

PRELIMINARY INFORMATION

Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.

Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

MV8870EXP DTMF RECEIVER

The MV8870 is a complete DTMF receiver integrating both the bandsplit filter and digital decoder functions, fabricated on Plessey Semiconductors' double-poly ISO²-CMOS technology. The filter section uses switched capacitor techniques for high- and low- group filters and dial-tone rejection; the decoder uses digital counting techniques to detect and decode all 16 DTMF tone-pairs into a 4-bit code. External component count is minimised by on-chip provision of a differential input amplifier, clock oscillator and latched 3-state bus interface.

IN+ C	1	18 Voo	
IN [2	17 St/GT	
GS [3	16 🛛 ESt	
VREF	4	15 StD	
SEL [5	14] 04	
Pown	6	13 03	
OSCI [7	12 02	
OSC2	8	11 01	
Vss [9	10 TOE	0019
			0100

APPLICATIONS

- PABX
- Central Office
- Kev Systems
- Mobile Radio
- Remote Control
- Remote Data Entry

Fig.1 Pin connections (top view)

FEATURES

- Full Receiver in Single 18-Pin Package
- Central Office Quality
- Lower Power Consumption
- Adjustable Acquisition and Release Times

Fig.2 Functional block diagram

MV8870

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Parameter	Min.	Max.	Unit
Power supply voltage Vod - Vss		6	v
Voltage on any pin	Vss -0.3	VDD +0.3	V
Current at any pin		10	mA
Operating temperature	-40	+85	°C
Storage temperature	-65	+150	°C
Package power dissipation (Note 2)		1000	mW

NOTES

Exceeding these ratings may cause permanent damage. Functional operation under these conditions is not implied.
Derate above 75°C at 16mW/°C. All leads soldered to board.

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $V_{DD} = +5V$, $V_{SS} = 0V$, $T_{amb} = +25^{\circ} C$

Characteristic	Symbol	Value			Linit	Conditions	
	Symbol	Min.	Тур.	Max.	Unit		
Operating supply voltage	VDD	4.75		5.25	v		
Operating supply current	loo		3.0	7	mA		
Power consumption	Po		15	35	mW	f = 3.579MHz	
Low level input voltage	VIL			1.5	V		
High level input voltage	Vін	3.5			V		
Input leakage current	Тн/Тг∟		0.1		μA	VIN = Vss or VDD	
Pull up source current	Iso		7.5	15.0	μA	TOE (Pin 10) = 0V	
Input impedance (pins 1 & 2)	Rin		10		MΩ	At 1kHz	
Steering threshold voltage	VTSt	2.2	2.35	2.5	V		
Low level output voltage	Vol		0.03		V	No load	
High level output voltage	Vон		4.97		v	No load	
Output low (sink) current	Iol	1.0	2.5		mA	Vout = 0.4V	
Output high (source) current	Іон	0.4	0.8		mA	Vout = 4.6V	
Output voltage, pin 4	VREF	2.4		2.7	V	No load	
Output resistance, pin 4	Ror		10		kΩ		

OPERATING CHARACTERISTICS, GAIN SETTING AMPLIFIER

Test conditions (unless otherwise stated): V_{DD} = +5V, V_{SS} = 0V, T_{amb} = $+25^{\circ}\,\text{C}$

Characteristic	Cumbol		Value		1 Imit	Conditions	
Characteristic	Symbol	Min.	Тур.	Тур. Мах.		Conditions	
Input leakage current	İan		±100		nA	V_{SS} $<$ V_{IN} $<$ V_{DD}	
Input resistance	RIN		10		MΩ		
Input offset voltage	Vos		±25		mV		
Power supply rejection	PSRR		60		dB	1kHz	
Common mode rejection	CMRR		60		dB	VIN = VREF ±1.3V	
DC open loop voltage gain	Avol		65		dB		
Open loop unity gain bandwidth	fc		1.5		MHz		
Output voltage swing	Vo		4.5		V p-p	$R_L \ge 100 k\Omega$ to Vss	
Tolerable capacitive load (GS)	CL		100		pF		
Tolerable resistive load (GS)	R∟		50		kΩ		
Common mode range	Vcm		3.0		V р-р	No load	

AC CHARACTERISTICS

Test conditions (unless otherwise stated):

 $V_{DD} = +5V$, $V_{SS} = 0V$, $T_{amb} = +25^{\circ}C$, fcl $\kappa = 3.579545MHz$, using test circuit of Fig.3.

