NXP Semiconductors Data Sheet

MWCT1213VLH/AVLH/VLL DS

Features

- Compliant with the latest version Wireless Power Consortium (WPC) Qi V1.2.4 power class 0 specification power transmitter design and can be designed for V1.3 with authentication.
- Supports wide transmitter DC input voltage range of 5V to 24V.
- Integrated digital demodulation.
- Supports two-way communication, transmitter to receiver by FSK and receiver to transmitter by ASK.
- Supports Q factor detection and calibrated power loss based Foreign Object Detection (FOD) framework
- Supports low standby power.
- Uses rail voltage control, phase shift control or duty cycle control with the fixed operation frequency to alleviate EMI in the EMI sensitive system.
- Supports operation frequency dithering technology to minimize the peak emissions at specific frequencies.
- Supports CAN/IIC/SCI/SPI interfaces.
- LED for system status indication.
- Over-voltage/current/temperature protection.
- Software based solution to provide maximum design freedom and product differentiation.
- Supported two EPP RXs for WCT1213VLH, and an additional watch for WCT1213VLL.
- MWCT1213AVLH qualified to AEC100 Test Group A&B.

Applications

- Automotive and Industrial and Consumer
- Single coil or multi-coil
- Single Transmitter or Multi Transmitters controlled by the same device
- WPC Baseline and Extended Power Profile compliant (BPP and EPP).
- Customer proprietary protocol

Document Number: WCT1213DS

Rev. 0 06/2020

Overview Description

The MWCT1213VLH/AVLH/VLL is a wireless power transmitter controller that integrates all required functions for WPC "Qi" compliant wireless power transmitter design. It is an intelligent device that works with the NXP uses periodically analog PING to detect a mobile device for charging while gaining super low standby power. Once the mobile device is detected, the

MWCT1213VLH/AVLH/VLL controls the power transfer by adjusting the rail voltage, the phase shift, or the duty cycle of the power stage according to message packets sent by the mobile device.

To maximize the design freedom and product differentiation, the MWCT1213VLH/AVLH/VLL supports the extended power profile industrial/consumer power transmitter design (WPC MP-Ax types or customization) using the fixed operation frequency control methods such as rail voltage control, phase shift control or duty cycle control etc. by software based solution, which can support wireless charging with both extended power profile power receiver and baseline power profile power receiver. In addition, the easy-to-use FreeMASTER GUI tool has configuration, calibration and debugging functions to provide the user-friendly design experience and reduce time-to-market.

The MWCT1213VLH/AVLH/VLL includes 2 digital demodulation modules to reduce the external components, 2 FSK modulation modules to support two-way communication, protection module to handle the overvoltage/current/temperature protection, FOD module to protect from overheating by misplaced metallic foreign objects for each charging device, and general CAN/IIC/SCI/SPI interfaces for external communications. It also handles any abnormal condition and operational status and provides comprehensive indicator outputs for robust system design.

Figure 1. Wireless Charging System Functional Diagram

Contents

1	Absolute Maximum Ratings	5
1.1	Electrical operating ratings	5
1.2	Thermal handling ratings	6
1.3	ESD handling ratings	6
1.4	Moisture handling ratings	6
2	Electrical Characteristics	7
2.1	General characteristics	7
2.2	Device characteristics	9
2.3	Thermal operating characteristics	.22
3	Typical Performance Characteristics	23
3.1	System efficiency	23
3.2	Standby power	.23
3.3	Digital demodulation	.23
3.4	Two-way communication	.23
3.5	Foreign object detection	.23
4	Device Information	24
4.1	Functional block diagram	.24
4.2	Product features overview	.25
4.3	Pinout diagram	. 27
4.4	Pin function description	.28
4.5	Ordering information	33
4.6	Package outline drawing	.33

5	Software Library	4
5.1	Memory map	34
5.2	Software library and API description	34
6	Design Considerations	5
6.1	Electrical design considerations	35
6.2	PCB layout considerations	36
6.3	Thermal design considerations	36
7	Links	8
8	Revision History	8

1 Absolute Maximum Ratings

1.1 Electrical operating ratings

Table 1. Absolute maximum electrical ratings (V_{SS} = 0 V, V_{SSA} = 0 V)

Characteristic	Symbol	Notes ¹	Min.	Max.	Unit
Supply Voltage Range	V _{DD}	-	-0.3	4.0	V
Analog Supply Voltage Range	Vdda	-	-0.3	4.0	V
ADC High Voltage Reference	V _{REFHx}	-	-0.3	4.0	V
Voltage difference VDD to VDDA	ΔV_{DD}	-	-0.3	0.3	V
Voltage difference Vss to VssA	ΔV_{ss}	-	-0.3	0.3	V
Digital Input Voltage Range	V _{IN}	Pin Group 1	-0.3	5.5	V
RESET Input Voltage Range	VIN_RESET	Pin Group 2	-0.3	4.0	V
Oscillator Input Voltage Range	Vosc	Pin Group 4	-0.4	4.0	V
Analog Input Voltage Range	V _{INA}	Pin Group 3	-0.3	4.0	V
Input clamp current, per pin $(V_{IN} < V_{SS} - 0.3 V)^{2, 3}$	Vic	-	-	-5.0	mA
Output clamp current, per pin ⁴	Voc	-	-	±20.0	mA
Contiguous pin DC injection current—regional limit sum of 16 contiguous pins	licont	-	-25	25	mA
Output Voltage Range (normal push-pull mode)	Vout	Pin Group 1,2	-0.3	4.0	V
Output Voltage Range (open drain mode)	Voutod	Pin Group 1	-0.3	5.5	V
RESET Output Voltage Range	Voutod_reset	Pin Group 2	-0.3	4.0	V
DAC Output Voltage Range	V _{OUT_DAC}	Pin Group 5	-0.3	4.0	V
Ambient Temperature	TA	-	-40	105	°C
Storage Temperature Range	Tstg	-	-55	150	°C

1. Default Mode:

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- 2. Continuous clamp current.
- All 5 volt tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If VIN greater than VDIO_MIN (=V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required.
- 4. I/O is configured as push-pull mode.

1.2 Thermal handling ratings

Table 2. T	hermal	handling	ratings
------------	--------	----------	---------

Symbol	Description	Min.	Max.	Unit	Notes
Тѕтс	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	-	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Characteristic ¹	Min.	Max.	Unit
ESD for Human Body Model (HBM)	-2000	+2000	V
ESD for Machine Model (MM)	-200	+200	V
ESD for Charge Device Model (CDM)	-500	+500	V
Latch-up current at TA= 85°C (ILAT)	-100	+100	mA

1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

1.4 Moisture handling ratings

Table 4. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	-	3	-	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2 Electrical Characteristics

2.1 General characteristics

Table 5. General electrical characteristics

Recommended operating conditions ($V_{REFLx} = 0 V$, $V_{SSA} = 0 V$, $V_{SS} = 0 V$)							
Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit	Test conditions
Supply Voltage ²	Vdd ,Vdda	-	2.7	3.3	3.6	V	-
ADC (Cyclic) Reference Voltage High	Vrefha Vrefhb	-	3.0	-	V _{DDA}	V	-
ADC (SAR) Reference Voltage High	Vrefhc	-	2.0	-	V _{DDA}	V	-
Voltage difference V_{DD} to V_{DDA}	ΔV_{DD}	-	-0.1	0	0.1	V	-
Voltage difference V_{SS} to V_{SSA}	ΔV_{ss}	-	-0.1	0	0.1	V	-
Input Voltage High (digital inputs)	Vін	1 (Pin Group 1)	0.7×Vdd	-	5.5	V	-
RESET Voltage High	VIH_RESET	1 (Pin Group 2)	$0.7 \times V_{DD}$	-	V _{DD}	V	-
Input Voltage Low (digital inputs)	VIL	1 (Pin Group 1,2)	-	-	0.35×Vdd	V	-
Oscillator Input Voltage High XTAL driven by an external clock source	VIHOSC	1 (Pin Group 4)	2.0	-	V _{DD} + 0.3	V	-
Oscillator Input Voltage Low	VILOSC	1 (Pin Group 4)	-0.3	-	0.8	V	-
Output Source Current High (at V _{OH} min.) ^{4,5} • Programmed for low drive strength • Programmed for high drive strength	Іон	1 (Pin Group 1) 1 (Pin Group 1)	-	-	-2 -9	mA	-
Output Source Current Low (at Vo∟ max.) ^{4,5} • Programmed for low drive strength • Programmed for high drive strength	lo∟	1 (Pin Group 1,2) 1 (Pin Group 1,2)	-	-	2 9	mA	-

