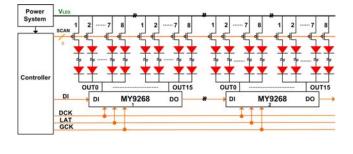


MY9268

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

General Description

The MY9268, 16-channel constant current LED driver with 16bits grayscale M-PDM (Multiplex Pulse Density Modulation) control, supports dynamic 1/2, 1/4, 1/8 scanning applications. The distinctive M-PDM technology enhances the refresh rate of dynamic scanning systems without increasing the frequency of grayscale clock in order to prevent from EMI interference. And the technique of automatic black frame insertion could abate efficiently the influence of blurs caused by the scanning switch.


The device operates over a 3V to 5.5V input voltage range and provides 16 open-drain constant current sinking outputs that are rated to 17V and delivers up to 70mA of high accuracy current to each string of LED. The current at each output is programmable by means of an external current-sensing resistor and could be adjusted by 8bits linear global current control. By this advanced M-PDM approach, the frame refresh rate could be improved up to 16000Hz in dynamic 1/8 scanning systems and 32000Hz in dynamic 1/4 scanning systems when the grayscale clock is 16MHz. The MY9268's on-board pass elements minimize the need for external components, while at the same time, providing ±1.5% LED current accuracy. Additional features include a ±0.1% regulated output current capability and 30ns fast output transient response.

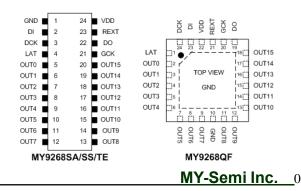
The MY9268 is available in a 24-pin SOP/SSOP/TSSOP /QFN package and specified over the -40°C to +85°C ambient temperature range.

Applications

- □ Indoor and Outdoor LED Video Displays
- □ Variable Message Sign (VMS)
- Dot Matrix Module
- LCD Display Backlighting

Typical Operating Circuits

June. 2011 Ver. 0.2

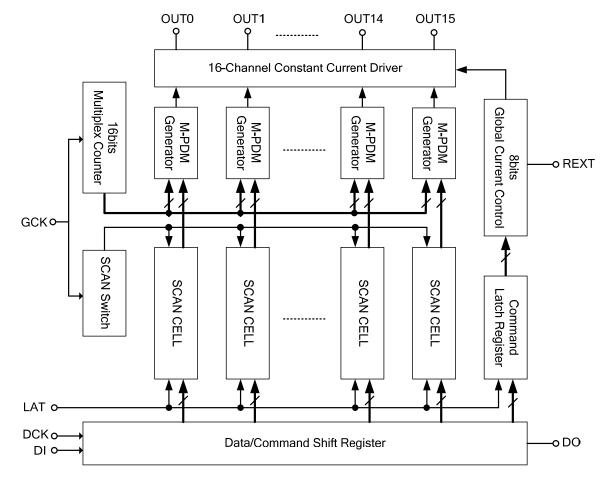

Features

- ✤ 3.3V ~ 5V Operating supply voltage
- ♦ 3~70mA/5V Constant current output range
- ✤ 3~50mA/3.3V Constant current output range
- 17V Rated output channels for long LED strings
- + ±1.5% (typ.) LED Current accuracy between channels
- + ±3% (typ.) LED Current accuracy between chips
- ±0.1% Output current regulation capability
- + Build-in 4K bits SRAM
- + For dynamic 1/2, 1/4, 1/8 scanning systems
- 16bits grayscale resolution with Multiplex Pulse Density Modulation [patent pending]
- Supports diverse applications of 8bits~16bits grayscale resolution
- Refresh rate up to 32000Hz in 1/4 scanning systems Refresh rate up to 16000Hz in 1/8 scanning systems
- ✦ EMI reduction grayscale clock
- + Automatic black frame insertion
- + Ghost image abatement
- + 8bits linear global current control
- ✤ 30MHz Clock frequency for data transfer
- ✤ 30ns fast current transient response
- Current setting by one external resister
- Schmitt trigger input
- Power on reset

Order information

Part	Package Information				
MY9268SA	SOP24-236mil-1.0mm	2000 pcs/Reel			
MY9268SS	SSOP24-150mil-0.635mm 2500 pcs/R				
MY9268TE	TSSOP24-173mil-0.65mm (Exposed Pad)	2500 pcs/Reel			
MY9268QF	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel			

Pin Configuration


For pricing, delivery, and ordering information, pleases contact MY-Semi Inc. at +886-3-658-5656, or email to INFO@MY-Semi.com.tw or visit MY-Semi's website at www.MY-Semi.com.tw

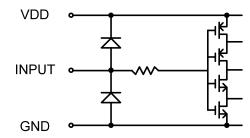
<u>MY9268</u>

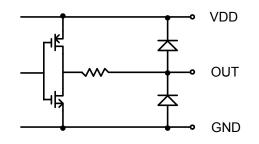
Preliminary

Block Diagram

Pin Description

PI	N No.	PIN NAME	FUNCTION
SOP/SSOP	QFN		FUNCTION
1	10	GND	Ground terminal.
2	23	DI	Serial data input terminal.
3	24	DCK	Synchronous clock input terminal for serial data transfer. Data is sampled at the rising edge of DCK.
4	1	LAT	Input terminal of data strobe and SCAN mode setting. Combine DCK with LAT to execute the frame latch and define the initial position of SCAN mode
5~20	2~9, 11~18	OUT0~15	Sink constant-current outputs (open-drain).
21	20	GCK	External grayscale clock input for PDM operations and black frame insertion
22	19	DO	Serial data output terminal.
23	21	REXT	External resistors connected between REXT and GND for output current value setting.
24	22	VDD	Supply voltage terminal. A capacitor ranging from 4.7uF to 10uF must be connected between VDD and VSS pin of each chip.


