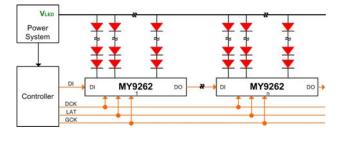


16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

General Description

The MY9262, 16-channel constant current LED driver with 16bits grayscale Adaptive Pulse Density Modulation (APDM) and power saving control, supports high quality LED video display applications. This distinctive APDM technology abates the non-ideal IOUT distortion due to non-symmetric transient responses and enhances the refresh rate by separating efficiently the frame waveform.

The MY9262 features a fast 30MHz DCK input, allowing a wide LED dimming (on/off) range to be implemented. This 4-wire serial interface allows a microcontroller to configure the output channels using four inputs (DI, DCK, LAT, and GCK) and a data output (DO). DO allows multiple drivers to be cascaded and operated together.


The device operates over a 3V to 5.5V input voltage range and provides 16 open-drain constant current sinking outputs that are rated to 17V and delivers up to 45mA of high accuracy current to each string of LED. The current at each output is programmable by means of an external current-sensing resistor and could be adjusted by 6bits global current control. Furthermore, the MY9262 also supports the grayscale synchronization by two functions of counter reset and data synchronization. And the sleep mode could efficiently lower down the supply current in power saving applications.

The MY9262 is available in a 24-pin SOP/SSOP/TSSOP/ QFN package and specified over the -40°C to +85°C ambient temperature range.

Applications

- □ Indoor and Outdoor LED Video Displays
- Variable Message Sign (VMS)
- Dot Matrix Module
- LCD Display Backlighting

Typical Operating Circuits

Aug. 2010 Ver. 0.2

Features

- ♦ 3V ~ 5.5V Operating supply voltage
- 2~45mA/5V Constant current output range
- 2~30mA/3.3V Constant current output range
- 17V Rated output channels for long LED strings
- ★ ±1.5% (typ.) LED Current accuracy between channels

MY9262

- ±3% (typ.) LED Current accuracy between chips
- ±0.1% Output current regulation capability
- 16bits grayscale resolution with Adaptive Pulse Density Modulation control [patent pending]
- Grayscale counter reset selection
- Grayscale data synchronization selection
- 6bits global current control
- Sleep mode to lower down the supply current to 0.1uA
- 30MHz Clock frequency for data transfer
- 30ns fast current transient response
- Current setting by one external resister
- Schmitt trigger input
- Power on reset
- Stagger output delay for EMI reduction

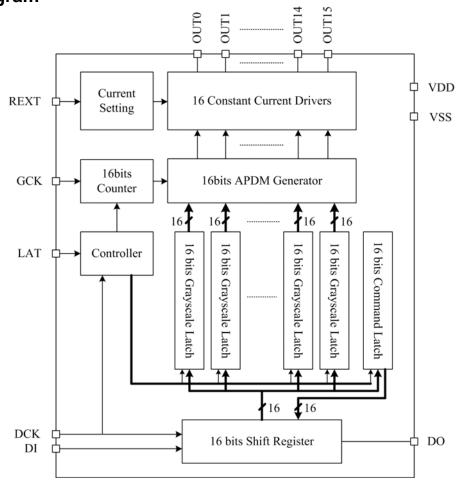
Order information

Part	Package Inform	ation
MY9262SA	SOP24-236mil-1.0mm	2000 pcs/Reel
MY9262SS	SSOP24-150mil-0.635mm	2500 pcs/Reel
MY9262TE	TSSOP24-173mil-0.65mm (Exposed Pad)	2500 pcs/Reel
MY9262QF	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel

Pin Configuration

MY	9262	SA/SS	/TE			emi Inc.
					MY9262QF	
OUT7	12	13	OUT8			
OUT6	11	14	OUT9		OUT9 GND OUT7 OUT7 OUT5	
OUT5	10	15	OUT10		Lớnằnằ	
OUT4	9	16	OUT11	OUT4	6 L	13[OUT10
OUT3	8	17	OUT12	OUT3	35 I	14 OUT11
OUT2	7	18	OUT13	OUT2	GND I	15[] OUT12
OUT1	6	19	OUT14	OUT1	TOP VIEW	16 OUT13
OUT0	5	20	OUT15	OUT0		17 OUT14
LAT	4	21	GCK	LAT	1	18[OUT15
DCK	3	22	DO		24 23 22 21 20 19	
DI	2	23	REXT		DCK DDC DDC DD DD DD DD DD DD	
GND	1	24	VDD		X - 9 X X 0	

0


For pricing, delivery, and ordering information, pleases contact MY-Semi Inc. at +886-3-658-5656, or email to INFO@MY-Semi.com.tw or visit MY-Semi's website at www.MY-Semi.com.tw

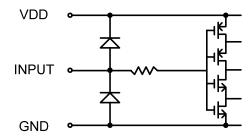
Preliminary (Confidential)

