550W, 50V High Power RF LDMOS FETs

Description

The MX0560VPX is a 550-watt capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 0.6 GHz.

It is the thermally enhancement of its peer MK0560VPX.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

Typical performance(on 325MHz test board with device soldered):

$V_{DD} = 50$ Volts, $I_{DQ} = 95$ mA, CVV.				
Freq	Pout	Pout	Gain	Eff
(MHz)	(dBm)	(W)	(dB)	(%)
325	55.7	368	22.3	65.7
325	56.0	417	21.8	68.5
325	56.6	459	21.2	72.8
325	57.0	495	20.5	72.6
325	57.2	525	19.7	73.4
325	57.4	550	18.9	74.4

50 V - H - 1

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Excellent thermal stability, low HCI drift

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)

Table 1. Maximum Ratings

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant
- Laser Exciter
- Synchrotron
- MRI
- · Plasma generator
- Weather Radar

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	+125	Vdc
GateSource Voltage	V _{GS} -10 to +10		Vdc
Operating Voltage	V _{dd}	+55	
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	۲,	+225 °C	
Table 2. Thermal Characteristics			
Characteristic	Characteristic Symbol Value Unit		Unit

Document Number: MX0560VPX Preliminary Datasheet V1.0

Thermal Resistance, Junction to Case	Data		20			
T_{C} = 85°C, T_{J} =200°C, DC test	Kejc	0.30		°C/W		
Table 3. ESD Protection Characteristics						
Test Methodology		Class				
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)						
Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics (per half section)						
Drain-Source Voltage	N/		105		V	
V _{GS} =0, I _{DS} =1.0Ma	V (BR)DSS		125		V	
Zero Gate Voltage Drain Leakage Current				1	μA	
$(V_{DS} = 75V, V_{GS} = 0 V)$	IDSS					
Zero Gate Voltage Drain Leakage Current				1	μA	
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	IDSS					
GateSource Leakage Current				1	μA	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}					
Gate Threshold Voltage	$V_{\text{GS}}(\text{th})$		2.65		V	
$(V_{DS} = 50V, I_D = 600 \ \mu A)$						
Gate Quiescent Voltage	$V_{\text{GS}(\text{Q})}$		3.25		V	
(V_{DD} = 50 V, I_D = 100 mA, Measured in Functional Test)						
Drain source on state resistance	Rds(on)		189	m	mO	
(Vds=0.1V, Vgs=10V)	Rus(on)					
Common Source Input Capacitance	C		158		pF	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	CISS					
Common Source Output Capacitance	Corre		46.9		рĒ	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	Coss		40.0		P	
Common Source Feedback Capacitance	C		1.24		pF	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	URSS	URSS				
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 50 Vdc, I _{DQ} = 100 mA, f = 325MHz, pulse width:100us, duty cycle:10%						
Load 10:1 All phase angles, at 500W Pulsed CW Output Power	No Device D	egradation				

Figure 1: CW gain and Efficiency as function of output power at 325MHz (Vds=50V, Idq=95mA)

Figure 2: Photo of test fixture and bill of materials

BOM			
T1	50 Ω 60mm		
T2,T3	25Ω 70mm		
T4	25Ω 93mm		
C1,C2	18PF	ATC800B	
C3	3.9PF	ATC800B	
C4,C5	270PF	ATC800B	
C6,C7	270PF x2	ATC800B	
C8,C9,10,C11,C12	10UF		
L1,L2	4turns	Diameter=5mm	
R1	300 Ω		

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/3/28	Rev 1.0	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.