16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems



Equivalent Circuit of Inputs and Output

1. DCK, DI, LAT, GCK terminals

2. DO terminal

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VDD	-0.3 ~ 7.0	V
Input Voltage	VIN	-0.3 ~ VDD+0.3	V
Output Current	IOUT	80	mA
Output Voltage	VOUT	-0.3 ~ 17	V
Input Clock Frequency	FDCK	25	MHz
GND Terminal Current	IGND	1280	mA
		31 (TE:TSSOP-173mil-0.65mm)	
		53.2 (SA:SOP-236mil-1.0mm)	0000
Thermal Resistance (On PCB)	Rth(j-a)	70.5 (SS:SSOP-150mil-0.635mm)	°C/W
		36.9 (QF:QFN24-4mmx4mm)	
Operating Supply Voltage	VDD	3.0 ~ 5.5	V
Operating Ambient Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

(2) All voltage values are with respect to ground terminal.

MY9268

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
	VOL	IOL = 1 mA			0.4	N
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 720 Ω		±3	±6	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 6 KΩ		± 3	±6	%
Output Voltage Regulation*3	% / VOUT	Rrext = 720 Ω VOUT = 1 V ~ 3 V			±.0.1	
Supply Voltage Regulation*4	% / VDD	Rrext = 720 Ω VDD = 3 V ~ 5.5 V		±0.6	±1	- % / V
	IDD1(off)	all pins are open unless VDD and GND		1.7	2.5	
	IDD2(off)	input signal is static Rrext = 6 KΩ all outputs turn off		2.3	3.1	
Supply Current ^{*5}	IDD1(on)	input signal is static Rrext = 6 KΩ all outputs turn on		2.4	3.2	mA
	IDD3(off)	input signal is static Rrext = 720 Ω all outputs turn off	_	6.0	6.5	
	I _{DD2(on)}	input signal is static Rrext = 720 Ω all outputs turn on		6.1	6.6	

$*1$
 Channel-to-channel skew is defined by the formula below: *3 Ou

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + \dots + Iout_{15})} - 1 \right] * 100\%$$

$$16$$

^{*2} Chip-to-Chip skew is defined by the formula below:

$$\Delta(\%) = \left[\underbrace{\frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{16} - (Ideal \ Output \ Curren)}_{(Ideal \ Output \ Curren)} \right] *100\%$$

utput voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n @Vout_n = 3V) - Iout_n @Vout_n = 1V)}{Iout_n @Vout_n = 3V} \right] * \frac{100\%}{3V - 1V}$$

^{*4} Supply voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n (@V_{DD} = 5.5V) - Iout_n (@V_{DD} = 3V)}{Iout_n (@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

*5 IO excluded.

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

MY-Semi Inc. 3

.

Electrical Characteristics (VDD = 3.3 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
	VOL	IOL = 1 mA			0.4	
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 720 Ω		±3	±6	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 6 K Ω		±3	±6	%
Output Voltage Regulation*3	% / VOUT	Rrext = 720 Ω VOUT = 1 V ~ 3 V			±0.1	% / V
Supply Voltage Regulation*4	% / VDD	Rrext = 720 Ω VDD = 3 V ~ 5.5 V	_	±0.7	±1	- % / V
	IDD1(off)	all pins are open unless VDD and GND		1.2	2.0	
	IDD2(off)	input signal is static Rrext = 6 KΩ all outputs turn off		2.1	2.8	
Supply Current ^{*5}	IDD1(on)	input signal is static Rrext = 6 KΩ all outputs turn on		2.1	2.9	mA
	IDD3(off)	input signal is static Rrext = 720 Ω all outputs turn off		5.8	6.5	
	I _{DD2(on)}	input signal is static Rrext = 720 Ω all outputs turn on		5.8	6.5	

 *1 Channel-to-channel skew is defined by the formula below: *3 Output ve

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] * 100\%$$
16

atput voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n @Vout_n = 3V) - Iout_n @Vout_n = 1V)}{2} \right] * \frac{100\%}{2}$$

$$\int V = \begin{bmatrix} \frac{1}{1000} & \frac{1}{1000} \end{bmatrix}^{\frac{1}{2}} \frac{1}{3V - 1V}$$

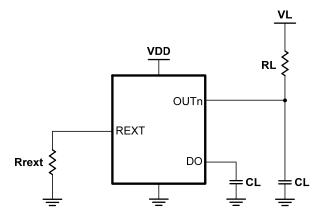
*² Chip-to-Chip skew is defined by the formula below: $\frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{(Ideal Output Curren)} - (Ideal Output Curren)$

$$\Delta(\%/V) = \left[\frac{Iout_n(@V_{DD} = 5.5V) - Iout_n(@V_{DD} = 3V)}{Iout_n(@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

*5 IO excluded.