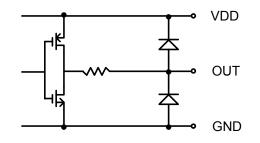
Block Diagram

Pin Description

PIN	No.	PIN NAME	FUNCTION			
SOP/SSOP	QFN	FIN NAME	FUNCTION			
1	10	GND	Ground terminal.			
2	23	DI	Serial data input terminal.			
3	24	DCK	Synchronous clock input terminal for serial data transfer. Data is sampled at the rising edge of DCK.			
4	1	LAT	Input terminal of data strobe and mode setting. Combine DCK with La signal to execute the mode control			
5~20	2~9,11~18	OUT0~15	Sink constant-current outputs (open-drain).			
21	20	GCK	External grayscale clock input for APDM operations			
22	19	DO	Serial data output terminal.			
23	21	REXT	External resistors connected between REXT and GND for output current value setting.			
24	22	VDD	Supply voltage terminal.			

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 1





Equivalent Circuit of Inputs and Output

1. DCK, DI, LAT, GCK terminals

2. DO terminal

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VDD	-0.3 ~ 7.0	V
Input Voltage	VIN	-0.3 ~ VDD+0.3	V
Output Current	IOUT	50	mA
Output Voltage	VOUT	-0.3 ~ 17	V
Input Clock Frequency	FDCK	30	MHz
Input Grayscale Frequency	FGCK	30	MHz
GND Terminal Current	IGND	800	mA
		53.2 (SA:SOP-236mil-1.0mm)	
		70.5 (SS:SSOP-150mil-0.635mm)	
Thermal Resistance (On PCB)	Rth(j-a)	31 (TE:TSSOP-173mil-0.65mm)	°C/W
		36.9 (QF:QFN24-4mmx4mm)	
Operating Supply Voltage	VDD	3.0 ~ 5.5	V
Operating Ambient Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

(2) All voltage values are with respect to ground terminal.

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
Output Voltage (DO)	VOL	IOL = 1 mA			0.4	N
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 560 Ω		±3	±6	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 7 KΩ		±3	±6	%
Output Voltage Regulation*3	% / VOUT	Rrext = 560 Ω VOUT = 1 V ~ 3 V		_	±.0.1	
Supply Voltage Regulation*4	% / VDD	Rrext = 560 Ω VDD = 3 V ~ 5.5 V		±0.6	±1	- % / V
	I _{DD1(off)}	all pins are open unless VDD and GND		1.7	2.5	
	IDD2(off)	input signal is static Rrext = 7 KΩ all outputs turn off		2.0		
Supply Current ^{*5}	IDD1(on)	input signal is static Rrext = 7 KΩ all outputs turn on		2.0		mA
	IDD3(off)	input signal is static		4.0		
	I _{DD2(on)}	input signal is static Rrext = 560 Ω all outputs turn on		4.0		

 *1 Channel-to-channel skew is defined by the formula below: *3 Ou

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + \dots + Iout_{15})} - 1 \right] * 100\%$$
16

^{*2} Chip-to-Chip skew is defined by the formula below: $\Delta(\%) = \left[\underbrace{\frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{16}}_{(Ideal Output Curren)} - (Ideal Output Curren)} \right] *100\%$

utput voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n(@Vout_n = 3V) - Iout_n(@Vout_n = 1V)}{Iout_n(@Vout_n = 3V)} \right] * \frac{100\%}{3V - 1V}$$

^{*4} Supply voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n @V_{DD} = 5.5V) - Iout_n @V_{DD} = 3V)}{Iout_n @V_{DD} = 3V} \right] * \frac{100\%}{5.5V - 3V}$$

^{*5} IO excluded.

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

Electrical Characteristics (VDD = 3.3 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	V
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	v
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
	VOL	IOL = 1 mA			0.4	
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 560 Ω		±3	±6	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 7 KΩ		±3	±6	%
Output Voltage Regulation*3	% / VOUT	Rrext = 560 Ω VOUT = 1 V ~ 3 V			±0.1	- %/V
Supply Voltage Regulation*4	% / VDD	Rrext =560 Ω VDD = 3 V ~ 5.5 V		±0.7	0.7 ±1	
	IDD1(off)	all pins are open unless VDD and GND		1.2	2.0	
	I _{DD2(off)}	input signal is static Rrext = 7 KΩ all outputs turn off		2.0		
Supply Current ^{*5}	IDD1(on)	input signal is static Rrext = 7 KΩ all outputs turn on		2.0		mA
	IDD3(off)	input signal is static Rrext = 560 Ω all outputs turn off		4.0		
	I _{DD2(on)}	input signal is static Rrext = 560 Ω all outputs turn on		4.0		

