

PRELIMINARY INFORMATION CMOS

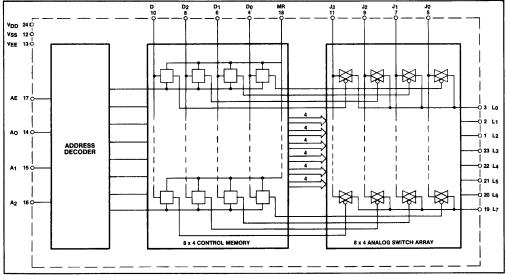
Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.

Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

MV8804 EXP 8 x 4 BIDIRECTIONAL ANALOGUE SWITCH ARRAY

The MV8804 is a CMOS/LSI 8 x 4 Analogue Switch Array incorporating control memory (32 bits), decoder and digital logic level converters. The circuit has digitally-controlled analogue switches having very low 'ON' resistance and very low 'OFF' leakage current. The switches will operate with analogue signals at frequencies up to 40MHz and up to 13.0V peak-to-peak. A 'HIGH' on the Master Reset input switches all channels 'OFF' and clears the memory. The MV8804 is ideal for crosspoint switching applications.

FEATURES


- Microprocessor Compatible Control Inputs
- On-Chip Control Memory And Address Decoding
- Row Addressing
- Master Reset
- 32 Crosspoint Switches in 8 x 4 Array
- 5.0V to 13.0V Operation
- Low Crosstalk Between Switches
- Low On Resistance: 90Ω (typ.) At 10V
- Matched Switch Characteristics
- Switches Frequencies Up To 40MHz

APPLICATIONS

- PABX And Key Systems
- Data Acquisition Systems
- Test Equipment/Instrumentation
- Analogue/Digital Multiplexers

12 [1. 24		
u [2 23	ៀររ	
ω [3 22	□ 14	
D0 [4 21	្នាត	
] ol	5 20	J 16	
D1 [6 19	10	
] ri	7 18	MR	
02 [8 17	AE	
J2 [9 16	5] A2	
D3 [10 15	5] A1	
J3 []	11 14		
Vss [12 13		DG24 DP24

Fig.1 Pin connections - top view

MV8804

ABSOLUTE MAXIMUM RATINGS

Exceeding these ratings may cause permanent damage. Functional operation under these conditions is not implied.

	Min.	Max.		Min.	Max.
Vdd - Vss	-0.3V	16V	Storage temperature	-65° C	+125°C
VDD - VEE	-0.3V	16V	(DP package)		
Vss - Vee	-0.3V	16V	Power dissipation		1200mW*
Voltage on any logic pin	Vss -0.3V	VDD +0.3V	(DG package)		
Voltage on any line (VL) or junctor (VJ)	Vee -0.3V	VDD +0.3V	Power dissipation		600mW**
Current at any logic pin		10mA	(DP package)		
Operating temperature (all packages)	-40° C	+85° C			
Storage temperature (DG package)	-65° C	+150° C			

* Derate 16mW/°C above 75°C. All leads soldered to PC board.

** Derate 6.3mW/°C above 25°C. All leads soldered to PC board.

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = +25^{\circ}C$, Vss - VEE = 0V, Vis = 5V p-p, CL = 50pF, RL = 10k Ω , tr = tr = 20ns (input signal)