Characteristic		Symbol	Value			Unit	nit Notos		
			- Oyinibol	Min.	Тур.	Max.		Notes	
	Min					-29	dBm	1,2,3,5,6,9	
Valid input signal						27.5	mVRMS	1,2,3,5,6,9	
composite signal)	Max.			+1			dBm	1,2,3,5,6,9	
,				883			mVRMS		
Twist accort limit		Positive			10		dB	2,3,6,9	
i wist accept mint		Negative			10		dB	2,3,5,9	
Freq. deviation acce	pt limit					±1.5% ±2Hz	Nom.	2,3,5,9	
Freq. deviation rejec	t limit			±3.5%			Nom.	2,3,5	
Third tone tolerance					-16		dB	2,3,4,5,9,10	
Noise tolerance	Noise tolerance				-12		dB	2,3,4,5,7,9,10	
Dial tone tolerance					+18		dB	2,3,4,5,8,9,10	
Tone present detection time		top	5	11	14	ms	Refer to Fig 5		
Tone absent detection time			tda	0.5	4	8.5	ms	heler to hg.5	
Tone duration accept			trec			40	ms		
Tone duration reject			TREC	20			ms	(User adjustable)	
Interdigit pause acce	ept		tip			40	ms	Time Adjustment	
Interdigit pause reje	ct		too	20			ms	Time / lajuotinoiti	
Propagation delay (S	St to Q)		t PQ		8	11	μs		
Propagation delay (S	St to StD)		t PStD		12		μs	TOE = VDD	
Output data set up (Q to StD)		tasıd		3.4		μs			
Propagation delay (TOE to Q) Disab		Enable	t PTE		50	60	ns	$R_L = 10k\Omega$	
		Disable	tртр		300		ns	$C_L = 50 pF$	
Crystal/clock frequency		fclk	3.5759	3.5795	3.581	MHz			
Clock output (OSC2) Capacitive load		CLO			30	pF			

NOTES

dBm ≈ decibels above or below a reference power of 1mW into a 600 ohm load. Digit sequence consists of all 16 DTMF tones. Tone duration = 40ms. Tone pause = 40ms. Nominal DTMF frequencies are used. 1. 2. 3.

4.

5. Both tones in the composite signal have an equal amplitude.

6. 7.

Tone pair is deviated by ±1.5% ±2Hz. Bandwidth limited (0 to 3kHz) Gaussian Noise.

Bardwidd minied (o to ship) Gaussian Holes.
The precise dial tone frequencies are 350Hz and 440Hz ±2%.
For an error rate of better than 1 in 10,000.
Reference to lowest level frequency component in DTMF signal.

MV8870

INPUT CONFIGURATION

The input arrangement of the MV8870 provides a differential input operational amplifier as well as a bias source (VREF) which is used to bias the inputs at mid-rail. Provision is made for connection of a feedback register to the op-amp output (GS) for adjustment of gain.

In a single-ended configuration the input pins are connected as shown in Fig.3 with the op-amp connected for unity gain and VREF biasing the input at 1/2 VDD. Fig.4 shows the differential configuration, which permits the adjustment of gain with the feedback resistor Rs.

PIN DESCRIPTIONS

Pin	Name	Description							
1	IN +	Non-inverting input	Connections to the front and differential emplifier						
2	IN-	Inverting input							
3	GS	Gain select. Gives accorresistor.	ess to output of front-end differential amplifier for connections of feedback						
4	Vref	Reference voltage out application diagram).	Reference voltage output, nominally VDD/2. May be used to bias the inputs at mid-rail (see application diagram).						
5	SEL	Logic '1' or '0' selects	one of two truth tables (see Table 1).						
6	Pown	Power down active hig the oscillator.	h, internal pulldown resistor. A high level signal powers down and inhibits						
7	OSC1	Clock input	3.579545MHz crystal connected between these pins						
8	OSC2	Clock output	completes internal oscillator.						
9	Vss	Negative power supply, normally connected to 0V.							
10	TOE	3-state output enable (input). Logic high enables the outputs Q1 - Q4. Internal pull-up.							
11	Q1								
12	Q2	3-state data outputs. V	3-state data outputs. When enabled by TOE, provide the code corresponding to the last valid						
13	Q3	tone-pair received (see	e Table 1).						
14	Q4								
15	StD	Delayed steering output the output high latch	ut presents a logic high when a received tone-pair has been registered and updated; returns to logic low when the voltage on St/GT falls below V $\tau_{\rm St}$.						
16	ESt	Early steering output. Presents a logic high immediately when the digital algorithm detects a recognisable tone-pair (signal conditions). Any momentary loss of signal condition will cause ESt to return to a logic low.							
17	St/GT	Steering input/guard time output (bidirectional). A voltage greater than VTst detected at St causes the device to register the detected tone-pair and update the output latch. A voltage less than VTst frees the device to accept a new tone-pair. The GT output acts to reset the external steering time-constant; its state is a function of ESt and the voltage on St (see Table 1).							
18	VDD	Positive power supply							

FUNCTIONAL DESCRIPTION

The MV8870 monolithic DTMF receiver offers small size, low power consumption and high performance. Its architecture consists of a bandspilt filter section, which separates the high and low tones of a received pair, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus.

Filter Section

Separation of the low-group and high-group tones is achieved by applying the dual-tone signal to the inputs of two sixth-order switched-capacitor bandpass filters, the bandwidths of which correspond to the bands enclosing the low-group and high-group tones (see Fig.6).

The filter section also incorporates notches at 350Hz and 440Hz for exceptional dial-tone rejection. Each filter output is followed by a single-order switched capacitor section to smooth the signals prior to limiting.