 *1 Channel-to-channel skew is defined by the formula below: *3 Ou

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] * 100\%$$

$$\frac{Iout_0}{16} = \left[\frac{Iout_0}{16} - 1 \right] * 100\%$$

utput voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \begin{bmatrix} Iout_n @Vout_n = 3V) - Iout_n @Vout_n = 1V) \\ \hline 100\% \\ \hline$$

$$\int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

*2 Chip-to-Chip skew is defined by the formula below: $(Iout_0 + Iout_1 + \dots + Iout_{15})$ put Current)

$$\Delta(\%) = \left[\left(\frac{16 \operatorname{M}_0 + 10 \operatorname{M}_1 + 10 \operatorname{M}_{15}}{(Ideal \ Output \ Current)} \right) \right]$$

^{*4} Supply voltage regulation is defined by the formula below:

.

$$\Delta(\%/V) = \left[\frac{Iout_n(@V_{DD} = 5.5V) - Iout_n(@V_{DD} = 3V)}{Iout_n(@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

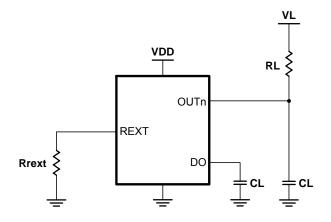
*5 IO excluded.

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

未經授權而逕予重製、複製、使用或公開本檔,行為人得被追究侵權之相關民刑事責任 Unauthorized reproduction, duplication, use or disclosure of this document will be deemed as infringement.

-]*100%

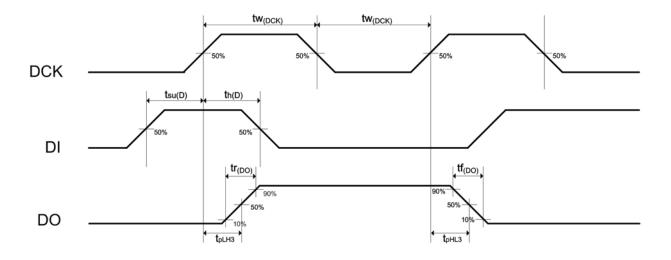
Switching Characteristics (VDD = 5.0V, Ta = 25°C unless otherwise noted)


CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	GCK-to-OUT0	tpLH1			25	45	
Propagation Delay ('L to 'H')	LAT-DO	tpLH2			25	45	
	DCK-DO	tpLH3			24	44	
	GCK-to-OUT0	tpHL1			20	40	
Propagation Delay ('H' to 'L')	LAT-DO	tpHL2			20	40	
	DCK-DO	tpHL3	VIH = VDD		28	48	
	LAT	tw _(LAT)		50			
Pulse Duration	GCK	tw _(GCK)	VIL = GND	15			
	DCK	tw _(DCK)	Rrext = 560 Ω	15			ns
Catur Time	LAT	tsu _(LAT)	VL =5.0 V	5			
Setup Time	DI	tsu _(D)		3			1
	LAT	th _(LAT)	RL = 150 Ω	20			
Hold Time	DI	th _(D)	CL = 13 pF	4			
DO Rise Time		tr _(DO)			16		
DO Fall Time		tf _(DO)			18		
Output Current Ris	e Time	tor			15		
Output Current Fal	ll Time	tof			18		
Output Delay Time	e (OUT(n)-to-OUT(n+8))	tod			16		
Data Clock Freque	ency	FDCK				30	Hz
Grayscale Clock F	requency	F _{GCK}				30	I IZ

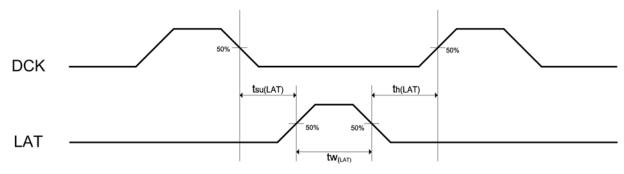
Switching Characteristics (VDD = 3.3V, Ta = 25°C unless otherwise noted)

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	GCK-to-OUT0	tpLH1			47	67	
Propagation Delay ('L to 'H')	LAT-DO	tpLH2			48	68	
	DCK-DO	tpLH3			30	50	
	GCK-to-OUT0	tpHL1			30	50	
Propagation Delay	LAT-DO	tpHL2			30	50	
('H' to 'L')	DCK-DO	tpHL3	VIH = VDD		30	50	
	LAT	tw _(LAT)	VIL = GND	50			- ns
Pulse Duration	GCK	tw _(GCK)		20			
	DCK	tw _(DCK)	Rrext = 560 Ω	20			ns
Setup Time	LAT	tsu _(LAT)	VL =5.0 V	5			
Setup Time	DI	tsu _(D)		3			1
Hold Time	LAT	th _(LAT)	RL = 150 Ω	20			
	DI	th _(D)	CL = 13 pF	4			
DO Rise Time		tr _(DO)			24		
DO Fall Time		tf _(DO)			23.5		
Output Current Ris	se Time	tor			24.5		
Output Current Fa	ll Time	tof			23.5		
Output Delay Time	e (OUT(n)-to-OUT(n+8))	tod			26		
Data Clock Freque	ency	FDCK				25	Hz
Grayscale Clock F	requency	F _{GCK}				20	ΠΖ

