

MV5087

DTMF GENERATOR

The MV5087 is fabricated using ISO-CMOS high density technology and offers low power and wide voltage operation. An inexpensive 3.58MHz TV crystal completes the reference oscillator. From this frequency are derived 8 different sinusoidal frequencies which, when appropriately mixed, provide Dual-Tone Multi-Frequency (DTMF) tones.

Inputs are compatible with either a standard 2-of-8 or a single contact (form A) keyboard. The keyboard entries determine the correct division of the reference frequency by the row and column counters.

D-to-A conversion, using R-2R ladder networks, results in a staircase approximation of a sinewave with low total distortion.

Frequency and amplitude stability over operating voltage and temperature range are maintained within industry specifications.

FEATURES

- Pin-for-Pin Replacement for MK5087
- Low Standby Power
- Minimum External Parts Count
- 3.5V to 10V Operation
- 2-of-8 Keyboard or Calculator-Type Single Contact (Form A) Keyboard Input
- On-Chip Regulation of Output Tone
- Mute and Transmitter Drivers On-Chip
- High Accuracy Tones Provided by 3.58MHz Crystal Oscillator
- Pin-Selectable Inhibit of Single Tone Generation

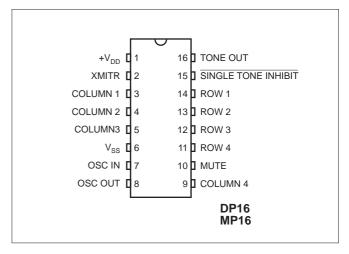


Figure 1: Pin connections - top view

APPLICATIONS

DTMF Signalling for

- Telephone Sets
- Mobile Radio
- Remote Control
- Point-of-Sale and Banking Terminals
- Process Control

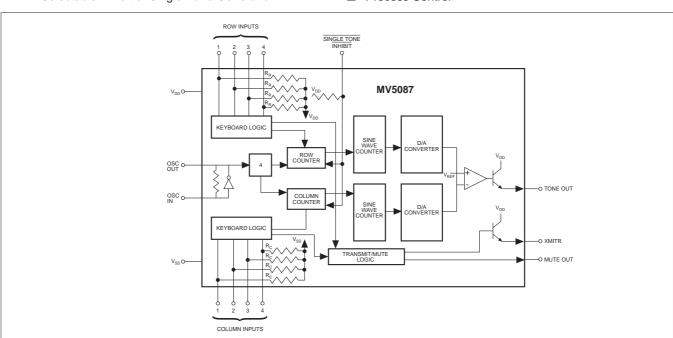


Figure 2: Functional block diagram

MV5087

ABSOLUTE MAXIMUM RATINGS

	Min.	Max.		Min.	Max.
V _{DD} - V _{SS} Voltage on any pin Current on any pin Operating temperature Storage temperature	-0.3V V _{SS} - 0.3V -40°C -65°C	10.5V V _{DD} + 0 3V 10 mA +85°C +150°C	Power dissipation Derate 16 mW/°C above 75°C (All leads soldered to PCB)		850 mW

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless othenwise stated):

