

FEATURES

MV8865

DTMF FILTER

The MV8865 contains both the high group and low group filtering and comparator functions required to implement a Dual Tone Multi Frequency tone receiver using a DTMF Digital Detector (i.e. MV8860/62/63). Switched capacitor techniques are used to implement the filters and the device is fabricated using Plessey Semiconductors' high density ISO/CMOS technology. The filter clocks are derived from an on-chip oscillator requiring only a low cost TV crystal as an external component. The MV8865 offers single supply operation over a wide supply voltage range and incorporates a logical power down facility.

Provides DTMF High and Low Group Filtering

6 Pole Band Pass High and Low Group Filters

Hard Limiting on Filter Outputs

38 dB Intergroup Attenuation

+5 to +12 V Single Supply Operation

Uses Inexpensive 3.58 MHz Crystal Wide Dynamic Range 30 dB

Dial Tone Suppression

Logical Power Down

Equivalent to MT8865X

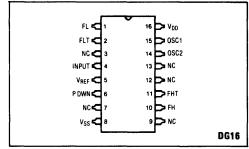


Fig.1 Pin connections (top view)

APPLICATIONS

In DTMF Receivers for:

- End to End Signalling
- Control Systems
- PABX
- Central Office
- Mobile Radio
- Key Systems
- Tone to Pulse Converters

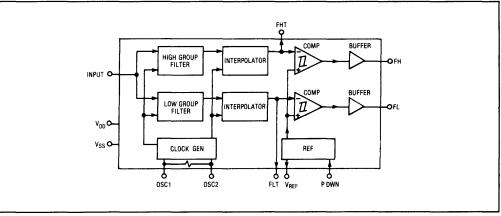


Fig.2 MV8865X functional block diagram

MV8865

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = +25^{\circ}C; f_{CLK} = 3.579545 MHz$ All voltages wrt V_{SS}

Characteristic				Symbol	$V_{DD} = 5V$			$V_{DD} = 12V$			Unit	Test Conditions		
l								Max						
1		Operating Supply Voltage			V _{DD}	4.75					13	v		
2	S U	Operating Supply Current			I _{DD}		1.2	2.5		5	7.5	mA	PDWN = V _{SS}	
3	P P				IDDS		100	150			400	Au	PDWN = V _{DD}	
4	L Y	Operating Power Consumption			Po		6			60		mW	PDWN = V _{SS} F	-ig. 6(c)
5		Standby Power Consumption			Ps		0.5			1.5		mW	$PDWN = V_{DD}$	C= 15pF
6	1			PDWN	V _{IL}			1.5			3.5	۷		
7	N P	High Level Input Voltage		& OSC 1	V _{IH}	3.5			8.5			٧		
8	U T			PDWN	Чн		3	6		12	24	μA		
9	S	Input Current		OSC 1	կ		±2.5			±6		Au		
10		Low Level Output Voltage		FL, FH	V _{OL}			0.1			0.1	ν	No load	
11	0 U	High Level Output Voltage		OSC 2	v _{он}	4.9			11.9			٧		
12	T P	Output Drive	N Channel	FL, FH	l _{o∟}	0.2			0.5			mA	$V_{OL} = 0.4V$ (5V)
13			Sink	OSC 2		0.1			0.25			mA	$V_{OL} = 1.2V$ (12V)
14	s		P Channel	FL, FH	I _{ОН}	0.2			0.5			mA	$V_{OH} = 4.6V$ ((5V)
15			Source	OSC 2		0.1			0.25			mA	V _{OH} = 10.8V	(12V)

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Para	ameter	Min	Max		Parameter	Max	
$V_{DD} - V_{SS}$			15	v	Power Dissipation	DG package ¹	850mW
Voltage on an	ny pin	V _{ss} - 0.3	V_{DD} + 0.3	v			
Max. current	at any pin		10	mA	¹ Derate 16mW/°C above 75°		
Operating Temperature		40 °C	+ 85	°C			
Storage Temperature	DG package	– 65 °C	+ 150	°C			

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): t_{amb} = +25°C; f_c = 3.579545 MHz; V_{DD} = 4.75 V to 13 V

Characteristic					Min	Тур	Max	Unit	Test C	onditions
1		Dynamic Range			30		36	dB		
2		Valid Input Signal I				V _{DD/2}	V _{pp}			
3		(Each tone of composite signal) Input Impedance			27.9		883	mVrms	$sV_{DD} = 5V$	
4					67.5		2120	mVrms	$V_{DD} = 12$	2V
5					10			MΩ		
6		Low Group Sensitivity (1) Low Group Sensitivity (1)			-28.85			dBm	VDD = 5	/
7					-21.25			dBm	VDD = 1	2V
8	F	High Group Sensit	tivity (1)		-28.85			dBm	V _{DD} = 5	V
9	Ļ	High Group Sensit	tivity (1)		-21.25			dBm	VDD = 12	2V
10	T E	Intergroup	Low Group with	IR _{L1209}	34	45		dB	1209Hz	w.r.t.
11	R		High Tone	IR _{L1477}	36	40		dB	1477Hz	770Hz
12		Rejection	High Group with	IR _{H941}	38	45		dB	941Hz	w.r.t.
13			Low Tone	1R _{H770}	36	40		dB	770Hz	1336Hz
14		Dial Tone	Low Group	DR _{L440}		60		dB	440Hz	w.r.t
15				DR ₁₃₅₀		30		dB	350Hz	770Hz
16		Rejection	High Group	DR _{H440}		60		dB	440Hz	w.r.t.
17				DR _{H350}		50		dB	350Hz	1336Hz
18		FHT FLT Maximum	RLFT	250			КΩ		·	
19				CLFT			2000	pF		
20	L	Output Rise Time		t _{TLHO}		90	150	ns	10% to	
21	M	Output Fall Time	FL, FH	t _{THLO}		60	100	ns	90% V _{DD}	
22		Crystal/Clock Freq.	tal/Clock Freq. OSC 1, OSC 2		3.5759	3.5795	3.5831	MHz		
23		Clock	Rise Time	t _{LHCI}			110	ns	10% to	Externally
24	C L	Input	Fall Time	t _{HLCI}			110		90% V _{DD}	Applied
25	õ	(OSC 1)	Duty Cycle	DCci	40	50	60	%		Clock
26	K	Clock Output Capacitive Load OSC 2		CLOC			30	pF	Unbalanc see Oper	ed load, ating Notes
27		Capacitance Any Input		Ci		5	7.5	pF		