Oberesteristic	Ormahal	Value			1.1	Ocadiblens				
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions				
Sine wave response (distortion)			0.1 0.2 1.0		% % %	V _{DD} = 13V V _{DD} = 10V V _{DD} = 5V				
Frequency response channel 'ON' (sine wave input)			40		MHz	$V_{C} = V_{DD} = 10V, \frac{V_{o}}{V_{i}} = -3dB$				
Feedthrough channel 'OFF'			-40		dB	$\label{eq:VDD} V_{DD} = 10V, V_C = V_{EE}, R_L = 1 k \Omega, \\ f_{in} = 1 M H z$				
Crosstalk between any two channels			-40 -90		dB dB	fin = 1.0MHz V_{DD} = 10V, Switch A fin = 3.4kHz ON , Switch B OFF				
Propagation delay Signal input to signal output	tes		10		ns	$V_{DD} = 10V$, Switch 'ON'				
Turn 'ON' propagation delay Data input to signal output	tplH tpHL		200 400		ns ns	$V_{DD} = 10V$ $V_{DD} = 5V$				
Address enable to signal output	T PAE		300 600		ns ns	$V_{DD} = 10V$ $V_{DD} = 5V$				
Minimum address enable (AE) Pulse width	tae		90 225		ns ns	$V_{DD} = 10V$ $V_{DD} = 5V$				
Minimum set-up time										
Address to AE	ts	0	50		ns	$V_{DD} = 10V$				
Data in to AE	ts	0	90 50		ns ns	$V_{DD} = 5V$ $V_{DD} = 10V$				
Data III to AL	15		90		ns	$V_{DD} = 5V$				
Minimum Hold Time	th		50		ns	$V_{DD} = 10V$				
Address or data in to address enable			90		ns	$V_{DD} = 5V$				
Memory reset time	t MR		175		ns	$V_{DD} = 10V, R_{L} = 1k\Omega$				
Memory reset recovery time	TMRR		150 250		ns ns	$ \left. \begin{array}{l} V_{DD} \ = \ 10V \\ V_{DD} \ = \ 5V \end{array} \right\} R_L \ = \ 1k\Omega \label{eq:relation}$				

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = +25^{\circ}C$, $V_{SS} = V_{EE} = 0V$

	Value								
Characteristic	Symbol	Min. Typ.		Max.	Units	Conditions			
Operating voltage range									
Digital	VDD - VSS	5	5	13	v				
Analogue	Vdd - Vee	5	10	13	v				
Logic level converter	Vss - Vee	0	5	12	V.				
On state resistance	Ron		75	108	Ω	$V_{DD} = 13V$			
			90		Ω	$V_{DD} = 10V \{ V_J = V_L = 0.6V \}$			
			240		Ω	$V_{DD} = 5V$)			
Difference in On state	Ron		20		Ω	$V_{DD} = 13V$			
Resistance between any switches			30		Ω	$V_{DD} = 10V$			
Off state leakage current	OFF		±0.01	±500	nA	$V_{DD} = 13V$, selected crosspoint in			
(any line to any junctor)						Off state			
Input logic '0' level	Vı∟		4.5		v	$ \begin{cases} V_{DD} = 10V \\ V_{DD} = 5V \end{cases} V_{is} = V_{DD} \text{ through } 1k\Omega \end{cases} $			
			2.25	1.5	V	$V_{DD} = 5V$) Vis = VBB through this?			
Input logic '1' level	Vін		5.5		v	$ \begin{cases} V_{DD} = 10V \\ V_{DD} = 5V \end{cases} V_{is} = V_{DD} \text{ through } 1k\Omega $			
		3.5	2.75		v	$V_{DD} = 5V$ \$ Vis = VDD through 1822			
Quiescent device current	la		0.1	500	μA	$V_{DD} = 13V$			
(per package)									
Maximum current through	Імах		±8.0		mA	$V_{DD} = 13V$			
crosspoint switch									
Switch input capacitance	Cis		5		pF	$V_{DD} = 10V, V_{in} = 0V$			
Switch output capacitance	Cos		20		pF	$V_{DD} = 10V, V_{in} = 0V$			
Feedthrough capacitance	Cios		0.2		pF	$V_{DD} = 10V, V_{in} = 0V$			
Digital input capacitance	Cin		5		pF	$V_{DD} = 10V, V_{in} = 0V$			

NOTES

Typical parametric values are for Design Aid Only, not guaranteed and not subject to production testing. Vis is the analogue switch input voltage, Vin is digital input voltage. 1.

2.