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

-]*100%

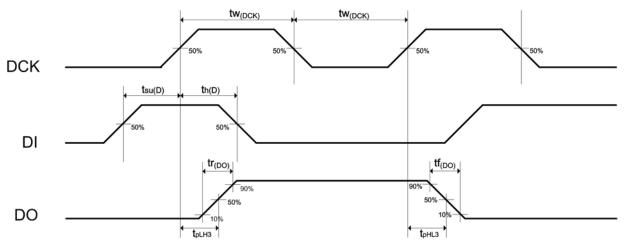

Switching Characteristics (VDD = 5.0V, Ta = 25°C unless otherwise noted)

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	GCK-to-OUT0	tpLH1			25	45	
Propagation Delay ('L to 'H')	LAT-to-OUT0	tpLH2			25	45	
(2011)	DCK-DO	tpLH3			24	44	
	GCK-to-OUT0	tpHL1			20	40	
Propagation Delay ('H' to 'L')	LAT-to-OUT0	tpHL2			20	40	
	DCK-DO	tpHL3			28	48	
	LAT	tw _(LAT)	VIH = VDD	50			ns
Pulse Duration	GCK	tw _(GCK)	VIL = GND Rrext = 720 Ω	30			
	DCK	tw _(DCK)		20			
Setup Time	LAT	tsu _(LAT)		5			
Setup Time	DI	tsu _(D)	VL =5.0 V	3			
Hold Time	LAT	th _(LAT)	RL = 150 Ω	20			
riola fille	DI	th _(D)	CL = 13 pF	4			
Hold Time of Instru	uction	th _(CM)		20			
DO Rise Time		tr _(DO)			16		
DO Fall Time		tf _(DO)			18		
Output Current Rise Time		tor			15		
Output Current Fa	II Time	tof			18		
Output Delay Time	e (OUT(n)-to-OUT(n+8))	tod			16]
Data Clock Freque	ency	FDCK				30	MHz
Grayscale Clock F	requency	F _{GCK}				16	

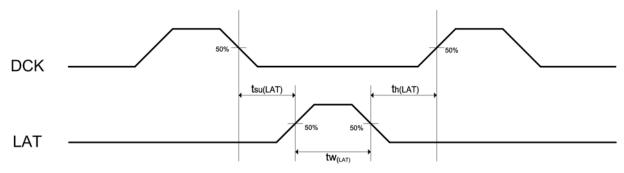
Switching Characteristics (VDD = 3.3V, Ta = 25°C unless otherwise noted)

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	GCK-to-OUT0	tpLH1			47	67	
Propagation Delay ('L to 'H')	LAT-to-OUT0	tpLH2			48	68	
(2011)	DCK-to-DO	tpLH3			30	50	
	GCK-to-OUT0	tpHL1			30	50	
Propagation Delay ('H' to 'L')	LAT-to-OUT0	tpHL2			30	50	
(11 10 2)	DCK-DO	tpHL3			30	50	
	LAT	tw _(LAT)	VIH = VDD	50			
Pulse Duration	GCK	tw _(GCK)	VIL = GND	30			ns
	DCK	tw _(DCK)	Rrext = 720 Ω	20			
Setup Time	LAT	tsu _(LAT)		5			
Setup Time	DI	tsu _(D)	VL =5.0 V	3			
Hold Time	LAT	th _(LAT)	RL = 150 Ω	20			
Hold Time	DI	th _(D)	CL = 13 pF	4			
Hold Time of Instru	uction	th _(CM)	GL = 13 pr	20			
DO Rise Time		tr _(DO)			24		
DO Fall Time		tf _(DO)			23.5		_
Output Current Rise Time		tor			24.5		
Output Current Fa	ll Time	tof			23.5		
Output Delay Time	e (OUT(n)-to-OUT(n+8))	tod			26		
Data Clock Freque	ency	F _{DCK}				25	- MHz
Grayscale Clock F	requency	F _{GCK}				16	1011 12