NOTES

1. The sensitivity characteristic specifies correct operation of the post-comparator outputs at minimum input signal levels. It is valid for each of the four DTMF tones in each passband.

MV8865

PIN FUNCTIONS

DIP Pin	Name	Description					
1	FL	Low group limiter output.					
2	FLT	Test output. Monitors low group filter output. Decouple to V_{SS} with 680pF capacitor.					
3	NC	Not connected.					
4	INPUT	Tone signal inp	ut (single ended).				
5	VREF	Internal referen	ce, can be used to bias input via 2M Ω resistor.				
6	PDWN	Power down active high. Internal pull down transistor. A high level signal powers down the device and inhibits the oscillator.					
7	NC	Not connected.					
8	V _{ss}	Negative (0V) power supply.					
9	NC	Not connected.					
10	FH	High group limiter output.					
11	FHT	Test output. Monitors high group filter output. Decouple to V _{SS} with 680pF capacitor.					
12	NC	Not connected.					
13	NC	Not connected.					
14	OSC 2	Clock Output.	3.58MHz crystal connected between these				
15	OSC 1	Clock Input.	pins completes internal oscillator.				
16	V _{DD}	Positive power supply.					

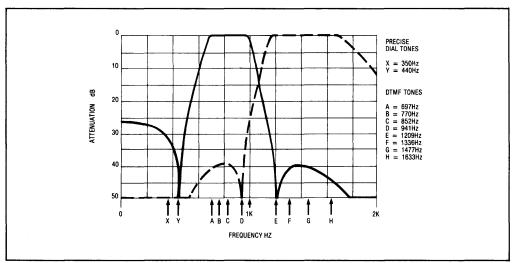


Fig.3 Typical filter characteristics

OPERATING NOTES

The MV8865 separates the high group and low group components of the dual tone signal and limits the resulting pair of sine waves, to produce square waves having the same frequencies as the individual input tones. These limited low group and high group tones appear at the FL and FH outputs respectively. To implement a complete DTMF receiver the FL and FH outputs are connected to the FL and FH inputs of one of Plessey Semiconductors' range of DTMF Digital Decoders (MV8860/62/63), see Fig.4.

Separation of the low group and high group tones is achieved by applying the dual tone signal simultaneously to the inputs of two sixth order switched capacitor bandpass filters, the bandwidths of which correspond to the bands enclosing the low group and high group tones. The frequency characteristic of each filter (see Fig.3) also incorporates a notch at 440 Hz to provide dial tone rejection. Each filter output is followed by a single order switched capacitor section which operates as an interpolator smoothing the signals prior to limiting.

The limiting functions are performed by high gain com-

parators which are provided with hysteresis to prevent detection of unwanted low level signals and noise. The comparator outputs are buffered to drive the FL and FH output pins and detector device inputs. The MV8865 has a single ended input allowing connection either to a PCM decoder, radio receiver (Fig.4) or via a differential buffer to a telephone line (Fig.5). The signal input (Pin 4) should be biased at $V_{DD}/2$. With the input capacitively coupled, this is achieved by connecting the signal input to V_{REF} (Pin 5) via a 2MΩ resistor.

FLT and FHT allow the filter outputs to be monitored prior to limiting, and should each be decoupled to V_{ss} by 680 pF capacitors.

Unbalanced Loads

Presenting a high unbalanced capacitive load to the oscillator crystal can cause attenuation of the oscillator output signal and increased supply current (see Fig.6). Where the MV8865 oscillator is required to drive a high capacitive load such as a number of other MV8865/8860s it is desirable to connect a capacitor between OSC1 and Vss, the value of this capacitor being equal to the capacitive loading at OSC2.

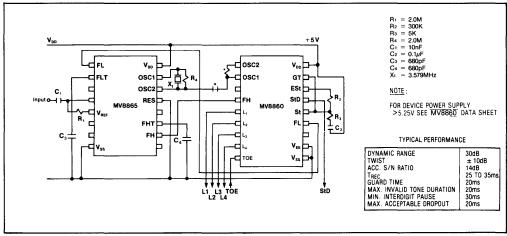


Fig.4 Single-ended input receiver using the MV8860 (5 V operation)

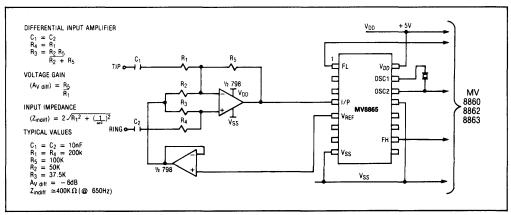


Fig.5 Connection to a telephone line

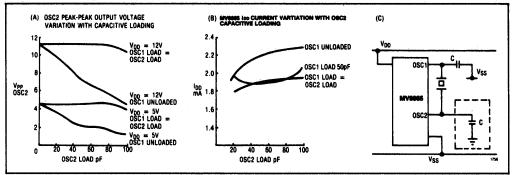


Fig.6 Crystal oscillator loading