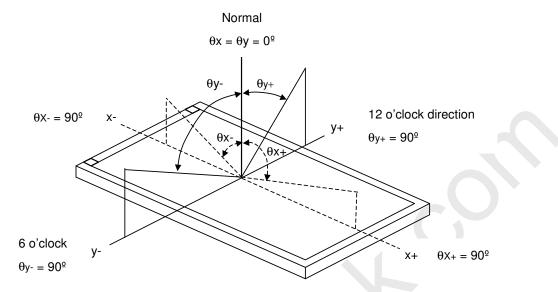
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{CC}	3.3	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"		
Inverter Current	١L	6.0	mA		
Inverter Driving Frequency	FL	55	KHz		
Inverter	Sumida-H05-4915				

The measurement methods of optical characteristics are shown in Section 7.2. The following items should be measured under the test conditions described in Section 7.1 and stable environment shown in Note (6).

7.2 OPTICAL SPECIFICATIONS

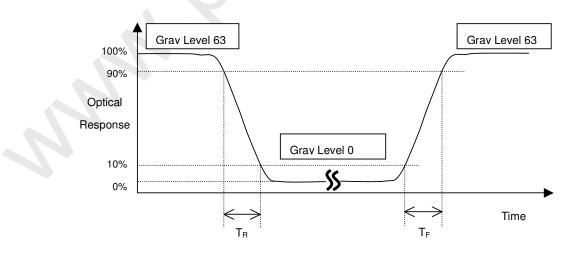

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		(200)	(300)	_	-	(2), (6)	
Pooponoo Timo		T _R		-	(8)	(10)	ms	(2)	
Response Time		T_{F}		-	(17)	(25)	ms	(3)	
Average Lumina	ance of White	L _{AVE}		(180)	(200)	-	cd/m ²	(4), (6)	
White Variation		δW		-	-	(1.4)	-	(6), (7)	
Cross Talk		СТ		-	-	(4.0)	%	(5), (6)	
	Red	Rx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	(0.538)	(0.568)	(0.598)	-		
	neu	Ry	Viewing Normal Angle	(0.316)	(0.346)	(0.376)	-		
	Green	Gx		(0.289)	(0.319)	(0.349)	-		
Color		Gy		(0.549)	(0.579)	(0.609)	-	(1), (6)	
Chromaticity	Blue	Bx		(0.122)	(0.152)	(0.182)	-	(1), (0)	
		Ву		(0.102)	(0.132)	(0.162)	-		
	White	Wx		(0.283)	0.313	(0.343)	-		
		Wy		(0.299)	0.329	(0.359)	-		
Viewing Angle	Horizontal	θ_{x} +	CR≥10	(40)	(45)	-		(1) (0)	
		θ _x -		(40)	(45)	-	Deg.		
	Vertical	θ_{Y+}		(10)	(15)	-		(1), (6)	
		θ _Y -		(30)	(35)	-			

15 / 23

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

- L 0: Luminance of gray level 0
- CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F) :

16 / 23

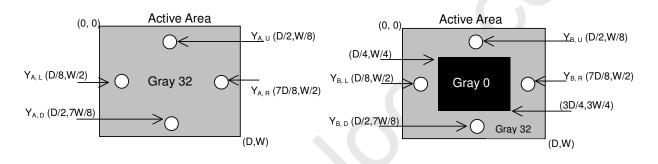
OPTOELECTRONICS CORP.

Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

Note (4) Definition of Average Luminance of White (LAVE):

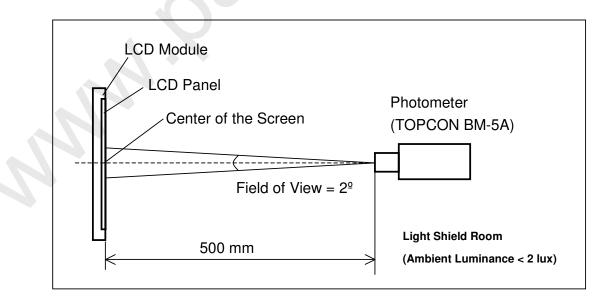
Measure the luminance of gray level 63 at 5 points

 $L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$


L (x) is corresponding to the luminance of the point X at Figure in Note (7).