 $T_{amb} = +25^{\circ}C$, $V_{DD} = 3.5V$ to 10V

	Characteristics		Symbol	Min.	Тур.	Max.	Units			
	Operating Supply	V_{DD}	3.5		10	V	Ref. to V _{SS}			
בֻ					0.2	100	uA	$V_{DD} = 3.5V$	No Key D	epressed
SUPP	Standby Supply	Current	I_{DDS}		0.5	200	uA	$V_{DD} = 10V$	All output	s Unloaded
รเ					1.0	2.0	mΑ	$V_{DD} = 3.5V$	One Key	Depressed
	Operating Supply	y Current	I_{DD}		5.0	10.0	mA	$V_{DD} = 10V$	All output	s Unloaded
	SINGLE TONE	Input High Voltage	V_{IH}	$0.7V_{DD}$		V_{DD}	V			
	INHIBIT	Input Low Voltage	V_{IL}	0		$0.3V_{DD}$	V			
တ		Input Resistance	R _{IN}		60		ΚΩ			
INPUT(ROW 1-4	Input High Voltage	V_{IH}	$0.9V_{DD}$			V			
Ν		Input Low Voltage	V_{IL}			$0.3V_{DD}$	V			
-	COLUMN 1-4	Input High Voltage	V_{IH}	$0.7V_{DD}$			V			
		Input Low Voltage	V_{IL}			$0.1V_{DD}$	V			
	XMITR	Source Current	I _{OH}	-15	-25		mΑ	$V_{DD} = 3.5V, V_{DD}$	$V_{OH} = 2.5V$	No Keyboard
				-50	-100		mΑ	$V_{DD} = 10V, V$	$t'_{OH} = 8V$	Entry
TS		Leakage Current	I_{OZ}		0.1	10	uA	$V_{DD} = 10V, V$	$t'_{OH} = 0V$	Keyboard Entry
OUTPUTS	MUTE	Sink Current	I _{OL}	0.5			mA	$V_{DD} = 3.5V, V_{DD}$	$V_{OL} = 0.5 V$	No Keyboard
12				1.0			mΑ	$V_{DD} = 10V, V$	$t'_{OL} = 0.5 \text{V}$	Entry
0		Source Current	I _{OH}	-0.5			mΑ	$V_{DD} = 3.5V, V_{DD} = 3.5V$	$V_{OH} = 3.0V$	Keyboard Entry
				-1.0			mA	$V_{DD} = 10V, V$	$t'_{OH} = 9.5 \text{V}$	

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless othenwise stated):

 $T_{amb} = +25^{\circ}C$, $V_{DD} = 3.5V$ to 10V

Characte	Characteristics		Min.	Тур.	Max.	Units	
TONE O	JT Row Tone Output Voltage	V _{OR}	320	400	500	mV _{RMS}	Single Tone $R_L = 1K\Omega$
	Column Tone Output Voltage	V _{OC}	400	500	630	mV_{RMS}	
	External Load	R_L	700			Ω	$V_{DD} = 3.5V$
	Impedance		300			Ω	$V_{DD} = 10V$
OUTPUT	DISTORTION				-20	dB	Total out-of-band power relative to sum of row and column fundamental power
PRE EM	PRE EMPHASIS, High Band		1		3	dB	
Tone Ou	put Rise Time	t _r		3	5	ms	

PIN FUNCTIONS

PIN	NAME	DESCRIPTION
	V _{DD}	Positive Power Supply
2	XMITR	Emitter output of a bipolar transistor whose collector is connected to V_{DD} . With no keyboard input this output remains at V_{DD} and a keyboard input changes the output to a high impedance state. The state of Single Tone Inhibit input has no effect on XMITR output.
3,4,5,9	Column 1-4	These inputs are held at V_{SS} by resistors RC and sense a valid logic level (approx $^{1}/_{2}$ V_{DD}) when tied to a ROW input.
	V _{SS}	Negative Power Supply (OV)
7,8	OSC In, OSC Out	On-chip inverter completes the oscillator when a 3,579545 MHz crystal is connected to these pins. OSC In is the inverter input and OSC Out is the output.
10	Mute	This CMOS Output switches to V_{SS} with no keyboard input and to V_{DD} with a keyboard input. This output is unaffected by the state of Single Tone Inhibit.
11,12,13,14	Row 1-4	These inputs are held at V_{DD} by resistors R_R and sense a valid logic level (Approx $^{1}/_{2}$ V_{DD}) when tied to a column input.
15	Single Tone Inhibit	This input has a pull-up resistor to V_{DD} and when left unconnected or tied to V_{DD} , single or dual tones may be generated. When Vss is applied dual tones only are generated and no input combinations will cause generation of a single tone.
16	Tone Out	Emitter output of a bipolar NPN transistor whose collector is tied to V_{DD} . Input to this transistor is from an op-amp which mixes, and regulates the output level of, the row and column tones.

ROW AND COLUMN INPUTS

These inputs are compatible with the standard 2-of-8 keyboard, single contact (form A) keyboard and electronic input. Figures 3 and 4 show these input configurations, and Fig. 5 shows the internal structure of these inputs.