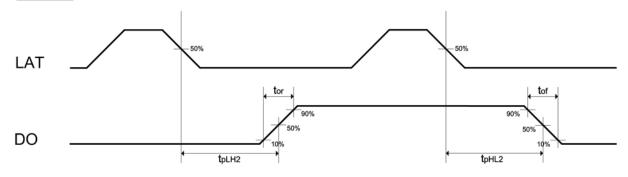
Switching Characteristics Test Circuit


16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

MY-Semi Inc. 6

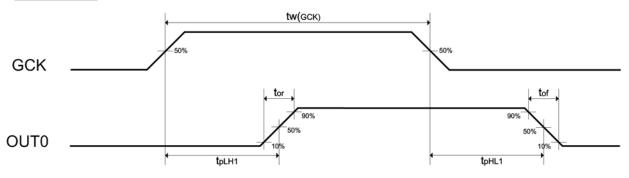


Timing Diagram

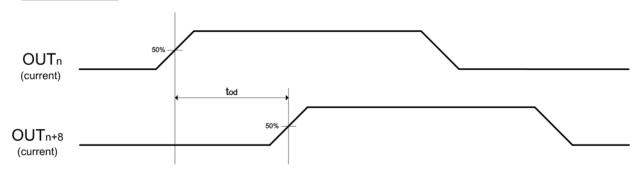

1. DCK-DI, DO

2. DCK-LAT

3. LAT-DO

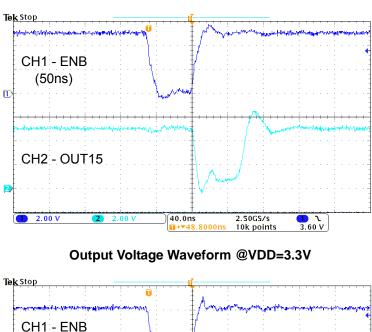


16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 7



4. GCK-OUT0

5. OUTn-OUTn+8


16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 8

Fast Transient Response

<u>MY9262</u>

The MY9262 supports the fast transient response to make high image resolution possible. The GCK period of 50ns is guaranteed to get a complete Vout waveform. Test condition: VL=5V, RL=150 Ω , CL=13pF, Rrext=560 Ω

Output Voltage Waveform @VDD=5V

(50ns)