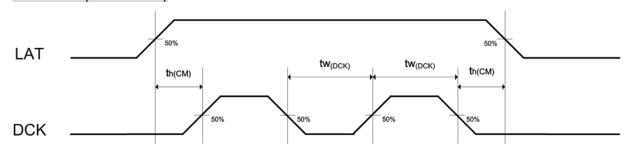
Switching Characteristics Test Circuit


16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

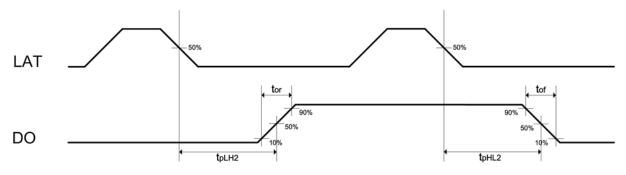
MY-Semi Inc. 6

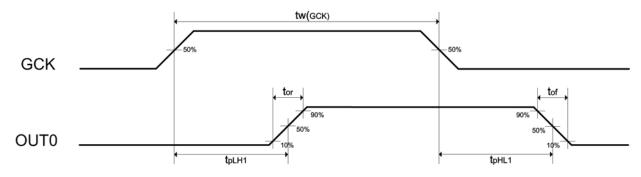


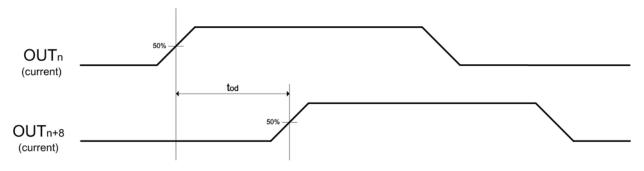
Timing Diagram


1. DCK-DI, DO

2. DCK-LAT


3. LAT-DCK (Instruction)


16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems


4. LAT-OUT0

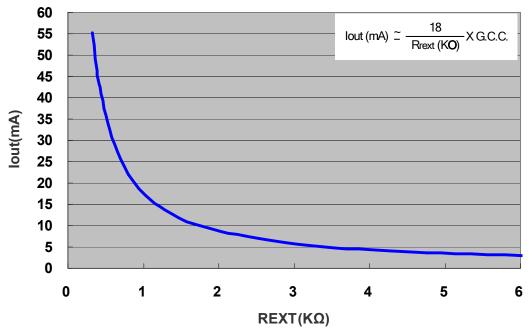
5. GCK-OUT0

6. OUTn-OUTn+8

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

<u>MY9268</u>

Fast Transient Response

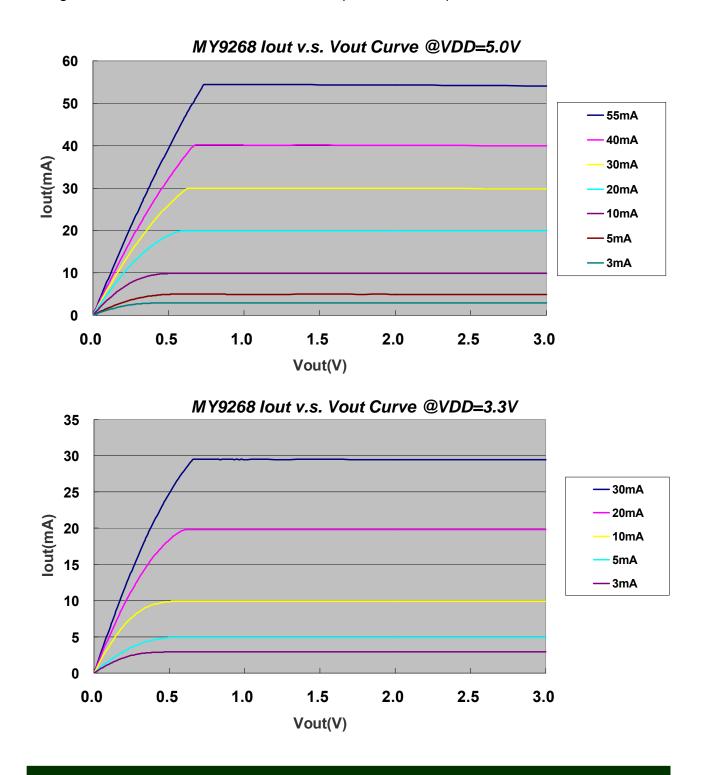

The MY9268 supports the fast transient response to make high image resolution possible. The GCK pulse width of 30ns is guaranteed to get a complete Vout waveform.

Reference Resistor

The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

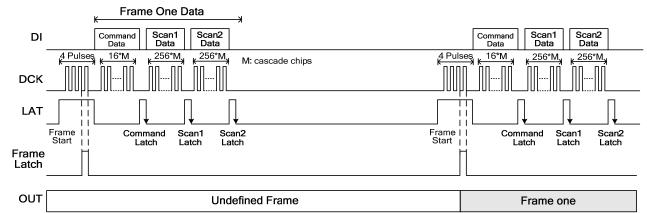
 $Iout(mA) = \frac{18}{Rrext (K\Omega)} \times G.C.C.$

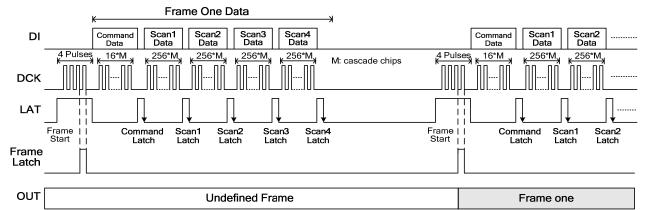
Where Rrext is a resistor placed between REXT and GND And G.C.C. is the factor of global current control refer to page14 For example, lout is 25mA when Rrext=720 Ω and lout is 3mA when Rrext=6K Ω


MY9268 lout v.s. Rrext Curve

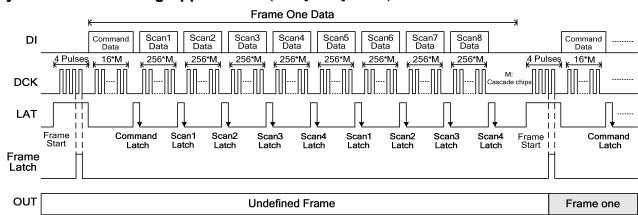
16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

Constant-Current Output


The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the MY9268 could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.