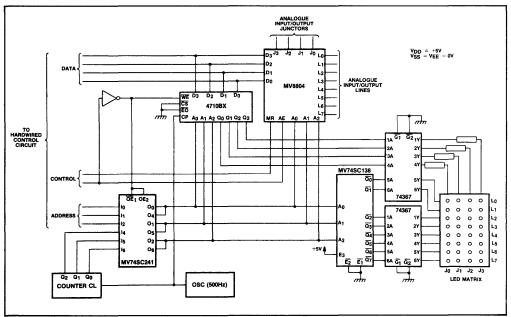


Fig.3 Visual indication of MV8804 control memory status

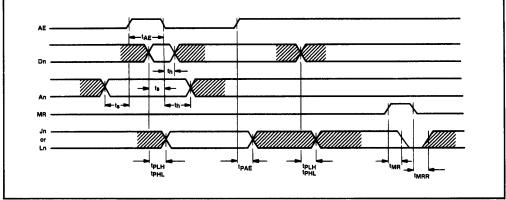


Fig.4 Timing waveforms

PIN DESCRIPTION

Pin	Name	Description
1	L2	Analogue Switch Array Input/Output Line
2	Lı	Analogue Switch Array Input/Output Line
23	Lo	Analogue Switch Array Input/Output Line
4	D٥	Control Memory Data Line Input
5	Jo	Analogue Switch Array Input/Output Junctor
6	D1	Control Memory Data Line Input
7	Jı	Analogue Switch Array Input/Output Junctor
8	D2	Control Memory Data Line Input
9	J2	Analogue Switch Array Input/Output Junctor
10	D₃	Control Memory Data Line Input
11	Jз	Analogue Switch Input/Output Junctor
12	Vss	Negative Digital Power Supply
13	Vee	Negative Analogue Power Supply
14	A٥	Control Memory Address Input
15	A1	Control Memory Address Input
16	A2	Control Memory Address Input
17	AE	Control Memory Address Enable Input (Strobe)
18	MR	Master Reset
19	L7	Analogue Switch Array Input/Output Line
20	L6	Analogue Switch Array Input/Output Line
21	L5	Analogue Switch Array Input/Output Line
22	L4	Analogue Switch Array Input/Output Line
23	L3	Analogue Switch Array Input/Output Line
24	Vdd	Positive Analogue/Digital Power Supply

FUNCTIONAL DESCRIPTION

The analogue switch array is arranged in 8 rows and 4 columns. The row input/outputs are referred to as LINES (L0-L7) and the column input/outputs as JUNCTORS (J0-J3). The crosspoint analogue switches interconnect the lines and junctors when turned 'ON' and provide a high degree of isolation when turned 'OFF'. Interchannel crosstalk is minimal despite the high density of the analogue switch array.

The control memory of the MV8804 can be treated as an 8word by 4-bit random access memory. The 8 words are selected by the ADDRESS (A0-A2) inputs through the onchip address decoder. Data is presented to the memory via the 4 DATA inputs (D0-D3). This data is asynchronously written into the control memory whenever the ADDRESS ENABLE (AE) input is high. A high level written into a memory cell turns the corresponding crosspoint switch 'ON' while a low level causes the crosspoint to turn 'OFF'.

Only the crosspoint switches corresponding to the addressed memory word are affected when data is written

128

into the memory. The remaining switches retain their previous states. By establishing appropriate patterns in the control memory, any combination of lines and junctors may be interconnected. A high level on the MASTER RESET (MR) input returns all memory locations to a low level and turns all crosspoint switches 'OFF', effectively isolating the lines from the junctors. The digital logic level converters allow the digital input levels to differ from limits of the analogue levels switched through the array. For example, with Vod = 5V, Vss = 0V and Vee = -6V, the control inputs can be driven by a 5V system while the analogue voltages through the crosspoint switches can swing from +5V to -6V.