Output Voltage High	V _{OH}	1 (Pin Group 1)	V _{DD} - 0.5	-	-	V	Iон = Iонmax
Output Voltage Low	Vol	1 (Pin Group 1,2)	-	-	0.5	V	I _{OL} = I _{OLmax}
Digital Input Current High pull-up enabled or disabled	Ін	1 (Pin Group 1) 1 (Pin Group 2)	-	0	+/-2.5	μA	$V_{IN} = 2.4 V$ to 5.5 V $V_{IN} = 2.4 V$ to V _{DD}
Comparator Input Current High	Іінс	1 (Pin Group 3)	-	0	+/-2	μA	$V_{IN} = V_{DDA}$
Oscillator Input Current High	liнosc	1 (Pin Group 4)	-	0	+/-2	μA	$V_{IN} = V_{DDA}$
Internal Pull-Up Resistance	R _{Pull-Up}	-	20	-	50	kΩ	-
Internal Pull-Down Resistance	R Pull-Down	-	20	-	50	kΩ	-
Comparator Input Current Low	lilc	1 (Pin Group 3)	-	0	+/-2	μΑ	$V_{\text{IN}} = 0V$
Oscillator Input Current Low	lilosc	1 (Pin Group 4)	-	0	+/-2	μA	$V_{IN} = 0V$
DAC Output Voltage Range	V _{DAC}	1 (Pin Group 5)	V _{SSA} + 0.04	-	V _{DDA} - 0.04	V	$\begin{array}{l} R_{LD}=3\ k\Omega,\\ C_{LD}=400\\ pF \end{array}$
Output Current ¹ High Impedance State	l _{oz}	1 (Pin Group 1,2)	-	0	+/-1	μA	-
Schmitt Trigger Input Hysteresis	V _{HYS}	1 (Pin Group 1,2)	0.06×V _{DD}	-	-	V	-
Input capacitance	CIN	-	-	10	-	pF	-
Output capacitance	Соит	-	-	10	-	pF	-
GPIO pin interrupt pulse width6	TINT_Pulse	7	1.5	-	-	Bus clock	-
Port rise and fall time (high drive strength). Slew disabled.	TPort_H_DIS	8	5.5	-	15.1	ns	2.7 ≤ VDD ≤ 3.6 V
Port rise and fall time (high drive strength). Slew enabled.	T _{Port_H_EN}	8	1.5	-	6.8	ns	2.7 ≤ VDD ≤ 3.6 V
Port rise and fall time (low drive strength). Slew disabled.	T _{Port_L_DIS}	9	8.2	-	17.8	ns	2.7 ≤ VDD ≤ 3.6 V
Port rise and fall time (low drive strength). Slew enabled.	T _{Port_L_EN}	9	3.2	-	9.2	ns	2.7 ≤ VDD ≤ 3.6 V
Device (system and core) clock frequency	fsysclk	-	0	-	100	MHz	-
Bus clock	f _{BUS}	10	-	-	100	MHz	-

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- 2. ADC (Cyclic) specifications are not guaranteed when VDDA is below 3.0 V.
- 3. Total chip source or sink current cannot exceed 75 mA.
- 4. Contiguous pin DC injection current of regional limit—including sum of negative injection currents or sum of positive injection currents of 16 contiguous pins—is 25 mA.
- 5. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming GPIOn_IPOLR and GPIOn_IENR.
- 6. The greater synchronous and asynchronous timing must be met.
- 7. 75 pF load
- 8. 15 pF load

2.2 Device characteristics

Table 6. General device characteristics

Power mode	transition Behavior				
Symbol	Description	Min.	Max.	Unit	Notes
Tpor	After a POR event, the amount of delay from when VDD reaches 2.7 V to when the first instruction executes (over the operating temperature range).	199	225	hs	-
T _{S2R}	STOP mode to RUN mode	6.79	7.27	μs	1
TLPS2LPR	LPS mode to LPRUN mode	240.9	551	μs	2
TVLPS2VLPR	VLPS mode to VLPRUN mode	1424	1459	μs	4
T _{W2R}	WAIT mode to RUN mode	0.57	0.62	μs	3
TLPW2LPR	LPWAIT mode to LPRUN mode	237.2	554	μs	2
Tvlpw2vlpr	VLPWAIT mode to VLPRUN mode	1413	1500	μs	4
Power consu	mption operating behaviors				
			Typical at 3.		
Mode	Conditions	Max. frequency	IDD	Idda	Notes

	1	[
RUN2	100 MHz ⁵ core and peripheral clock, regulators are in full regulation, relaxation oscillator on, PLL powered on, continuous MAC instructions with fetches from program Flash, all peripheral modules enabled, TMRs and SCIs using 1× peripheral clock, NanoEdge within eFlexPWM using 2× peripheral clock, ADC/DAC (only one 12-bit DAC and all 6- bit DACs) powered on and clocked, comparator powered on, all ports configured as inputs with input low and no DC loads	100 MHz⁵	63.7 mA	16.7 mA	5
WAIT	100 MHz ⁵ core and peripheral clock, regulators are in full regulation, relaxation oscillator on, PLL powered on, core in WAIT state, all peripheral modules enabled, TMRs and SCIs using 1× clock, NanoEdge within eFlexPWM using 2× clock, ADC/DAC (one 12-bit DAC, all 6-bit DACs)/comparator powered off, all ports configured as inputs with input low and no DC loads	100 MHz⁵	43.5 mA	-/-	5
STOP	4 MHz core and peripheral clock, regulators are in full regulation, relaxation oscillator on, PLL powered off, core in STOP state, all peripheral module and core clocks are off, ADC/DAC/Comparator powered off, all ports configured as inputs with input low and no DC loads	4 MHz	10.1 mA	-/-	5
LPRUN	200 kHz core and peripheral clock from relaxation oscillator's low speed clock, regulators are in standby, PLL disabled, repeat NOP instructions, all peripheral modules enabled, except NanoEdge within eFlexPWM and cyclic ADCs, one 12-bit DAC and all 6-bit DACs enabled, simple loop with running from platform instruction buffer, all ports configured as inputs with input low and no DC loads	2 MHz	2.3 mA	2.73 mA	5
LPWAIT	200 kHz core and peripheral clock from relaxation oscillator's low speed clock, relaxation oscillator in standby mode, regulators are in standby, PLL disabled, all peripheral modules enabled, except NanoEdge within eFlexPWM and cyclic ADCs, one 12-bit DAC and all 6-bit DACs enabled, core in WAIT mode, all ports configured as inputs with input low and no DC loads	2 MHz	2.29 mA	2.73 mA	5

V _{POR_A}	POR Assert Voltage ⁸		2.0	1	V
Symbol	Characteristic	Min.	Тур.	Max.	Unit
PMC Low-Volt	tage Detection (LVD) and Power-On Reset (POR) parameters		Γ	
tıF	Delay from Interrupt Assertion to Fetch of first instruction (exiting STOP mode)	361.3	570.9	ns	-
t _{RDA}	RESET desertion to First Address Fetch	865 × Tosc + 8 × T _{SYSCLK}	-	ns	7
t _{RA}	Minimum RESET Assertion Duration	16	-	ns	6
Symbol	Characteristic	Min.	Max.	Unit	Notes
Reset and inte	errupt timing				
VLPSTOP	32 kHz core and peripheral clock from a 64 kHz external clock source, oscillator in power down, all relaxation oscillators disabled, large regulator is in standby, small regulator is disabled, PLL disabled, all peripheral modules, except COP, disabled and clocks gated off, core in STOP mode, all ports configured as inputs with input low and no DC loads	200 kHz	1.03 mA	-/-	5
VLPWAIT	32 kHz core and peripheral clock from a 64 kHz external clock source, oscillator in power down, all relaxation oscillators disabled, large regulator is in standby, small regulator is disabled, PLL disabled, all peripheral modules, except COP, disabled and clocks gated off, core in WAIT mode, all ports configured as inputs with input low and no DC loads	200 kHz	1.1 mA	-/-	5
VLPRUN	modules, except COP and EWM, disabled and clocks gated off, simple loop running from platform instruction buffer, all ports configured as inputs with input low and no DC loads		1.18 mA	-/-	5
LPSTOP	200 kHz core and peripheral clock from relaxation oscillator's low speed clock, relaxation oscillator in standby mode, regulators are in standby, PLL disabled, only PITs and COP enabled, other peripheral modules disabled and clocks gated off, core in STOP mode, all ports configured as inputs with input low and no DC loads	2 MHz	1.55 mA	-	5