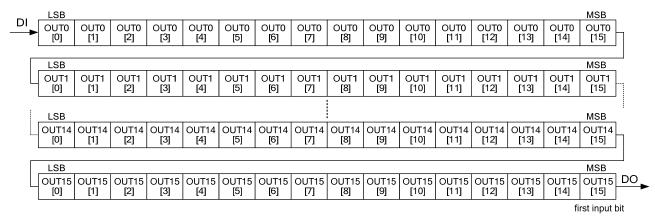

Data Transmitting Protocol

Dynamic 1/2 Scanning Applications (CMD[11:10]=2'b01)


This data transmitting process starts from an initial instruction which is comprised of 4 DCK pulses in high level of LAT signal. This initial instruction would define the start of data transmission and an image frame. Furthermore, it would reset simultaneously the internal grayscale counter in order to synchronize each frame. The first LAT signal after the initial instruction is a command latch which would latch 16bits command data into each device. And the following two LAT signals are ordered from Scan1 latch to Scan2 latch. These Scan latches would latch separately the scanning data into the assigned registers. Finally, the controller must transmit an initial instruction to start this frame.

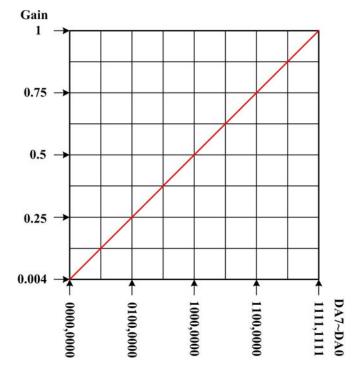
Dynamic 1/4 Scanning Applications (CMD[11:10]=2'b10)

This data transmitting process starts from an initial instruction which is comprised of 4 DCK pulses in high level of LAT signal. This initial instruction would define the start of data transmission and an image frame. Furthermore, it would reset simultaneously the internal grayscale counter in order to synchronize each frame. The first LAT signal after the initial instruction is a command latch which would latch 16bits command data into each device. And the following four LAT signals are ordered from Scan1 latch to Scan4 latch. These Scan latches would latch separately the scanning data into the assigned registers. Finally, the controller must transmit an initial instruction to start this frame.



Dynamic 1/8 Scanning Applications (CMD[11:10]=2'b11)

This data transmitting process starts from an initial instruction which is comprised of 4 DCK pulses in high level of LAT signal. This initial instruction would define the start of data transmission and an image frame. Furthermore, it would reset simultaneously the internal grayscale counter in order to synchronize each frame. The first LAT signal after the initial instruction is a command latch which would latch 16bits command data into each device. And the following eight LAT signals are ordered from Scan1 latch to Scan8 latch. These Scan latches would latch separately the scanning data into the assigned registers. Finally, the controller must transmit an initial instruction to start this frame.


Image Data Format

16x16-bits M-PDM data are transmitted into a device for each scan according to the format illustrated above. The first input bit is the most significant bit of OUT15.

Global Current Control (set CMD[7:0])

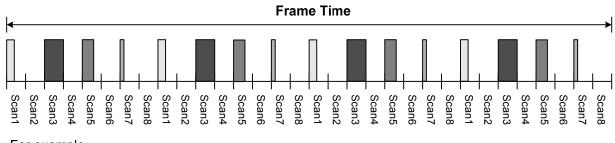
MY9268 provides the global current control function, users can use 8-bits command data CMD[7:0] to adjust the output current. The following formula is utilized to calculate the current value:

lout(mA) = 18 X G.C.C. / Rrext (KΩ)

Where:

G.C.C. = $(CMD[7]x2^7+CMD[6]x2^6+CMD[5]x2^5+CMD[4]x2^4+CMD[3]x2^3+CMD[2]x2^2+CMD[1]x2^1+CMD[0]x2^0+1) / 256$ The range of G.C.C is from 1/256 to 256/256 by 256-step linearly.

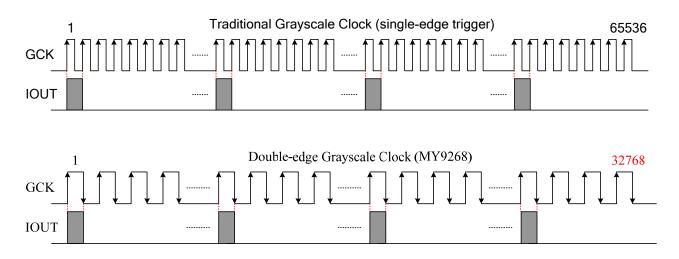
16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems


Command Data Format

DI	CMD[0]	CMD[1]	CMD[2]	CMD[3]	CMD[4]	CMD[5]	CMD[6]	CMD[7]
	DA[0]	DA[1]	DA[2]	DA[3]	DA[4]	DA[5]	DA[6]	DA[7]
[
	CMD[8]	CMD[9]	CMD[10]	CMD[11]	CMD[12]	CMD[13]	CMD[14]	CMD[15]