CH2 - OUT15

2.00 V

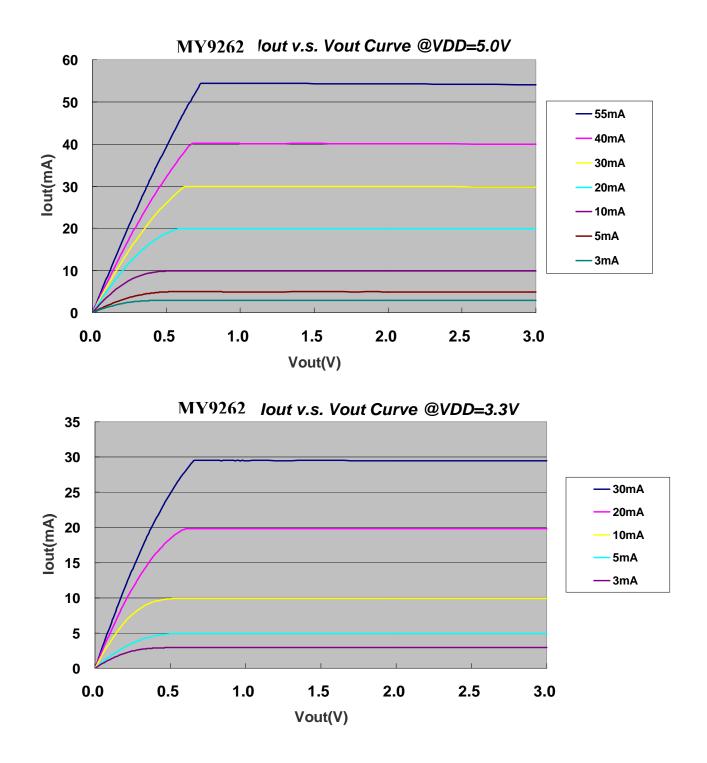
1

The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

2.50GS/s 10k points 1 l 3.60 V

$$Iout(mA) = \frac{14}{Rrext (K\Omega)} \times Gain$$

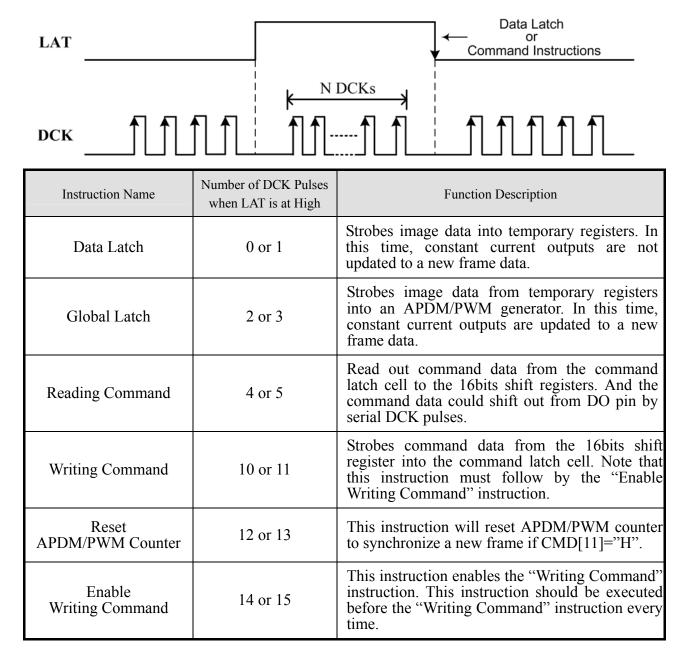
40.0ns

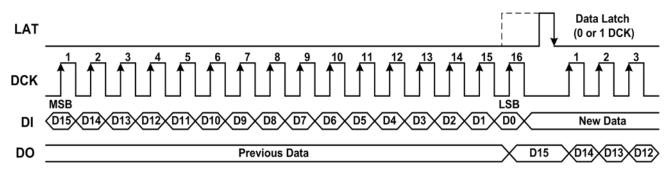

Where Rrext is a resistor placed between REXT and GND And Gain is the factor of global current control refer to page 16 For example, Iout is 25mA when Rrext= 560Ω

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 9

Constant-Current Output

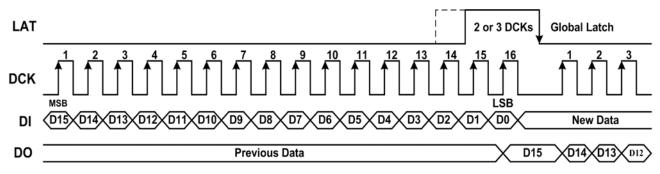
MY-Semi


The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the MY9262 could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.

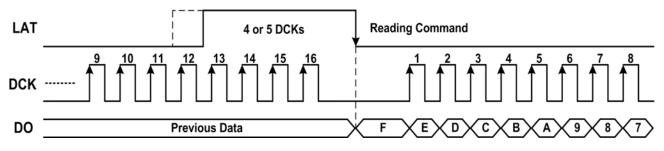

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 10

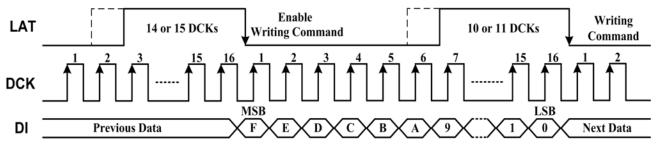
Instructions

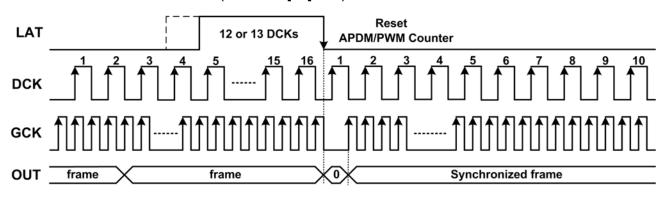
Data Latch



16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 11




Global Latch


Reading Command

Writing Command

Reset APDM/PWM Counter (set CMD[11]="1")

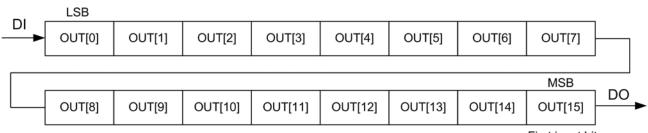
16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control

Γ

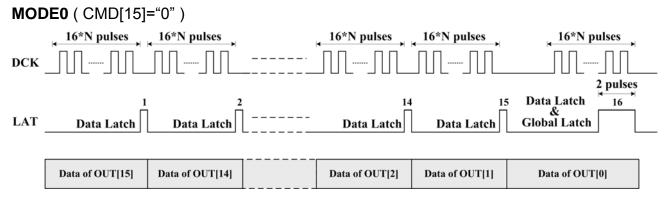
Command Data Format

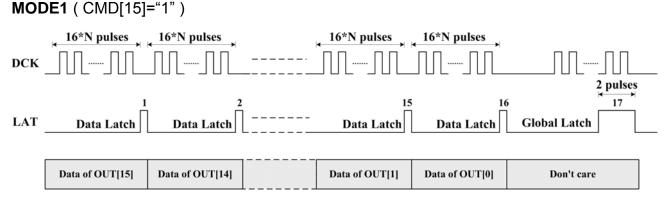
	CMD[0]	CMD[1]	CMD[2]	CMD[3]	CMD[4]	CMD[5]	CMD[6]	CMD[7]
<u> </u>	0	1	2	3	4	5	6	7
	Reserved	Sleep	Reserved	Reserved	DA0	DA1	DA2	DA3