VPOR_R	POR Release Voltage9	-	2.7	-	V
VLVI_2p7	LVI_2p7 Threshold Voltage	-	2.73	-	V
VLVI_2p2	LVI_2p2 Threshold Voltage	-	2.23	-	V
JTAG timing					<u>.</u>
Symbol	Description	Min.	Max.	Unit	Notes
fop	TCK frequency of operation	DC	fsysclк/16	MHz	10
tpw	TCK clock pulse width	50	-	ns	_
t _{DS}	TMS, TDI data set-up time	5	_	ns	_
t _{DH}	TMS, TDI data hold time	5	_	ns	-
t _{DV}	TCK low to TDO data valid	-	30	ns	_
tтs	TCK low to TDO tri-state	_	30	ns	_
Pogulator 1.2				no	
Symbol	2 V parameters Characteristic	Min.	Тур.	Max.	Unit
VCAP	Output Voltage ¹¹	-	1.22	-	V
Iss	Short Circuit Current ¹²		600	_	mA
T _{RSC}	Short Circuit Tolerance (V _{CAP} shorted to ground)	-	-	30	Mins
V _{REF}	Reference Voltage (after trim)	-	1.21	-	V
External cloc	k timing			1	
Symbol	Characteristic	Min.	Тур.	Max.	Unit
fosc	Frequency of operation (external clock driver)	-	-	50	MHz
t _{PW}	Clock pulse width ¹³	8	-	-	ns
t _{rise}	External clock input rise time ¹⁴	-	-	1	ns
t _{fall}	External clock input fall time ¹⁵	-	-	1	ns
Vih	Input high voltage overdrive by an external clock	0.85×Vdd	-	-	V
Vil	Input low voltage overdrive by an external clock	-	-	0.3×Vdd	V
Phase-Locke	d Loop (PLL) timing				
Symbol	Characteristic	Min.	Тур.	Max.	Unit
f _{Ref_PLL}	PLL input reference frequency ¹⁶	8	8	16	MHz
fop_pll	PLL output frequency ¹⁷	240	-	400	MHz
tLock_PLL	PLL lock time ¹⁸	35.5	-	73.2	μs
tdc_pll	Allowed Duty Cycle of input reference	40	50	60	%

Symbol	Characteristic	Min.	Тур.	Max.	Unit
f _{xosc}	Frequency of operation	4	8	16	MHz
Relaxation os	cillator electrical specifications				
Symbol	Characteristic	Min.	Тур.	Max.	Unit
frosc_8M	8 MHz Output Frequency ²⁰ RUN Mode • 0 °C to 105 °C • -40 °C to 105 °C	7.84 7.76	8	8.16 8.24	MHz MHz
	Standby Mode (IRC trimmed @ 8 MHz) • -40 °C to 105 °C	-	405	-	kHz
fROSC_8M_Delta	8 MHz Frequency Variation over 25 °C RUN Mode Due to temperature • 0 °C to 105 °C • -40 °C to 105 °C	-	+/-1.5 +/-1.5	+/-2 +/-3	%
f _{ROSC_32k} ^{19,20}	32 kHz Output Frequency ^{19,21} RUN Mode • -40 °C to 105 °C	30.1	32	33.9	kHz
fROSC_32k_Delta ¹ 9,20	32 kHz Output Frequency Variation over 25 °C ^{19,21} RUN Mode Due to temperature • 0 °C to 85 °C • -40 °C to 105 °C ²²	-	+/-1.5 +/-1.5 (2.5)	+/-2 +/-3 (4)	%
tStab	Stabilization Time • 8 MHz output ²³ • 32 kHz output ^{19,24}	-	0.12 14.4	-	µs µs
tdc_rosc	Output Duty Cycle	48	50	52	%
Flash specific	ations				
Symbol	Description	Min.	Тур.	Max.	Unit
t _{hvpgm4}	Longword Program high-voltage time	-	7.5	18	μs
thversscr	Sector Erase high-voltage time ²⁵	-	13	113	ms
t _{hversall}	Erase All high-voltage time ^{25,26}	-	52	452	ms
thversblk32k	Erase Block high-voltage time for 32 KB ^{25,27}	-	52	452	ms
thversblk256k	Erase Block high-voltage time for 256 KB ^{25,27}	-	104	904	ms
trd1sec1k/2k	Read 1s Section execution time (flash sector) ²⁸	-	-	60	μs

		I	Γ	T	
	Read 1s Block execution time ²⁷				
trd1blk32k	32 KB FlexNVM	-	-	0.5	ms
trd1blk256k	256 KB program Flash	-	-	1.7	ms
t _{pgmchk}	Program Check execution time ²⁸	-	-	45	μs
t _{rdrsrc}	Read Resource execution time ²⁸	-	-	30	μs
t _{pgm4}	Program Longword execution time	-	65	145	μs
tersscr	Erase Flash Sector execution time ²⁹	-	14	114	ms
	Erase Flash Block execution time ^{27,29}				
tersblk32k	32 KB FlexNVM	-	55	465	ms
t _{ersblk256k}	 256 KB program Flash 	-	122	985	ms
	Program Section execution time ²⁷				
tpgmsec512p	 512 B program Flash 	-	2.4	-	ms
tpgmsec512n	 512 B FlexNVM 	-	4.7	-	ms
tpgmsec1kp	 1 KB program Flash 	-	4.7	-	ms
tpgmsec1kn	• 1 KB FlexNVM	-	9.3	-	ms
t _{rd1all}	Read 1s All Blocks execution time	-	-	0.9/1.8 ³⁰	ms
trdonce	Read Once execution time ²⁸	-	-	25	μs
tpgmonce	Program Once execution time	-	65	-	μs
tersall	Erase All Blocks execution time ²⁹	-	70/175 ³⁰	575/1500 ³⁰	ms
t _{vfykey}	Verify Backdoor Access Key execution time ²⁸	-	-	30	μs
tpgmpart32k	Program Partition for EEPROM execution time for 32 KB FlexNVM ²⁷	-	70	-	ms
	Set FlexRAM Function execution time ²⁷				
tsetramff	Control Code 0xFF	-	50	-	μs
tsetram8k	 8 KB EEPROM backup 	-	0.3	0.5	ms
t _{setram32k}	 32 KB EEPROM backup 	-	0.7	1.0	ms
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time ^{27,31}	-	175	260	μs
	Byte-write to FlexRAM execution time ²⁷				
t _{eewr8b8k}	8 KB EEPROM backup	-	340	1700	μs
t _{eewr8b16k}	16 KB EEPROM backup	-	385	1800	μs
t _{eewr8b32k}	32 KB EEPROM backup	-	475	2000	μs
t _{eewr16bers}	Word-write to erased FlexRAM location execution time ²⁷	-	175	260	μs
	Word-write to FlexRAM execution time ²⁷				
t _{eewr16b8k}	8 KB EEPROM backup	-	340	1700	μs
t _{eewr16b16k}	16 KB EEPROM backup	-	385	1800	μs
teewr16b32k	32 KB EEPROM backup	-	475	2000	μs
teewr32bers	Longword-write to erased FlexRAM location execution time ²⁷	-	360	540	μs

	Longword-write to FlexRAM execution time ²⁷				
teewr32b8k	8 KB EEPROM backup	-	545	1950	μs
t _{eewr32b16k}	16 KB EEPROM backup	-	630	2050	μs
teewr32b32k	32 KB EEPROM backup	-	810	2250	μs
t flashret10k	Data retention after up to 10 K cycles	5	50 ³²	-	years
t flashret1k	Data retention after up to 1 K cycles	20	100 ³²	-	years
n flashcyc	Cycling endurance ³³	10 K	50 K ³²	-	cycle
t _{eeret100}	Data retention up to 100% of write endurance ²⁷	5	50 ³²	-	years
teeret10	Data retention up to 10% of write endurance ²⁷	20	100 ³²	-	year
Neewr16	Write endurance ^{27,34} • EEPROM backup to FlexRAM ratio = 16	35 K	175 K	-	write
N _{eewr128}	• EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	-	write
N _{eewr512}	EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	-	write
Neewr4k	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	-	write
Neewr8k	EEPROM backup to FlexRAM ratio = 8192	20 M	100 M	-	write
2-bit cyclic	ADC electrical specifications				
Symbol	Characteristic	Min.	Тур.	Max.	Uni
Vdda	Supply voltage ³⁵	3.0	3.3	3.6	V
VREFHX	VREFH supply voltage ³⁶	V _{DDA} - 0.6	-	Vdda	V
f adcclk	ADC conversion clock ³⁷	0.6	-	20	MH
	Conversion range ³⁸			V _{REFH} -	v
Radc	 Fully differential²⁶ Single-ended/unipolar 	-(Vrefh - Vrefl) Vrefl	-	Vrefl Vrefh	V
	Single-ended/unipolar Input voltage range (per input) ³⁹	VREFL	-	V _{REFH}	V
Radc Vadcin	Single-ended/unipolar		-		-
	 Single-ended/unipolar Input voltage range (per input)³⁹ External Reference 	Vrefl	- - - 6	V _{refh} V _{refh}	v v