CMD Bit	Initial Value	Value	Function	Description
CMD[15:12]	4'b0000	4'b0000	Reserved	Reserved bits
		2'b00	Reserved	Set the scanning mode
CMD [11,10]	271.00	2'b01	Dynamic 1/2 scan (N=2)	CMD[11:10]=2'b01 => 1/2 scanning mode (one channel supports 2 strings of LEDs)
CMD[11:10]	2'b00	2'b10	Dynamic 1/4 scan (N=4)	CMD[11:10]=2'b10 => 1/4 scanning mode (one channel supports 4 strings of LEDs) CMD[11:10]=2'b11 => 1/8 scanning mode
		2'b11	Dynamic 1/8 scan (N=8)	(one channel supports 8 strings of LEDs)
CMD[0]	1'b0	1'b0	Ghost image	Output ports pull to VDD when they are turned off for ghost image abatement
CMD[9]	1 00	1'b1	abatement	when CMD[9]=1'b0 => disable when CMD[9]=1'b1 => enable
	111.0	1'b0	Low refresh rate (64 segments)	Set the refresh rate of scanning systems when CMD[8]=1'b0, Refresh rate $\Rightarrow 64 / (32768*T_{GCK}*N)$
CMD[8]	1'b0	1'b1	High refresh rate (256 segments)	when CMD[8]=1'b1, Refresh rate $\Rightarrow 256 / (32768*T_{GCK}*N)$ ** N is the parameter of scan mode **
CMD[7:0]	8'b00000000	8'b00000000~ 8'b11111111	G.C.C	8bit DA data for global current control (allow 256-step programmable current gain)

Multiplex Pulse Density Modulation (Multiplex-PDM)

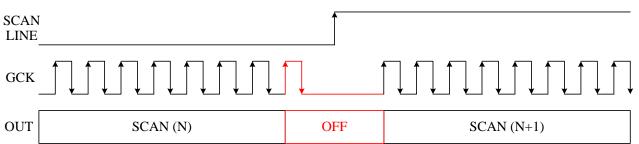


For example,

Scan1=2/5, Scan2=0, Scan3=1, Scan4=0, Scan5=3/5, Scan6=0, Scan7=1/5, Scan8=0

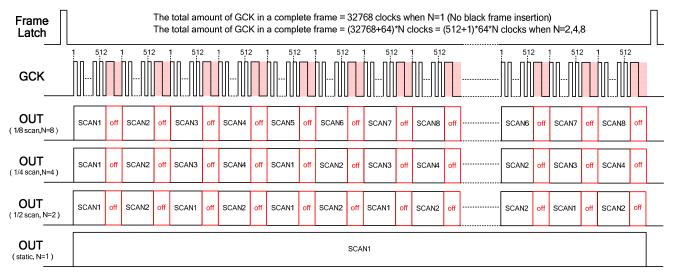
The advanced Multiplex-PDM approach divides the frame time into the designated segments and interlaces Scan images to enhance the refresh rate. By this technique, the frame refresh rate could be improved efficiently by 64 times or 256 times without increasing the frequency of grayscale clock in order to prevent from EMI interference.

Double-edge Grayscale Clock

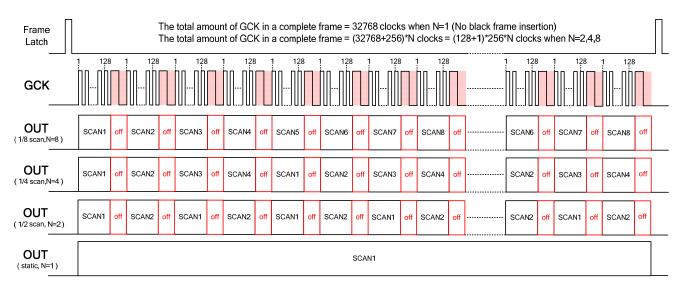


A whole period of 16bits resolution must be composed by 65536 traditional grayscale clocks because constant current outputs only are triggered at the rising edge of clocks. Therefore, a controller has to transmit fast grayscale clocks in order to accomplish high refresh rate when users adopt traditional PWM chips. MY9268 supports a specific mode of double-edge grayscale clocks which trigger both at rising and falling edges of clocks. By this approach, a whole period of 16bits resolution is composed by only 32768 double-edge grayscale clocks and the electromagnetic interference would be decreased substantially due to slow grayscale clocks.

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

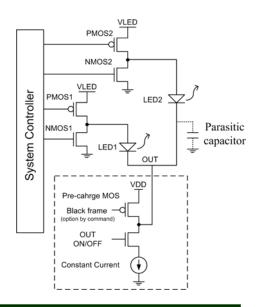


Automatic Black Frame Insertion


In the process of scan switching, constant current outputs have to be turned off in order to avoid that LEDs of the preceding and the present scanning lines are turned on simultaneously. MY9268 supports a specific technique of automatic black frame insertion to solve this problem by a double-edge grayscale clock. All constant current outputs are turned off during this double-edge grayscale clock.

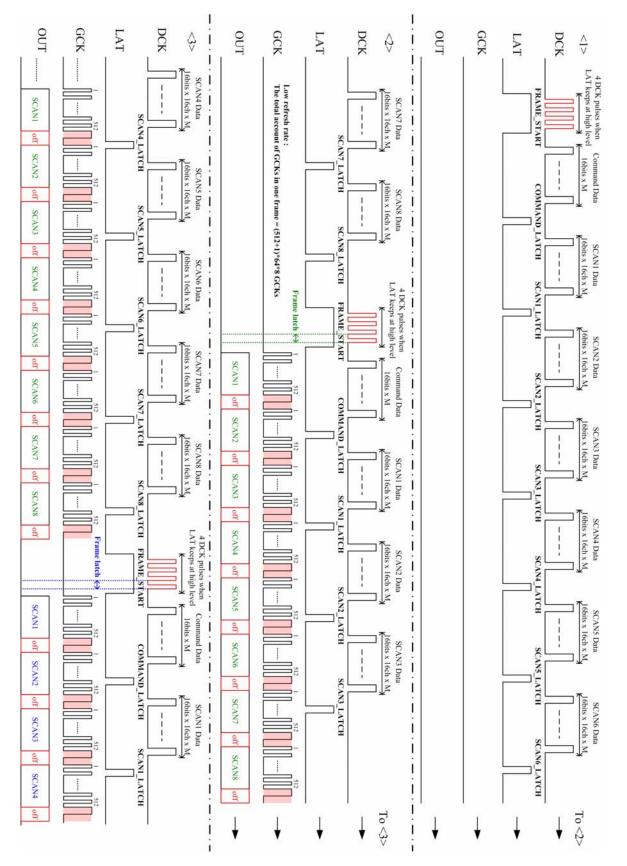
Low Refresh Rate Frame (set CMD[8]=1'b0)