CMD[8]	CMD[9]	CMD[10]	CMD[11]	CMD[12]	CMD[13]	CMD[14]	CMD[15]	
8	9	A	В	С	D	E	F	DO
DA4	HC	Data Syn	Counter Reset	PWM	Reserved	Reserved	Data Loading	00


CMD Bit	Initial Value	Value	Function	Description
CMD[15]	1'b0	1'b0	Mode0	Data transmitting Format: 15 times of data latch + one global latch
CMD[15]	1 00	1'b1	Mode1	Data transmitting Format: 16 times of data latch + one global latch
CMD[14:13]	2'b00	Reserved	Reserved	Reserved bits
CMD[12]	1'b0	1'b1	PWM mode	Enter the PWM mode to abate the transient loss when MY9262 is as a PWM generator
CMD[12]	1 00	1'b0	APDM mode	when CMD[12]=1'b1 => PWM mode when CMD[12]= 1'b0 => APDM mode
CMD[11]	1260	1'b0	Disable	Disable
CMD[11]	1'b0	1'b1	Enable	Execute counter reset by inserting 12 or 13 DCKs (rising edge) when LAT keeps at high
CMD[10]	1'b0	1'b0	Auto Synchronization	When the device receives a latch signal, the new frame is updated until the end of old frame
CMD[10]	1 00	1'b1	Manual Synchronization	When the device receives a latch signal, the new frame is updated immediately
CMD[9:4]	6'b101011	6'b000000~ 6'b111111	G.C.C	6bits DA data for global current control (allow 64-step programmable current gain)
CMD[3:2]	2'b00	Reserved	Reserved	Reserved bits
CMD[1]	1'b0	1'b1	Sleep Mode	Enter the sleep mode to lower down the power supply current to 0.1uA
CMD[1]	1 00	1'b0	Normal Mode	when CMD[1]=1'b1 => Sleep when CMD[1]= 1'b0 => Normal
CMD[0]	1'b0	Reserved	Reserved	Reserved bits

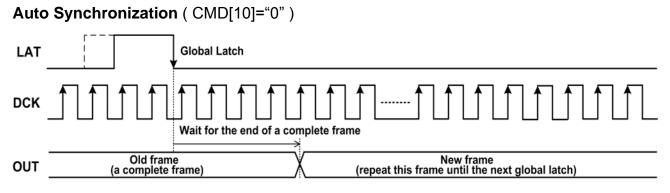
16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control **<u>MY-Semi Inc.</u>** 13


Image Data Format

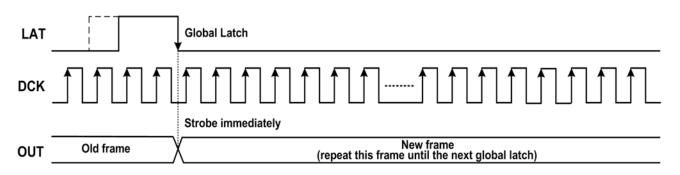

First input bit

16bits APDM/PWM data are transmitted into the 16bits shift register according to the format illustrated above. The first input bit is the most significant bit of each channel.

Data Transmitting Protocol


This data transmitting mode is comprised of 15 data latches and one global latch. The first data latch strobes image data for OUT[15]. And the last global latch strobes image data for OUT[0] and loads all image data of 16 channels into the APDM/PWM generator. N is the number of devices in series.

This data transmitting mode is comprised of 16 data latches and one global latch. The first data latch strobes image data for OUT[15]. And the last global latch loads all image data of 16 channels into the APDM/PWM generator but doesn't strobe any image data for output channels. N is the number of devices in series.

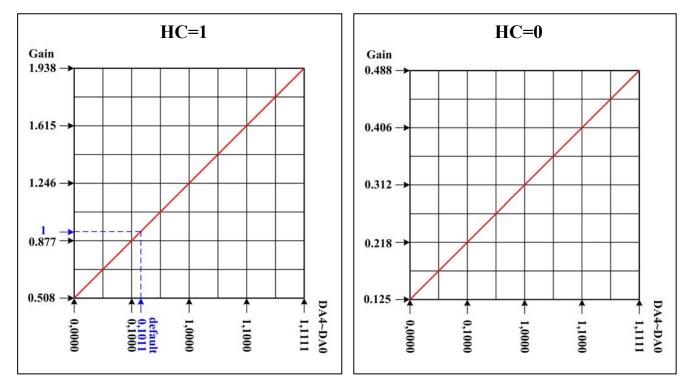


Data Synchronization

MY9262 could abate the grayscale loss during the renewal of frame by this approach of auto synchronization. When the command bit CMD[10] is set to "0", this function could be executed automatically. After a global latch, all OUTs would accomplish a complete frame of old data and then update new frame data. Therefore, each frame maintains the fixed time and the assigned grayscale. A controller just provides a free-running GCK for grayscale display in this mode.