					1
	ADC RUN current (per ADC block) ²⁶	-	1.8	-	mA
	ADC RUN current (per ADC block) ²⁷				
	• at 600 kHz ADC clock, LP mode	-	1	-	mA
IADCRUN	• \leq 8.33 MHz ADC clock, 00 mode	-	5	-	mA
	• \leq 12.5 MHz ADC clock, 01 mode	-	9 15	-	mA m A
	• \leq 16.67 MHz ADC clock, 10 mode	-	15	-	mA mA
	• \leq 20 MHz ADC clock, 11 mode	_	13		
IADPWRDWN	ADC power down current (adc_pdn enabled) ⁴¹	-	0.02	-	μΑ
IVREFH	V _{REFH} current (in external mode) ⁴²	-	0.001	-	μΑ
INLADC	Integral non-linearity43	-	+/- 1.5 (3)	+/- 2.2 (5)	LSB ⁴⁴
DNLADC	Differential non-linearity ⁴³	-	+/- 0.5 (0.6)	+/- 0.8 (1)	LSB ⁴⁴
	Offset ⁴⁵				
VOFFSET	 Fully differential²⁶ 	-	+/- 8	-	mV
	Single ended/Unipolar ⁴⁶	-	+/- 12 (13.7)	-	mV
			0.000 / 1.00 /26	0.99 to	-
Egain	Gain Error	-	0.996 to 1.004 ²⁶ 0.801 to 0.809 ²⁷	1.101 ²⁶ 0.798 to	-
		-	0.801 10 0.809-	0.798 to 0.814 ²⁷	
ENOB	Effective number of bits47	-	10.6/9.5	-	bits
l _{inj}	Input injection current ⁴⁸	-	-	+/-3	mA
CADCI	Input sampling capacitance	-	4.8	-	pF
16-bit SAR AI	DC electrical specifications ²⁷	•			
Symbol	Characteristic	Min.	Typ. ⁴⁹	Max.	Unit
V _{DDA}	Supply voltage	2.7	-	3.6	V
ΔV_DDA	Supply voltage delta to VDD	- 0.1	0	+ 0.1	V
ΔV_{SSA}	Supply voltage delta to V _{SS}	- 0.1	0	+ 0.1	V
Vrefh	ADC reference voltage high	Vdda	Vdda	Vdda	V
VREFL	ADC reference voltage low	Vssa	Vssa	Vssa	V
VADIN	Input voltage range	Vssa	-	V _{DDA}	V
	Input capacitance				
CADIN	16-bit mode	-	8	10	pF
	• 8-/10-/12-bit mode	-	4	5	pF
Radin	Input resistance	-	2	5	kΩ
	ADC conversion clock frequency ⁵⁰				
f adck	• 16-bit mode	2	-	12	MHz
	• 8-/10-/12-bit mode	1	-	18	MHz

Crate	ADC conversion rate without ADC hardware averaging • 16-bit mode • 8-/10-/12-bit mode	37.037 20.000	-	461.467 818.330	ksps ksps
I _{DDA_ADC}	Supply current ⁵¹	-	-	1.7	mA
fadack	ADC asynchronous clock source • ADLPC = 1, ADHSC = 0 • ADLPC = 1, ADHSC = 1 • ADLPC = 0, ADHSC = 0 • ADLPC = 0, ADHSC = 1	1.2 3.0 2.4 4.4	2.4 4.0 5.2 6.2	3.9 7.3 6.1 9.5	MHz MHz MHz MHz
INL _{AD}	Integral non-linearity ⁵³ 16-bit mode 12-bit mode < 12-bit modes 	- - -	+/- 7.0 +/- 1.0 +/- 0.5	- 2.7 to + 1.9 - 0.7 to + 0.5	LSB ⁵² LSB ⁵² LSB ⁵²
DNL _{AD}	Differential non-linearity ⁵³ 16-bit mode 12-bit mode < 12-bit modes 	- - -	- 1.0 to + 4.0 +/- 0.7 +/- 0.2	- - 0.3 to + 0.5	LSB ⁵² LSB ⁵² LSB ⁵²
Ers	 Full-scale error (V_{ADIN} = V_{DDA})⁵³ 12-bit mode < 12-bit modes 	-	- 4 - 1.4	- 5.4 - 1.8	LSB ⁵² LSB ⁵²
Εα	Quantization error • 16-bit mode • 12-bit mode	-	- 1 to 0 -	- +/- 0.5	LSB ⁵² LSB ⁵²
ENOB	Effective number of bits ⁵⁴ 16-bit single-ended mode • Avg = 32 • Avg = 4 12-bit single-ended mode • Avg = 32 • Avg = 4	12.2 11.4 - -	13.9 13.1 10.8 10.2	- - - -	bits bits bits bits bits
Stemp	Temp sensor slope under -40 °C to 105 °C	-	1.715	-	mV/°C
Vtemp25	Temp sensor voltage55 at 25 °C	-	722	-	mV
12-bit DAC el	ectrical specifications				
Symbol	Characteristic	Min.	Тур.	Max.	Unit
t SETTLE	Settling time ⁵⁶ under R_{LD} = 3 k Ω , C_{LD} = 400 pF	-	1	-	μs

	1			1	1
t dacpu	DAC power-up time (from PWRDWN release to valid DACOUT)	-	-	11	μs
INL _{DAC}	Integral non-linearity ⁵⁸	-	+/- 3	+/- 4	LSB57
DNLDAC	Differential non-linearity ⁵⁸	-	+/- 0.8	+/- 0.9	LSB57
MONDAC	Monotonicity (> 6 sigma monotonicity, < 3.4 ppm non-monotonicity)		Guaranteed		-
VOFFSET	Offset error ⁵⁸ (5% to 95% of full range)	-	+ 25	+ 35	mV
Egain	Gain error ⁵⁸ (5% to 95% of full range)	-	+/- 0.5	+/- 1.5	%
Vout	Output voltage range	V _{SSA} + 0.04	-	V _{DDA} - 0.04	V
SNR	Signal-to-noise ratio	-	85	-	dB
ENOB	Effective number of bits	-	11	-	bits
Comparator a	and 6-bit DAC electrical specifications				
Symbol	Description	Min.	Тур.	Max.	Unit
Vdd	Supply voltage	2.7	-	3.6	V
IDDHS	Supply current, High-speed mode(EN=1, PMODE=1) ⁵⁹	-	300/-	-/200	μA
IDDLS	Supply current, Low-speed mode(EN=1, PMODE=0) ⁵⁹	-	36/-	-/20	μA
VAIN	Analog input voltage	Vss	-	Vdd	V
V _{AIO}	Analog input offset voltage	-	-	20	mV
	Analog comparator hysteresis ⁶⁰	-	5	13	mV
	CR0[HYSTCTR]=00	-	25/10	48	mV
V _H	 CR0[HYSTCTR]=01 CR0[HYSTCTR]=10 	-	55/20	105	mV
	CR0[HYSTCTR]=11	-	80/30	148	mV
V _{CMPOh}	Output high	V _{DD} - 0.5	-	-	V
VCMPOI	Output low	-	-	0.5	V
t _{DHS}	Propagation delay, high-speed mode(EN=1, PMODE=1) ⁶¹	-	-	50	ns
to∟s	Propagation delay, low-speed mode(EN=1, PMODE=0) ⁶¹	-	-	200	ns
t _{DInit}	Analog comparator initialization delay ⁶²	-	40	-	μs
IDAC6b	6-bit DAC current adder (enabled)	-	7	-	μA
RDAC6b	6-bit DAC reference inputs	Vdda	-	Vdd	V
INL _{DAC6b}	6-bit DAC integral non-linearity	-0.5	-	0.5	LSB ⁶³