When the mode of low refresh rate is assigned, MY9268 would divide equally 32768 double-edge grayscale clocks of one frame into 64 groups. Therefore, each segment of M-PDM waveform is comprised of 512 double-edge grayscale clocks. This advanced M-PDM approach enhances the refresh rate by 64 times in comparison with a traditional one. Meanwhile, the distinctive technique of automatic black frame insertion would produce a black frame between two M-PDM segments by one double-edge grayscale clocks in order to abate the interference of blurs. Users could modify the period of double-edge grayscale clocks to set the black frame time according to the switch time of external scan MOS. The total amount of grayscale clocks in a complete frame is (32768+64)*N clocks in a scanning system which N=2,4,8.

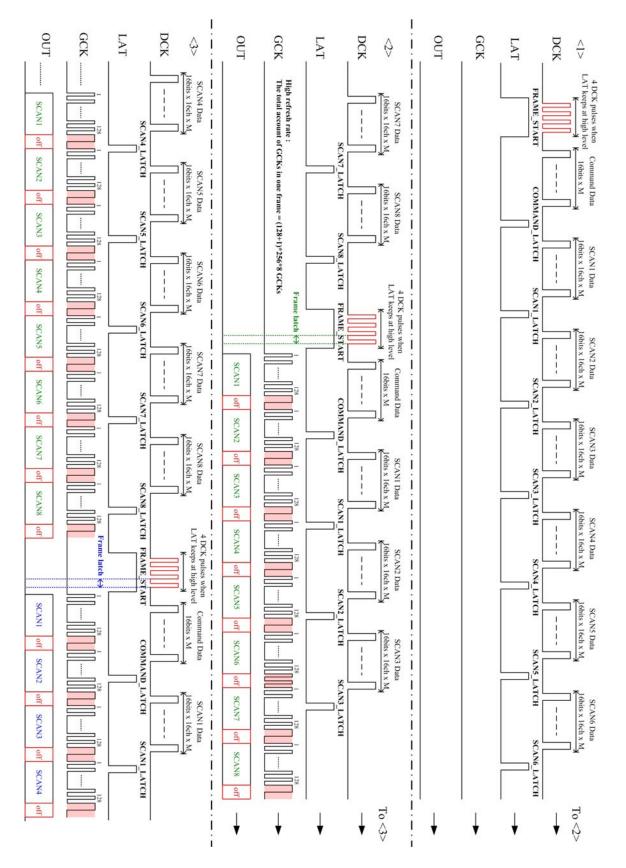

High Refresh Rate Frame (set CMD[8]=1'b1)

When the mode of high refresh rate is assigned, MY9268 would divide equally 32768 double-edge grayscale clocks of one frame into 256 groups. Therefore, each segment of M-PDM waveform is comprised of 128 double-edge grayscale clocks. This advanced M-PDM approach enhances the refresh rate by 256 times in comparison with a traditional one. Meanwhile, the distinctive technique of automatic black frame insertion would produce a black frame between two M-PDM segments by one double-edge grayscale clocks in order to abate the interference of blurs. Users could modify the period of double-edge grayscale clocks to set the black frame time according to the switch time of external scan MOS. The total amount of grayscale clocks in a complete frame is (32768+256)*N clocks in a scanning system which N=2,4,8.

Ghost Image Abatement (set CMD[9])


The ghost image abatement is an optional instruction designed to eliminate ghosting of multiplexed LED modules due to parasitic capacitors. When this instruction is active, output pins of constant current would be pulled high to VDD in the automatic black frame by an internal pre-charge MOS. The VDD voltage on the parasitic capacitor prevents the inrush current resulting from turning on the switching PMOS of next scan line. This function is valid when VLED is close to VDD.