Manual Synchronization (CMD[10]="1")

When the command bit CMD[10] is set to "1", the new frame data would be updated immediately. The old frame loses probably a little grayscale due to a non-complete frame time. In this mode, a controller must calculate carefully the number of GCKs in order to synchronize a frame.


Stagger Outputs Delay

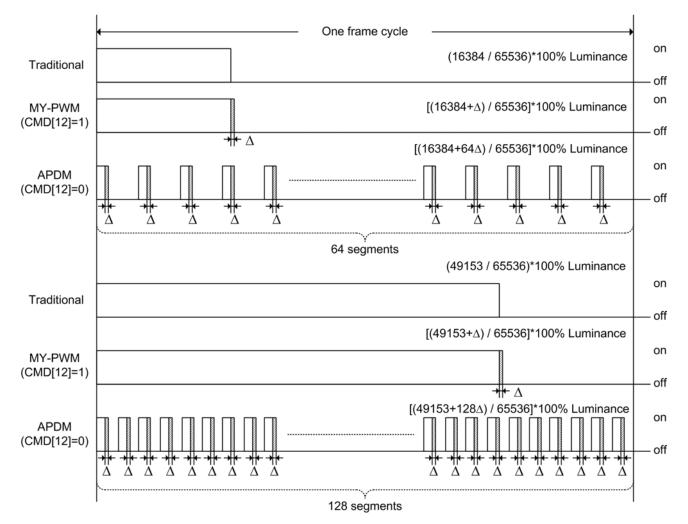
Large in-rush currents will be induced when the system activates all the outputs at once. To reduce this interference of EMI, the MY9262 is designed to have a constant length of delay time (around 16ns) between two output groups. The two output groups individually are the first group from OUT0 to OUT7 and the second group from OUT8 to OUT15.

Global Current Control (GCC)

The MY9262 provides 6bits global current control which could adjust the output current by 64 steps. The GCC bits are included in the command data defined as follow:

F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
						HC	DA4	DA3	DA2	DA1	DA0				

The relationship between the current gain and GCC bits is described below:


HC=1, Gain = $(3 \times D + 33) / 65$, the gain range is from 0.508 to 1.938 HC=0, Gain = $(3 \times D + 33) / 256$, the gain range is from 0.125 to 0.488 Where D = DA4 $\times 2^4$ + DA3 $\times 2^3$ + DA2 $\times 2^2$ + DA1 $\times 2^1$ + DA0 $\times 2^0$ For example, HC=1 and DA[4:0]=5'b11000 D = 1 $\times 2^4$ + 1 $\times 2^3$ + 0 $\times 2^2$ + 0 $\times 2^1$ + 0 $\times 2^0$ = 24 and Gain = $(3 \times 24 + 33) / 65 = 1.615$

Sleep Mode

In order to power saving, MY9262 supports the sleep mode to turn off all circuits except for digital ones. It is necessary to set CMD[1]="1" to enter into this mode. In the sleep mode, the supply current maintains below 0.1uA because all analog circuits are shutdown but the digital interface is still activated in order to receive external digital data. When CMD[1] is reset to "0", MY9262 would revive automatically.

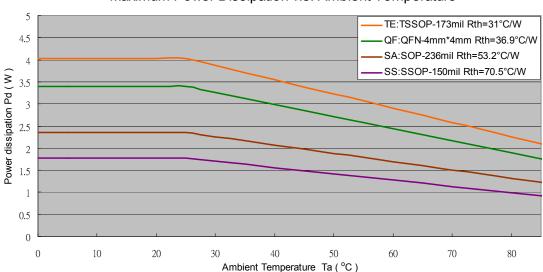
Adaptive Pulse Density Modulation with Δ -Width Correction

Adaptive Pulse Density Modulation (APDM) is a technique to improve output current waveform distortion and increase visual refresh rate. The adaptive output waveform is determined automatically by the grayscale value. When all outputs operate at high grayscale resolution (grayscale resolution $\geq 50\%$), the output waveform is divided into 128 segments to increase visual refresh rate. Otherwise the output waveform is divided into 64 segments at low grayscale resolution to improve output current waveform distortion. And the Δ -width correction ($\Delta \neq 0$) is used to compensate the non-ideal output current transient response.

When CMD[12]="0", the output waveform operates according to APDM. When CMD[12]="1", the output waveform is a form of non-scrambling PWM in order to drive high power LED and decrease the transient loss.