DNL _{DAC6b}	6-bit DAC differential non-linearity	-0.3		-		0.3	5	LSB ⁶³
PWM timing p	parameters							
Symbol	Characteristic	Min.		Ту	р.	Мах	κ.	Unit
f PWM	PWM clock frequency	-		10	0	-		MHz
SPWMNEP	NanoEdge Placement (NEP) step size ^{64,65}	-		31	2	-		ps
t DFLT	Delay for fault input activating to PWM output deactivated	1		-		-		ns
t PWMPU	Power-up time ⁶⁶	-		2	5	-		μs
Quad timer ti	ming							
Symbol	Characteristic	Min.		Ма	X.	Uni	t	Notes
P _{IN}	Timer input period	2T _{timer} +6		-		ns		67
PINHL	Timer input high/low period	1T _{timer} + 3		-		ns		67
Роит	Timer output period	2T _{timer} - 2		-		ns		67
POUTHL	Timer output high/low period	1T _{timer} - 2		-		ns		67
QSPI timing ⁶⁸								
Cumb al	Characteristic	Mi	n.	Max.		Max.		l la it
Symbol	Characteristic	Master	S	lave	Maste	r Sl	ave	Unit
tc	Cycle time	60/35	6	0/35	-		-	ns
t _{ELD}	Enable lead time	-	20	/17.5	-		-	ns
telg	Enable lag time	-	20	/17.5	-		-	ns
tсн	Clock (SCLK) high time	28/16.6	28	/16.6	-		-	ns
tc∟	Clock (SCLK) low time	28/16.6	28	/16.6	-		-	ns
t _{DS}	Data set-up time required for inputs	20/16.5		1	-		-	ns
t _{DH}	Data hold time required for inputs	1		3	-		-	ns
tA	Access time (time to data active from high-impedance state)	-		5	-		-	ns
to	Disable time (hold time to high-impedance state)	-		5	-		-	ns
t _{DV}	Data valid for outputs	-		-	-/5	-/	/15	ns
tDI	Data invalid	0		0	-		-	ns
t _R	Rise time	-		-	1		1	ns
tF	Fall time	-		-	1		1	ns
QSCI timing								
Symbol	Characteristic	Min.		Ма	x.	Uni	t	Notes
BRsci	Baud rate	-		(fmax_s	сі /16)	Mbit	/s	69
PW _{RXD}	RXD pulse width	0.965/BR _{SC}	;	1.04/E	BR _{SCI}	μs		-
PW _{TXD}	TXD pulse width	0.965/BR _{SC}	;	1.04/E	BR _{SCI}	μs		-

	LIN Sla	ve Mode					
FTOL_UNSYNCH	Deviation of slave node clock from nominal clock rate before synchronization	- 14		14		%	-
FTOL_SYNCH	Deviation of slave node clock relative to the master node clock after synchronization	- 2		2		%	-
т		13		-		ter node periods	-
Твгеак	Minimum break character length	11		-		ave node periods	-
CAN timing							
Symbol	Characteristic	Min		Max.		Unit	Notes
BRCAN	Baud rate	-		1		Mbit/s	-
TWAKEUP	CAN Wakeup dominant pulse filtered	-		1.5/2		μs	70
TWAKEUP	CAN Wakeup dominant pulse pass	5		-		μs	-
IIC timing							
Symbol	Characteristic	Mi	n.	Max.		Unit	Notes
Symbol	Characteristic	Min.	Max.	Min.	Max.	Onit	Notes
fscl	SCL clock frequency	0	100	0	400	kHz	-
thd_sta	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4	-	0.6	-	μs	-
tscl_low	LOW period of the SCL clock	4.7	-	1.3	-	μs	-
t _{SCL_HIGH}	HIGH period of the SCL clock	4	-	0.6	-	μs	-
tsu_sta	Set-up time for a repeated START condition	4.7	-	0.6	-	μs	-
thd_dat	Data hold time for IIC bus devices	071	3.45 ⁷²	073	0.9 ⁷¹	μs	-
tsu_dat	Data set-up time	250 ⁷⁴	-	100 ⁷⁵	-	ns	72
tr	Rise time of SDA and SCL signals	-	1000	20 + 0.1Cb	300	ns	76
t _f	Fall time of SDA and SCL signals	-	300	20 + 0.1Cb	300	ns	75
tsu_stop	Set-up time for STOP condition	4	-	0.6	-	μs	-
t _{BUS_Free}	Bus free time between STOP and START condition	4.7	-	1.3	-	μs	-
tsp	Pulse width of spikes that must be suppressed by the input filter	N/A	N/A	0	50	ns	-

1. CPU clock = 4 MHz and System running from 8 MHz IRC Applicable to all wakeup times: Wakeup times (in 1,2,3,4) are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from respective stop/wait mode.

2. CPU clock = 200 kHz and 8 MHz IRC on standby. Exit via interrupt on Port C GPIO.

3. N/A

4. Using 64 KHz external clock; CPU Clock = 32 KHz. Exit via an interrupt on PortC GPIO.

5. N/A

6. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion must be greater than 21 ns.

- 7. TOSC means oscillator clock cycle; TSYSCLK means system clock cycle.
- 8. During 3.3 V VDD power supply ramp down.
- 9. During 3.3 V VDD power supply ramp up (gated by LVI_2p7).
- 10. The maximum TCK operation frequency is $f_{SYSCLK}/16$ for MWCT1213VLH/AVLH/VLL.
- 11. Value is after trim.
- 12. Guaranteed by design.
- 13. The chip may not function if the high or low pulse width is smaller than 6.25 ns.
- 14. External clock input rise time is measured from 10% to 90%.
- 15. External clock input fall time is measured from 90% to 10%.
- 16. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8 MHz input.
- 17. The frequency of the core system clock cannot exceed 100 MHz. If the NanoEdge PWM is available, the PLL output must be set to 400 MHz. And the minimum PLL output frequency is 240 MHz for MWCT1213VLH/AVLH/VLL.
- 18. This is the time required after the PLL is enabled to ensure reliable operation.
- 19. 32 kHz internal RC oscillator on MWCT1213VLH/AVLH/VLL.
- 20. Frequency after application of 8 MHz trimmed.
- 21. Frequency after application of 32 kHz trimmed.
- 22. Typical +/-2.5%, maximum +/-4% frequency variation for 32 kHz internal RC oscillator.
- 23. Standby to run mode transition.
- 24. Power down to run mode transition. 14.4 μs stabilization time for 32 kHz internal RC oscillator.
- 25. Maximum time based on expectations at cycling end-of-life.
- 26. The specification is for backup
- 27. The specification is for MWCT1213VLH/AVLH/VLL.
- 28. Assumes 25 MHz flash clock frequency.
- 29. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 30. 256 KB on MWCT1213. Longer all blocks command operation time for MWCT1213.
- 31. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
- 32. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 33. Cycling endurance represents number of program/erase cycles at -40°C \leq Tj \leq 125°C.
- 34. Write endurance represents the number of writes to each FlexRAM location at $-40^{\circ}C \le Tj \le 125^{\circ}C$ influenced by the cycling
- endurance of the FlexNVM and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.
- 35. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed.
- 36. When the input is at the V_{REFL} level, the resulting output will be all zeros (hex 000), plus any error contribution due to offset and gain error. When the input is at the V_{REFH} level, the output will be all ones (hex FFF), minus any error contribution due to offset and gain error.
- 37. ADC clock duty cycle is 45% ~ 55%. MWCT1213 supports 20 MHz maximum ADC clock and 0.6 MHz minimum ADC clock.
- 38. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.
- 39. In unipolar mode, positive input must be ensured to be always greater than negative input.
- 40. On MWCT1213, 8.5 clock cycles for the first conversion, 6 clock cycles for the subsequent conversion.
- 41. the power down current of ADC 0.02 μA forM WCT1213VLH/VLL.
- 42. the V_{REFH} current of ADC is 0.001 μA for MWCT1213VLH/AVLH/VLL.
- 43. INL_{ADC}/DNL_{ADC} is measured from VADCIN = VREFL to VADCIN = VREFH using Histogram method at x1 gain setting. On MWCT1213VLH/AVLH/VLL, typical value is +/- 3 LSB, and maximum value +/- 5 LSB for INL_{ADC}; typical value is +/- 0.6 LSB, and maximum value +/- 1 LSB for DNL_{ADC}.
- 44. Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 gain setting.
- 45. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk).
- 46. Typical +/- 13.7 mV offset for MWCT1213VLH/AVLH/VLL.
- 47. Typical ENOB is 9.5 bits for MWCT1213VLH/AVLH/VLL.
- 48. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the ADC.
- 49. Typical values assume VDDA = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 50. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 51. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed.
- 52. $1 \text{ LSB} = (\text{VREFH} \text{VREFL})/2^{\text{N}}$.