Limiting is performed by high-gain comparators which are provided with hysteresis to prevent detection of unwanted

low-level signals and noise; the outputs of the comparators provide full-rail logic swings at the frequencies of the incoming tones.

Decoder Section

The decoder uses digital counting techniques to determine the frequencies of the limited tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm protects against tone simulation by extraneous signals, such as voice, while providing tolerance to small frequency deviations and variations. The averaging algorithm has been developed to ensure an optimum combination of immunity to 'talk-off' and tolerance to the presence of interfering signals ('third tones') and noise. When the detector recognises the simultaneous presence of two valid tones (referred to as 'signal condition' in some industry specifications), it raises the 'Early Steering' flag (ESt). Any subsequent loss of signal condition will cause ESt to fall.

Fig.6 Typical filter characteristic

FLOW	Fнigh	KEY	TOE	SEL	Q4	Q3	Q2	Q 1
697	1209	1	н	L	0	0	0	1
697	1336	2	н	L	0	0	1	0
697	1477	3	н	L	0	0	1	1
770	1209	4	н	L	0	1	0	0
770	1336	5	н	L	0	1	0	1
770	1477	6	н	L	0	1	1	0
852	1209	7	н	L	0	1	1	1
852	1336	8	н	L	1	0	0	0
852	1477	9	н	L	1	0	0	1
941	1336	0	н	L	1	0	1	0
941	1209	*	н	L	1	0	1	1
941	1477	#	н	L	1	1	0	0
697	1633	А	н	L	1	1	0	1
770	1633	В	н	L	1	1	1	0
852	1633	С	н	L	1	1	1	1
941	1633	D	н	L	0	0	0	0
697	1209	1	н	н	0	0	0	1
697	1336	2	н	н	0	0	1	0
697	1477	3	н	н	0	0	1	1
770	1209	4	н	н	0	1	0	0
770	1336	5	н	н	0	1	0	1
770	1477	6	н	н	0	1	1	0
852	1209	7	н	н	0	1	1	1
852	1336	8	н	н	1	0	0	0
852	1477	9	н	н	1	0	0	1
941	1336	0	н	н	0	0	0	0
941	1209	*	н	н	1	0	1	0
941	1477	#	н	н	1	0	1	1
697	1633	A	н	н	1	1	0	0
770	1633	В	н	н	1	1	0	1
852	1633	C	н	н	1	1	1	0
941	1633	D	∣н	н	1	1	1	1
		ANY	L	ANY	Z	Z	Z	Z

L = Logic low, H = Logic high, Z = High impedance

Table 1 Functional decode table

MV8870

STEERING CIRCUIT

Before registration of a decoded tone-pair. the receiver checks for a valid signal duration (referred to as 'character recognition condition'). This check is performed by an external RC time constant driven by ESt. A logic high on ESt causes Vc (see Fig.7) to rise as the capacitor discharges. Provided signal-condition is maintained (ESt remains high) for the validation period (tgrp), Vc reaches the threshold (VTst) of the steering logic to register the tone pair, latching its corresponding 4-bit code (see Table 1) into the output latch. At this point, the GT output is activated and drives Vc to Vpp. GT continues to drive high as long as ESt remains high. Finally, after a short delay to allow the output latch to settle, the 'delayed steering' output flag, StD, goes high, signalling that a received tone pair has been registed. The contents of the output latch are made available on the 4-bit output bus by raising the 3-state control input (TOE) to a logic high. The steering circuit works in reverse to validate the interdigit pause between signals. Thus, as well as rejecting signals too short to be considered valid, the receiver will tolerate signal interruptions ('drop-out') too short to be considered a valid pulse. The facility, together with the capability of selecting the steering time-constants externally, allows the designer to tailor performance to meet a wide variety of system requirements.

Guard Time Adjustments

In many situations not requiring independent selection of receive and pause, the simple steering circuit of Fig.7 is applicable. Component values are chosen according to the following formulae:

$$t_{REC} = t_{DP} + t_{GTP}$$
$$t_{ID} = T_{DA} + t_{GTA}$$

The value of top is a parameter of the device (see AC Characteristics) and tREC is the minimum signal duration to be recognised by the receiver. A value for C of 0.1μ F is recommended for most applications, leaving R to be selected by the designer. For example, a suitable value of R for a tREC of 40ms would be 300kΩ.

Different steering arrangements may be used to select independently the guard times for tone-present (t_{GTP}) and tone-absent (t_{GTA}). This may be necessary to meet system specification which place both accept and reject limits on both tone duration and interdigital pause.

Guard time adjustment also allows the designer to tailor system parameters such as talk-off and noise immunity. Increasing trace improves talk-off performance, since it reduces the probability that tones simulated by speech will maintain signal condition for long enough to be registered. On the other hand, a relatively short trace with a long too would be appropriate for extremely noisy environments where fast acquisition time and immunity to drop-outs would be requirements. Design information for guard time adjustment is shown in Fig.8.

Fig.7 Basic steering circuit

Fig.8 Guard time adjustment