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems MY-Semi Inc. 17


Data Timing Diagram (Dynamic 1/8 Scanning Mode, Low Refresh Rate)

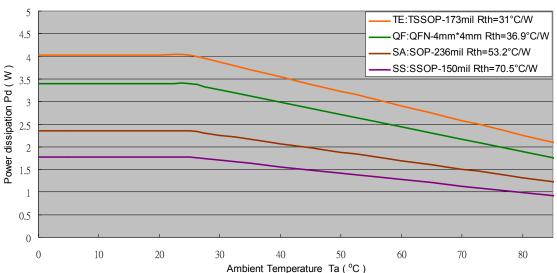
16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

Data Timing Diagram (Dynamic 1/8 Scanning Mode, High Refresh Rate)

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems

MY-Semi Inc. 19

Power Dissipation

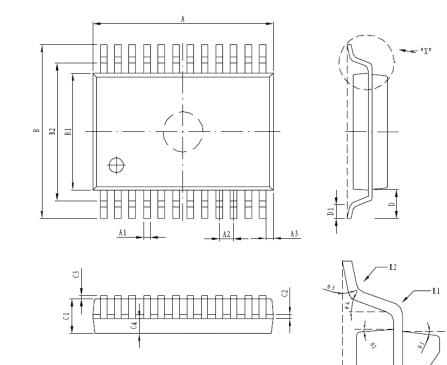

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation:

 $PD (practical) = V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Duty_{(0)} + \dots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Duty_{(N)}, where N=1 to 15$

In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package types and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD (max) = \frac{Tj(max)(^{\circ}C) - Ta(^{\circ}C)}{Rth(j-a)(^{\circ}C/Watt)}$$

The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in the four different packages.



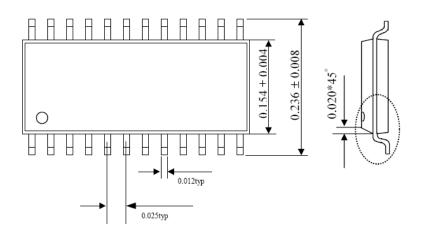
Maximum Power Dissipation v.s. Ambient Temperature

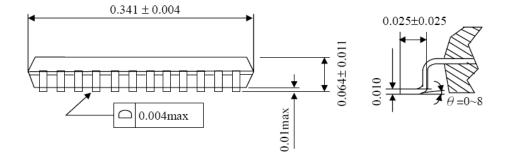
Package Outline Dimension

SOP-236mil-1.0mm

SYMBOL	DIMENSION(mm)		SYMDOL	DIMENS	ION(mm)
SYMBOL	MIN.	MAX.	- SYMBOL	MIN.	MAX.
Α	12.9	13.1	C3	0.05	0.2
A1	0.30	0.50	C4	0.80	ТҮР
A2	1.00	ТҮР	D	0.95	ТҮР
A3	0.87	ГҮР	D1	0.33	0.73
В	7.60	8.20	R1	0.2	ГҮР
B1	5.90	6.10	R2	0.2	ГҮР
B2			θ1	8°T	ΥP
С		2.20	θ2	10°TYP	
C1	1.70	1.90	θ3	4°TYP	
C2	0.15	0.30	θ4	5°T	YP

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems MY-Semi Inc. 21

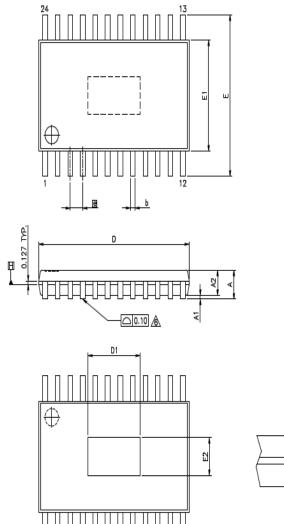




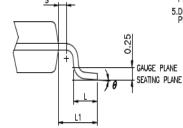
Package Outline Dimension

SSOP-150mil-0.635mm

Unit: inch



16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems



Package Outline Dimension

TSSOP-173mil-0.65mm

THERMALLY ENHANCED VARIATIONS ONLY

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	NOM.	MAX.		
Α	-	-	1.20		
A1	0.00	-	0.15		
A2	0.80	1.00	1.05		
Ь	0.19	-	0.30		
D	7.70	7.80	7.90		
Et	4.30	4.40	4.50		
E		6.40 BSC			
e		0.65 BSC			
L1		1.00 REF			
L	0.45	0.60	0.75		
S	0.20 -		-		
θ	0	-	8		

THERMALLY ENHANCED DIMENSIONS(SHOWN IN MM)

	E	E2		1
PAD SIZE	MIN.	MAX.	MIN.	MAX.
112X18E	2.28	2.85	3.70	4.62

NOTES:

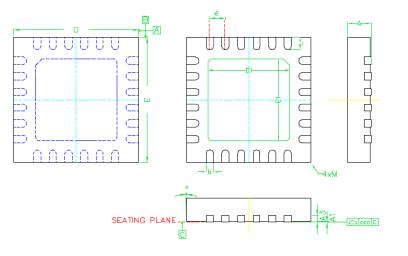
IJEDEC OUTLINE : STANDARD : MO-153 AD REV.F THERMALLY ENHANCED : MO-153 ADT REV.F

2.DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

3.DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

ADMENSION 'S' DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'S DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM.

5.DIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE I


16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems MY-Semi Inc. 23

Package Outline Dimension

QFN24-4mm x 4mm

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0	0.010	0.030
A3		0.20REF.	
b	0.18	0.23	0.28
D	3.95	4.00	4.03
D1		2.60BSC	
E	3.95	4.00	4.03
E1		2.60BSC	
e		0.50BSC	
L	0.35	0.40	0.45
θ	-12		0
ccc		0.08	
Μ			0.05
Burr	0	0.030	0.060

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

MY-Semi Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. MY-Semi Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.

16-Channel High Accuracy Constant Current LED Driver With 16bits Multiplex-PDM Control for Dynamic Scanning Systems MY-Semi Inc. 25