WCT1213 DS, Rev. 0, 06/2020

- 53. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11).
- 54. Input data is 100 Hz sine wave; ADC conversion clock < 12 MHz.
- 55. System clock = 4 MHz, ADC clock = 2 MHz, AVG = Max, Long Sampling = Max.
- 56. Settling time is swing range from VSSA to VDDA.
- 57. LSB = 0.806 mV.
- 58. No guaranteed specification within 5% of VDDA or VSSA.
- 59. Maximum supply current with high-speed mode is 200 μA, maximum supply current with low-speed mode is 20 μA on MWCT1213VLH/AVLH/VLL.
- 60. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD-0.7 V. On MWCT1213, typical 10 mV for CR0[HYSTCTR] = 01, typical 20 mV for CR0[HYSTCTR] = 10, typical 30 mV for CR0[HYSTCTR] = 11.
- 61. Signal swing is 100 mV.
- 62. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
- 63. 1 LSB = Vreference/64.
- 64. Reference IPbus clock of 100 MHz in NanoEdge Placement mode.
- 65. Temperature and voltage variations do not affect NanoEdge Placement step size.
- 66. Powerdown to NanoEdge mode transition.
- 67. Ttimer = Timer input clock cycle. For 100 MHz operation, Ttimer = 10 ns.
- 68. For QSPI specifications, all data with xx/xx format, the former is for backup, the latter is for MWCT1213.
- 69. fMAX_SCI is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock or 2x bus clock for the device.
- 70. MWCT1213 supports maximum 2 us pulse filtered.
- 71. The master mode IIC deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 72. The maximum tHD_DAT must be met only if the device does not stretch the LOW period (tSCL_LOW) of the SCL signal.
- 73. Input signal Slew = 10 ns and Output Load = 50 pF
- 74. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 75. A Fast mode IIC bus device can be used in a Standard mode IIC bus system, but the requirement tSU_DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU_DAT = 1000 + 250 = 1250 ns (according to the Standard mode IIC bus specification) before the SCL line is released.
- 76. Cb = total capacitance of the one bus line in pF.

2.3 Thermal operating characteristics

Table 7. General thermal characteristics

Symbol	Description	Min	Мах	Unit
TJ	Die junction temperature	-40	125	°C
TA	Ambient temperature	-40	105	°C

3 Typical Performance Characteristics

3.1 System efficiency

The typical system efficiency (receiver output power vs. transmitter input power) on NXP MWCT1213VLH/AVLH/VLL -based transmitter solutions can usually reach more than 75%. The detailed number depends on the specific solution type.

Note: Power components are the main factor to determine the system efficiency, such as drivers and MOSFETs.

3.2 Standby power

The purpose of the standby mode of operation is to reduce the power consumption of a wireless power transfer system when power transfer is not required. There are two ways to enter standby mode. The first is when the transmitter does not detect the presence of a valid receiver. The second is when the receiver sends only an End Power Transfer Packet. In standby mode, the transmitter only monitors if a receiver is placed on the active charging area of the transmitter or removed from there.

It is recommended that the power consumption of the transmitter in standby mode meets the relative regional regulations especially for "No-load power consumption".

3.3 Digital demodulation

To optimize system BOM cost, the MWCT1213 solution employs digital demodulation algorithm to communicate with the receiver. This method can achieve high performance, low cost, and very simple coil signal sensing circuit with less components number, and 2 channels can be supported.

3.4 Two-way communication

The MWCT1213 solution supports two-way communication and uses FSK to send messages to receiver. This method allows transmitter to negotiate with receiver to establish advanced power transfer contract, and calibrate power loss for more precise FOD protection.

3.5 Foreign object detection

The MWCT1213 solution supports power class 0 FOD framework, which is based on calibrated power loss method and quality factor (Q factor) method. With NXP FreeMASTER GUI tool, the FOD algorithm can be easily calibrated to get accurate power loss information especially for very sensitive foreign objects.

4 Device Information

4.1 Functional block diagram

This functional block diagram shows the common pin assignment information by all members of the family. For the detailed pin multiplexing information, see Section 4.4 "Pin Function Description".

Figure 2. MWCT1213VLH/AVLH function block diagram 64Pins

Figure 3. MWCT1213VLL function block diagram 100 Pins

4.2 Product features overview

The following table lists the features that differ among members of the family. Features not listed are shared in common by all members of the family.

Part		MWCT1213VLH MWCT1213AVLH	MWCT1213VLL			
Maximum Core/Bus	Clock (MHz)	100/100	100/100			
Maximum Fully Run	Current Consumption (mA)	63.7 (V _{DD}) + 16.7 (V _{DDA})	63.7 (V _{DD}) + 16.7 (V _{DDA})			
	Program Flash Memory	256	256			
On-Chip Flash Memory Size (KB)	FlexNVM/FlexRAM	32/2	32/2			
	Total Flash Memory	288	288			
On-Chip SRAM Men	nory Size (KB)	32	32			
Memory Resource P	rotection	Yes	Yes			
Inter-Peripheral Cros	ssbar Switches with AOI	Yes	Yes			

Table 8. Feature for MWCT1213

On-Chip Relaxation Oscillator		1 (8 MHz) + 1 (32 kHz)	1 (8 MHz) + 1 (32 kHz)
Computer Operating F	Properly (Watchdog)	1	1
External Watchdog Mo	onitor	1	1
Cyclic Redundancy Cl	neck	1	1
Periodic Interrupt Time	er	2	2
Quad Timer		2 x 4	2 x 4
Programmable Delay	Block	2	2
12-bit Cyclic ADC Cha	innels	2 x 8	2 x 8
16-bit SAR ADC Chan	nels	1 x 8	1 x 16
DW/M Objects als	High-Resolution	8	8
PWM Channels	Standard	1	4
12-bit DAC		1	1
Analog Comparator /w	6-bit REF DAC	4	4
DMA Channels		4	4
Queued Serial Comm	unications Interface	2	3
Queued Serial Periphe	eral Interface	1	3
Inter-Integrated Circuit	t	2	2
Controller Area Netwo	rk	1 (FlexCAN)	1 (FlexCAN)
GPIO		54	82
Package		64 LQFP	100 LQFP

Figure 4. MWCT1213VLH/AVLH pinout diagram 64 Pins

Figure 5. MWCT1213VLL pinout diagram 100 Pins

4.4 Pin function description

By default, each pin is configured for its primary function (listed first). Any alternative functionality, shown in parentheses, can be programmed through GPIO module peripheral enable registers and SIM module GPIO peripheral select registers.

Signal name	100 Pin No.	64 Pin No.	Туре	State During Reset	Function description
тск	1	1	Input	Input, internal pullup	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE

Table 9. P	in signal	descriptions
------------	-----------	--------------

				enabled	port. The pin is connected internally to a
				onabioa	pullup resistor. A Schmitt-trigger input is
					used for noise immunity. After reset, the
					default state is TCK.
					Reset — A direct hardware reset on the
					processor. When RESET is asserted low,
				Input,	the device is initialized and placed in the
				internal	reset state. A Schmitt-trigger input is used
RESET	2	2	Input	pullup	for noise immunity. The internal reset signal
				enabled	is deasserted synchronously with the
				(This pin is 3.3V only.)	internal clocks after a fixed number of internal clocks. After reset, the default state
				3.3V Offiy.)	is RESET. To filter noise on the RESETB
					pin, install a capacitor (up to 0.1 uF) on it.
			Input/		GPIO Port C0: After reset, the default state
GPIOC0	3	3	Output	Input	is GPIOCO.
	_		Input/	_	GPIO Port C1: After reset, the default state
GPIOC1	4	4	Output	Input	is GPIOC1.
	_	_	Input/	_	GPIO Port C2: After reset, the default state
GPIOC2	5	5	Output	Input	is GPIOC2.
			Input/		GPIO Port F8: After reset, the default state
GPIOF8	6	6	Output	Input	is GPIOF8.
	7			Cumplu	I/O Power — Supplies 3.3 V power to the
VDD	7	-	Supply	Supply	V chip I/O interface.
VSS	0		Supply	Queely	I/O Ground — Provide ground for the
v 55	8	-	Supply	Supply	V device I/O interface.
GPIOD5	9		Input/	Input	GPIO Port D5: After reset, the default state
GFIODS	9	-	Output	input	is GPIOD5.
GPIOD6	10	_	Input/	Input	GPIO Port D6: After reset, the default state
GHODU	10	-	Output	input	is GPIOD6.
GPIOC3	11	7	Input/	Input	GPIO Port C3: After reset, the default state
011000			Output	input	is GPIOC3.
GPIOC4	12	8	Input/	Input	GPIO Port C4: After reset, the default state
			Output		is GPIOC4.
GPIOA10	13	-	Input/	Input	GPIO Port A10: After reset, the default
	_		Output	•	state is GPIOA10. GPIO Port A9: After reset, the default state
GPIOA9	14	-	Input/	Input	
			Output		is GPIOA9. I/O Ground — Provide ground for the
VSS	15	-	Supply	Supply	V device I/O interface.
					Connect a 2.2uF or greater bypass
			On-chip	On-chip	capacitor between this pin and VSS to
			regulator	regulator	stabilize the core voltage regulator output
VCAP	16	-	output	output	required for proper device operation.
			voltage	voltage	V _{CAP} is used to observe core
				· ·····g·	voltage.
	47	^	Input/	la a st	GPIO Port A7: After reset, the default state
GPIOA7	17	9	Output	Input	is GPIOA7.
	40		Input/	la mart.	GPIO Port A8: After reset, the default state
GPIOA8	18	-	Output	Input	is GPIOA8.
GPIOA6	19	10	Input/	Input	GPIO Port A6: After reset, the default state
GFIUAU	19	10	Output	Input	is GPIOA6.
GPIOA5	20	11	Input/	Input	GPIO Port A5: After reset, the default state
	20		Output	input	is GPIOA5.
GPIOA4	21	12	Input/	Input	GPIO Port A4: After reset, the default state
	21	14	Output	input	is GPIOA4.
GPIOA0	22	13	Input/	Input	GPIO Port A0; after reset, the default state
			Output	input	is GPIOA0.
GPIOA1	23	14	Input/	Input	GPIO Port A1: After reset, the default state
			Output	input	is GPIOA1.

	1		Input/		CDIO Part A2: After react the default state
GPIOA2	24	15	Input/ Output	Input	GPIO Port A2: After reset, the default state is GPIOA2.
GPIOA3	25	16	Input/ Output	Input	GPIO Port A3: After reset, the default state is GPIOA3.
GPIOB7	26	17	Input/ Output	Input	GPIO Port B7: After reset, the default state is GPIOB7.
GPIOC5	27	18	Input/ Output	Input	GPIO Port C5: After reset, the default state is GPIOC5.
GPIOB6	28	19	Input/ Output	Input	GPIO Port B6: After reset, the default state is GPIOB6.
GPIOB5	29	20	Input/ Output	Input	GPIO Port B5: After reset, the default state is GPIOB5.
GPIOB4	30	21	Input/ Output	Input	GPIO Port B4: After reset, the default state is GPIOB4.
VDDA	31	22	Supply	Supply	Analog Power — Supplies 3.3 V power to the analog modules. It must be connected to a clean analog power supply.
VSSA	32	23	Supply	Supply	Analog Ground — Supplies an analog ground to the analog modules. It must be connected to a clean power supply.
GPIOB0	33	24	Input/ Output	Input	GPIO Port B0: After reset, the default state is GPIOB0.
GPIOB1	34	25	Input/ Output	Input	GPIO Port B1: After reset, the default state is GPIOB1.
VCAP	35	26	On-chip regulator output voltage	On-chip regulator output voltage	Connect a 2.2uF or greater bypass capacitor between this pin and VSS to stabilize the core voltage regulator output required for proper device operation. V _{CAP} is used to observe core voltage.
GPIOB2	36	27	Input/ Output	Input	GPIO Port B2: After reset, the default state is GPIOB2.
GPIOA11	37	-	Input/ Output	Input	GPIO Port A11: After reset, the default state is GPIOA11.
GPIOB8	38	-	Input/ Output	Input	GPIO Port B8: After reset, the default state is GPIOB8.
GPIOB9	39	-	Input/ Output	Input	GPIO Port B9: After reset, the default state is GPIOB9.
GPIOB10	40	-	Input/ Output	Input	GPIO Port B10: After reset, the default state is GPIOB10.
GPIOB11	41	-	Input/ Output	Input	GPIO Port B11: After reset, the default state is GPIOB11.
GPIOB3	42	28	Input/ Output	Input	GPIO Port B3: After reset, the default state is GPIOB3.
VDD	43	29	Supply	Supply	I/O Power — Supplies 3.3 V power to the V chip I/O interface.
VSS	44	30	Supply	Supply	I/O Ground — Provide ground for the V device I/O interface.
GPIOF11	45	-	Input/ Output	Input	GPIO Port F11: After reset, the default state is GPIOF11.
GPIOF15	46	-	Input/ Output	Input	GPIO Port F15: After reset, the default state is GPIOF15.
GPIOD7	47	-	Input/ Output	Input	GPIO Port D7: After reset, the default state is GPIOD7.
GPIOG11	48	-	Input/ Output	Input	GPIO Port G11: After reset, the default state is GPIOG11.
GPIOC6	49	31	Input/ Output	Input	GPIO Port C6: After reset, the default state is GPIOC6
GPIOC7	50	32	Input/ Output	Input	GPIO Port C7: After reset, the default state is GPIOC7.

GPIOG10	51	-	Input/ Output	Input	GPIO Port G10: After reset, the default state is GPIOG10.
GPIOC8	52	33	Input/ Output	Input	GPIO Port C8: After reset, the default state is GPIOC8.
GPIOC9	53	34	Input/ Output	Input	GPIO Port C9: After reset, the default state is GPIOC9.
GPIOC10	54	35	Input/ Output	Input	GPIO Port C10: After reset, the default state is GPIOC10.
GPIOF0	55	36	Input/ Output	Input	GPIO Port F0: After reset, the default state is GPIOF0.
GPIOF10	56	-	Input/ Output	Input	GPIO Port F10: After reset, the default state is GPIOF10.
GPIOF9	57	-	Input/ Output	Input	GPIO Port F9: After reset, the default state is GPIOF9.
GPIOC11	58	37	Input/ Output	Input	GPIO Port C11: After reset, the default state is GPIOC11.
GPIOC12	59	38	Input/ Output	Input	GPIO Port C12: After reset, the default state is GPIOC12.
GPIOF2	60	39	Input/ Output	Input	GPIO Port F2: After reset, the default state is GPIOF2.
GPIOF3	61	40	Input/ Output	Input	GPIO Port F3: After reset, the default state is GPIOF3.
GPIOF4	62	41	Input/ Output	Input	GPIO Port F4: After reset, the default state is GPIOF4.
GPIOF5	63	42	Input/ Output	Input	GPIO Port F5: After reset, the default state is GPIOF5.
GPIOG8	64	-	Input/ Output	Input	GPIO Port G8: After reset, the default state is GPIOG8.
GPIOG9	65	-	Input/ Output	Input	GPIO Port G9: After reset, the default state is GPIOG9.
VSS	66	43	Supply	Supply	I/O Ground — Provide ground for the V device I/O interface.
VDD	67	44	Supply	Supply	I/O Power — Supplies 3.3 V power to the V chip I/O interface.
GPIOE0	68	45	Input/ Output	Input	GPIO Port E0: After reset, the default state is GPIOE0.
GPIOE1	69	46	Input/ Output	Input	GPIO Port E1: After reset, the default state is GPIOE1.
GPIOG2	70	-	Input/ Output	Input	GPIO Port G2: After reset, the default state is GPIOG2.
GPIOG3	71	-	Input/ Output	Input	GPIO Port G3: After reset, the default state is GPIOG3.
GPIOE8	72	-	Input/ Output	Input	GPIO Port E8: After reset, the default state is GPIOE8.
GPIOE9	73	-	Input/ Output	Input	GPIO Port E9: After reset, the default state is GPIOE9.
GPIOE2	74	47	Input/ Output	Input	GPIO Port E2: After reset, the default state is GPIOE2.
GPIOE3	75	48	Input/ Output	Input	GPIO Port E3: After reset, the default state is GPIOE3.
GPIOC13	76	49	Input/ Output	Input	GPIO Port C13: After reset, the default state is GPIOC13.
GPIOF1	77	50	Input/ Output	Input	GPIO Port F1: After reset, the default state is GPIOF1.
GPIOG0	78	-	Input/ Output	Input	GPIO Port G0: After reset, the default state is GPIOG0.
GPIOG1	79	-	Input/ Output	Input	GPIO Port G1: After reset, the default state is GPIOG1.
GPIOG4	80	-	Input/	Input	GPIO Port G4: After reset, the default state