Power Dissipation

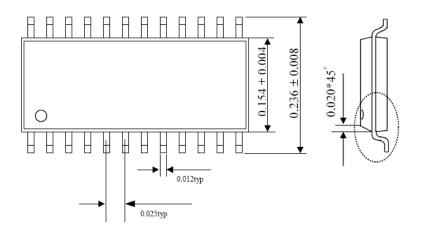
MY-Semi

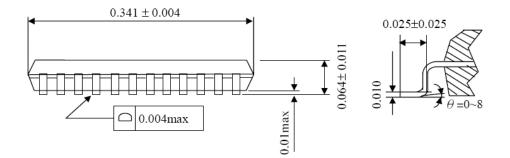

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation:

 $PD (practical) = V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Duty_{(0)} + \dots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Duty_{(N)}, where N=1 to 15$

In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package types and ambient temperature. The formula for maximum power dissipation is described as follows:

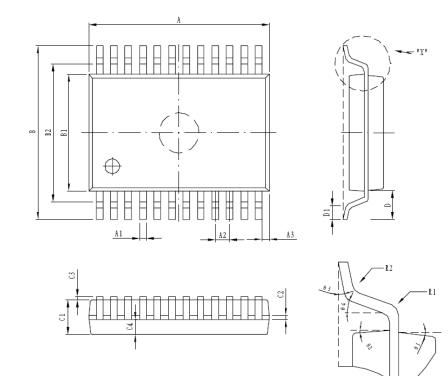
 $PD(max) = \frac{Tj(max)(^{\circ}C) - Ta(^{\circ}C)}{Rth(j-a)(^{\circ}C/Watt)}$


The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in the four different packages.



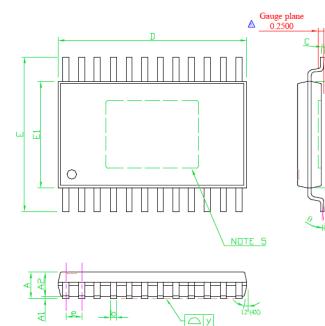
Maximum Power Dissipation v.s. Ambient Temperature

SSOP-150mil-0.635mm



16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control **<u>MY-Semi Inc.</u>** 19

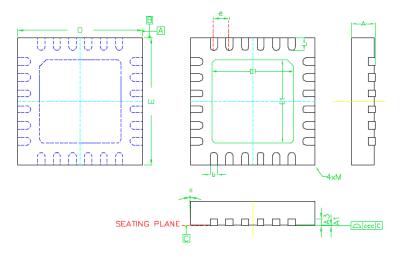
SOP-236mil-1.0mm



SYMBOL	DIMENS	ION(mm)	SYMDOL	DIMENSION(mm)	
	MIN.	MAX.	- SYMBOL -	MIN.	MAX.
Α	12.9	13.1	C3	0.05	0.2
A1	0.30	0.50	C4	0.80TYP	
A2	1.00TYP		D	0.95TYP	
A3	0.8TYP		D1	0.33	0.73
В	7.60	8.20	R1	0.2TYP	
B1	5.90	6.10	R2	0.2TYP	
B2	i		θ1	8°TYP	
С		2.20	θ2	10°TYP	
C1	1.70	1.90	θ3	4°TYP	
C2	0.15	0.30	θ4	5°TYP	

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 20

TSSOP-173mil-0.65mm


- NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH
- PROTRUSIONS OR GATE BURRS
- 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED 3. COPLANARITY : 0.1 mm
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT. 5. DIE PAD EXPOSURE SIZE IS ACCORDING TO LEAD FRAME DESIGN.
- 6. REFER TO JEDEC MO-153

SYMBOLS	DIMENSIONS IN MILLIMETER			DIMENSIONS IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.15			0.045
A1	0.00		0.10	0.000		0.004
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
C	0.09		0.20	0.004		0.008
D	7.70	7.80	7.90	0.303	0.307	0.311
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.026	
L	0.45	0.60	0.75	0.018	0.024	0.030
у			0.10			0.004
θ	0°		8°	0°		8°
L1-L1'			0.12			0.005
L1	1.00REF			0.039REF		

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control MY-Semi Inc. 21

QFN24-4mm x 4mm

	DIMENSIONS IN MILLIMETERS				
SYMBOLS	MIN	NOM	MAX		
A	0.70	0.75	0.80		
A1	0	0.010	0.030		
A3		0.20REF.			
b	0.18	0.23	0.28		
D	3.95	4.00	4.03		
D1		2.60BSC			
E	3.95	4.00	4.03		
E1		2.60BSC			
e		0.50BSC			
L	0.35	0.40	0.45		
θ	-12		0		
ccc		0.08			
Μ			0.05		
Burr	0	0.030	0.060		

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

MY-Semi Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. MY-Semi Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.

16-Channel High Accuracy Constant Current LED Driver With 16bits Adaptive Pulse Density Modulation and Power Saving Control **<u>MY-Semi Inc.</u>** 23