8 x 8 ANALOGUE/DIGITAL SWITCH

Two MV8804s configured as shown in Fig.7, implement an 8 x 8 analogue/digital switch. The switch capacity can be expanded to an M x N array of inputs/outputs. Expansion in the N dimension is as shown and connecting the lines (L0-L7) from the MV8804s in common.

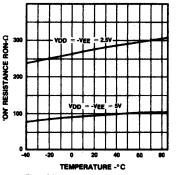
LOGIC TRUTH TABLE

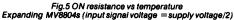
Memory reset	Address enable		\ddres	8	Addressed Input data to line control memory				Junctors connected to addressed line					
	AE	A2	Aı	A٥		D3	D2	D1	0	J3	J2	Jı	Jo	
н	х	x	x	х	All	X	X X X X All switches 'Off'							
· L	L	х	х	х	None	х	x	x	x	N	No change of state			
L	Ĥ	L	L	L	LO	L	L	L	L	•	٠	•	•	
L	н	L	L	L	LO	L	L	L	н	•	٠	•	+	
L	н	L	L	L	LO	L	É.	н	L	•	٠	+	٠	
Ľ	н	L	L	Ľ	LO	L	L	н	н	•	٠	+	+	
L	н	L	L	L	LO	Ļ	н	L	L	•	+	٠	٠	
L	н	L	L	L	LO	L	н	L	н	•	+	•	+	
L	н	L	L	L	LO	L	н	н	L	•	+	+	•	
L	н	L	L	L	LO	L	н	н	н	•	+	+	+	
L	н	L	L	L	LO	н	L	L	L	+	٠	•	٠	
L	н	L	L	L	LO	. н	L	L	н	+	٠	٠	+	
L	н	L	L	L	LO	н	L	н	L	+	۲	+	٠	
L	н	L	L	L	LO	н	L	н	н	+	٠	+	+	
Ł	н	Ľ	L	L	LO	н	н	L	L	+	+	٠	٠	
L	н	L	L	L	LO	н	н	Ł	н	+ -	+	٠	+	
L	н	L	L	L	LO	н	н	н	Ļ	+	+	+	٠	
L	H	L	L	L	LO	н	н	н	Ĥ	+	+	+	+	
L	н	L	L	н	Ĺ1			Each	addres	sed line	e may			
L	н	L	н	L	L2	have 16 different								
L	н	L	н	н	L3			comi	oination	s of jur	octors			
L	н	н	L	L	L4			C	onnecte	d to it i	by			
L	н	н	L	н	L5				puting c					
L	н	н	н	L	L6			contre	oi mem		shown			
L	н	н	н	H	L7	for LO.								

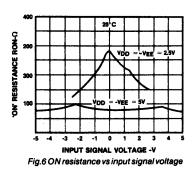
NOTES

L = Low Logic Level

H = High Logic Level


X = Don't Care Condition


+ = Indicates Connection Between Junctor and Addressed Line


• = Indicates No Connection Between Junctor and Addressed Line

Expansion in the N dimension is accomplished by replicating the circuit shown and connecting the MV8804 junctors (J0-J3) in common. The address and data control inputs of the MV8804s can be connected in common for any size and switch provided that the address enable (AE) inputs are driven individually, for example by an MV74SC601 programmable AND gate.

A particular signal path is connected by setting up the appropriate signals or the address and data lines and taking the corresponding address enable input high. The master reset (MR), when taken high, disconnects all signal paths.

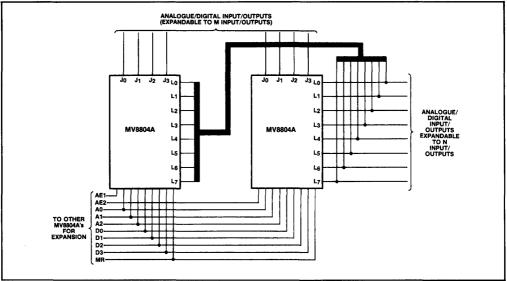


Fig.7 Expanding MV8804s