			Output		is GPIOG4.
GPIOG5	81	-	Input/ Output	Input	GPIO Port G5: After reset, the default state is GPIOG5.
GPIOE4	82	51	Input/ Output	Input	GPIO Port E4: After reset, the default state is GPIOE4.
GPIOE5	83	52	Input/ Output	Input	GPIO Port E5: After reset, the default state is GPIOE5.
GPIOE6	84	53	Input/ Output	Input	GPIO Port E6: After reset, the default state is GPIOE6.
GPIOE7	85	54	Input/ Output	Input	GPIO Port E7: After reset, the default state is GPIOE7.
GPIOG6	86	-	Input/ Output	Input	GPIO Port G6: After reset, the default state is GPIOG6.
GPIOC14	87	55	Input/ Output	Input	GPIO Port C14: After reset, the default state is GPIOC14.
GPIOC15	88	56	Input/ Output	Input	GPIO Port C15: After reset, the default state is GPIOC15.
GPIOF12	89	-	Input/ Output	Input	GPIO Port F12: After reset, the default state is GPIOF12.
GPIOF12	90	-	Input/ Output	Input	GPIO Port F13: After reset, the default state is GPIOF13.
GPIOF14	91	-	Input/ Output	Input	GPIO Port F14: After reset, the default state is GPIOF14.
GPIOG7	92	-	Input/ Output	Input	GPIO Port G7: After reset, the default state is GPIOG7.
VCAP	93	57	On-chip regulator output voltage	On-chip regulator output voltage	Connect a 2.2uF or greater bypass capacitor between this pin and VSS to stabilize the core voltage regulator output required for proper device operation. V _{CAP} is used to observe core voltage.
GPIOF6	94	58	Input/ Output	Input	GPIO Port F6: After reset, the default state is GPIOF6.
GPIOF7	95	59	Input/ Output	Input	GPIO Port F7: After reset, the default state is GPIOF7.
VDD	96	60	Supply	Supply	I/O Power — Supplies 3.3 V power to the V chip I/O interface.
VSS	97	61	Supply	Supply	I/O Ground — Provide ground for the V device I/O interface.
TDO	98	62	Output	Output	Test Data Output — This tri-stateable pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and it changes on the falling edge of TCK. After reset, the default state is TDO.
TMS	99	63	Input	Input, internal pullup enabled	Test Mode Select Input — Used to sequence the JTAG TAP controller state machine. It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS. NOTE: Always tie the TMS pin to VDD through a 2.2K resistor, if needed to keep an on-board debug capability. Otherwise, tie the TMS pin directly to VDD.
TDI	100	64	Input	Input, internal pullup enabled	Test Data Input — Provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TDI.

4.5 Ordering information

Table 10 lists the pertinent information needed to place an order. Consult a NXP Semiconductors sales office to determine availability and to order this device.

Device	Supply voltage	Package type	Pin count	Ambient temp.	Order number
MWCT1213VLH	2.7 to 3.6V	LQFP	64	-40 to +105℃	MWCT1213VLH
MWCT1213AVLH	2.7 to 3.6V	LQFP	64	-40 to +105℃	MWCT1213AVLH
MWCT1213VLL	2.7 to 3.6V	LQFP	100	-40 to +105℃	MWCT1213VLL

Table 10. MWCT1213VLH/AVLH/VLL ordering information

4.6 Package outline drawing

To find a package drawing, go to <u>nxp.com</u> and perform a keyword search for the drawing's document number:

- 64-pin LQFP 98ASS23234W
- 100-pin LQFP 98ASS23308W

5 Software Library

The software for MWCT1213VLH/AVLH/VLL is matured and tested for production ready. NXP provides a Wireless Charging Transmitter (WCT) software library for speeding user designs. In this library, low-level drivers of HAL (Hardware Abstract Layer), callback functions for library access are open to user. For the software API and library details, see the *WCT1213VLL/VLH A TX Library User's Guide* (WCT1213 ALIBUG).

5.1 Memory map

MWCT1213 has large on-chip Flash memory and RAM for user design. Besides wireless charging transmitter library code, the user can develop private functions and link it to library through predefined APIs.

Part	Memory	Total size	Library size	FreeMASTER size	EEPROM size	Free size
MWCT1213VLH/AVLH/VLL	Flash	288 Kbytes	41.9 Kbytes	3.5 Kbytes	1 Kbytes	241.6 Kbytes
MWCT1213AVLH	RAM	32 Kbytes	3.22 Kbytes	0.13 Kbytes	0 Kbytes	28.65 Kbytes

Table 11. MWCT1213 memory footprint

5.2 Software library and API description

For more information about WCT software library and API definition, see the *WCT1213 A TX Library User's Guide* (WCT1213 ALIBUG).

6 Design Considerations

6.1 Electrical design considerations

To ensure correct operations on the device and system, pay attention to the following points:

- The minimum bypass requirement is to place 0.01 0.1 µ F capacitors positioned as near as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better tolerances.
- Bypass the VDD and VSS with approximately 10 μ F, plus the number of 0.1 μ F ceramic capacitors.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the VDD and VSS circuits.
- Take special care to minimize noise levels on the VDDA and VSSA pins.
- It is recommended to use separate power planes for VDD and VDDA and use separate ground planes for VSS and VSSA. Connect the separate analog and digital power and ground planes as near as possible to power supply outputs. If an analog circuit and digital circuit are powered by the same power supply, connect a small inductor or ferrite bead in serial with VDDA trace.
- If desired, connect an external RC circuit to the RESET pin. The resistor value should be in the range of 4.7 k Ω 10 k Ω ; and the capacitor value should be in the range of 0.1 μ F 4.7 μ F.
- Add a 2.2 k Ω external pull-up on the TMS pin of the JTAG port to keep device in a restate during normal operation if JTAG converter is not present.
- During reset and after reset but before I/O initialization, all I/O pins are at input mode with internal weak pull-up.
- To eliminate PCB trace impedance effect, each ADC input should have a no less than $33pF/10 \Omega$ RC filter.
- To assure chip reliable operation, reserve enough margin for chip electrical design. Figure 6 shows the relationship between electrical ratings and electrical operating characteristics for correct chip operation.

Figure 6. Relationship between ratings and operating characteristics

6.2 PCB layout considerations

- Provide a low-impedance path from the board power supply to each VDD pin on the device and from the board ground to each VSS pin.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS pins are as short as possible.
- PCB trace lengths should be minimal for high-frequency signals.
- Physically separate analog components from noisy digital components by ground planes. Do not place an analog trace in parallel with digital traces. Place an analog ground trace around an analog signal trace to isolate it from digital traces.
- The decoupling capacitors of 0.1 µ F must be placed on the VDD pins as close as possible and place those ceramic capacitors on the same PCB layer with MWCT1213 device. VIA is not recommended between the VDD pins and decoupling capacitors.
- As the wireless charging system functions as a switching-mode power supply, the power components layout is very important for the whole system power transfer efficiency and EMI performance. The power routing loop should be as small and short as possible. Especially for the resonant network, the traces of this circuit should be short and wide, and the current loop should be optimized smaller for the MOSFETs, resonant capacitor and primary coil. Another important thing is that the control circuit and power circuit should be separated.

6.3 Thermal design considerations

MWCT1213VLH/AVLH/VLL power consumption is not so critical, so there is not additional part needed for power dissipation. However, the power inverter needs the additional PCB Cu copper to

dissipate the heat, so good thermal package MOSFET is recommended, such as DFN package, and for the resonant capacitor, COG material, and 1206 or 1210 package are recommended to meet the thermal requirement. The worst thermal case is on the inverter, so the user should make some special actions to dissipate the heat for good transmitter system thermal performance.

7 Links

- <u>nxp.com</u>
- <u>nxp.com/products/power-management/wireless-charging-ics</u>
- <u>www.wirelesspowerconsortium.com</u>

8 Revision History

This table summarizes revisions to this document.

Table 12. Revision history

	Revision number	Date	Substantive changes
Ē	0	06/2020	Initial release.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks Document Number: WCT1213DS licensed by Power.org. Rev. 0

© 2020 NXP B.V.

06/2020