Note (5) Definition of Cross Talk (CT):

 $CT = \mid Y_B - Y_A \mid / Y_A \times 100 \ (\%)$ Where:

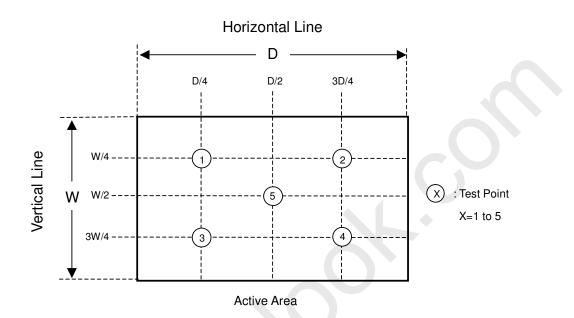

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

17 / 23



CHIMEI OPTOELECTRONICS CORP. Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

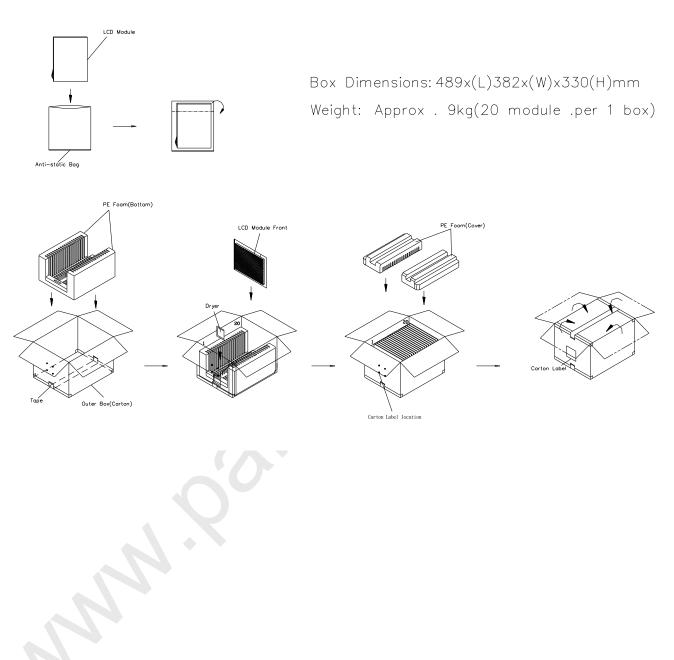
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

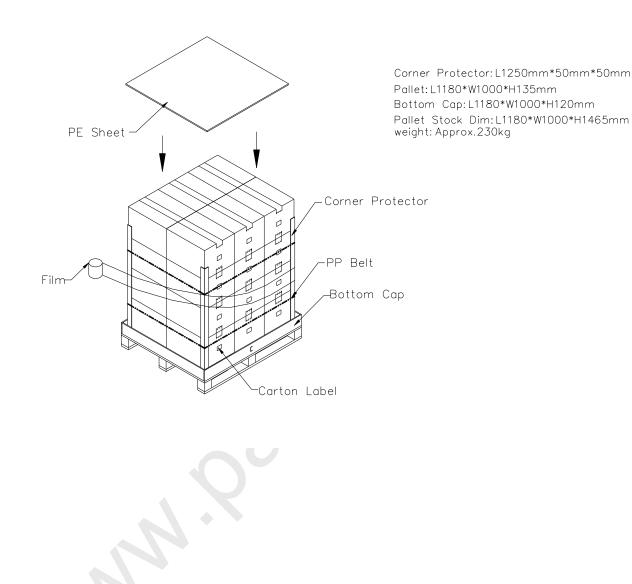
- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.


19 / 23

CHIME OPTOELECTRONICS CORP.

Issued Date: Apr. 05, 2004 Model No.: N121I1 -L02 Preliminary

- 9. PACKING
 - 9.1 CARTON


The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

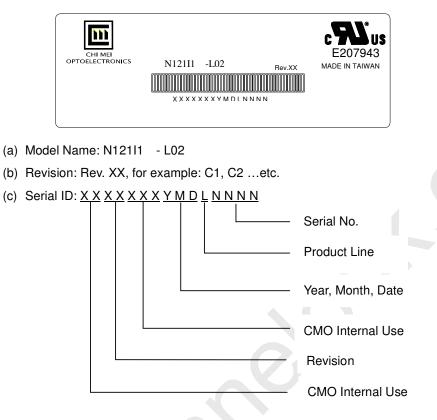
 $\langle \! \! \rangle$

Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

9.2 PALLET

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

屏库:全球液晶屏交易中~



Issued Date: Apr. 05, 2004 Model No.: N12111 -L02

10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

22 / 23

10.2 CARTON LABEL

CHI MEI OF			
PO.NO.			
Part ID.			
Model	Name		
Carton	ID	_Quantities	

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**