When operating with a keyboard, dual tones are generated when any single button is pushed. Single tones are generated when more than one button is pushed in any row

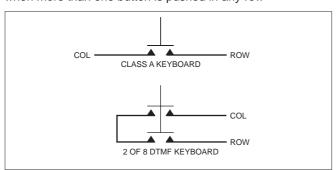


Figure 3: Keyboard configuration

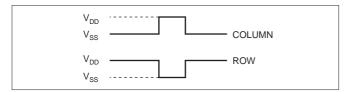


Figure 4: Electronic input

or column. No tones are generated when diagonallypositioned buttons are simultaneously pressed.

An electronic input to a single column generates that single column tone. Inputs to multiple columns generates no tone. An electronic input to a single row generates no tone and a single row tone may be generated only by activating 2 columns and the desired row.

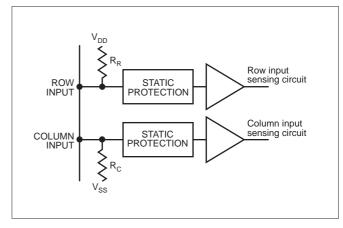


Figure 5: Row and column inputs

OUTPUT FREQUENCY

Table 1 shows the output frequency deviation from the standard DTMF frequencies when a 3.58MHz crystal is used as the reference.

The row and column output waveforms are digitally synthesised using R-2R D-to-A converters (see Fig.6), resulting in a 'staircase' approximation to a sinewave. An opamp mixes these tones to produce a dual-tone waveform. Single tone distortion is typically better than 7% and all distortion components of the mixed dual-tone should be 30dB relative to the strongest fundamental (column tone).

	Standard DTMF (Hz)		Tone Output Frequency Using 3.5795545 MHz Crystal	% Deviation from Standard			
	f ₁	697	701.3	+0.62			
	f_2	770	771.4	+0.19	Low		
Row	f_3	852	857.2	+0.61	Group		
	f_4	941	935.1	-0.63			
	f ₅	1209	1215.9	+0.57			
Column	f_6	1336	1331.7	-0.32	High		
Colulliii	f ₇	1477	1471.9	-0.35	Group		
	f ₈	1633	1645.0	+0.73 _			

Table 1: Output frequency deviation

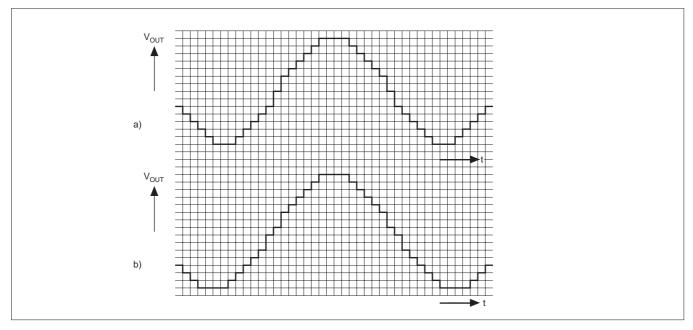


Figure 6: Typical sinewave output (a) Row tones (b) Column tones

DISTORTION MEASUREMENTS

THD for the single tone is defined by:

$$\frac{100 \left(\sqrt{\frac{V_{2f}^2 + V_{3f}^2 + V_{4f}^2 + \cdots + V_{nf}^2}{V_{fundamental}}}\right)\%}{V_{fundamental}}$$

Where V2f --- Vnf are the Fourier components of the waveform.

THD for the dual tone is defined by:

$$\frac{100 \left(\sqrt{\frac{V_{2R}^2 + V_{3R}^2 + V_{nR}^2 + V_{2C}^2 + V_{3C}^2 - V_{nc}^2 + V_{IMD}^2}\right)}{\sqrt{\frac{V_{2R}^2 + V_{ROW}^2 + V_{COL}^2}{}}$$

where V_{ROW} is the row fundamental amplitude

 $\ensuremath{V_{\text{COL}}}$ is the column fundamental amplitude

 V_{2R} — V_{nR} are the Fourier component amplitudes of the row frequencies V_{2C} — V_{nC} are the Fourier component amplitudes of the column frequencies

 V_{IMD} is the sum of all intermodulation components.

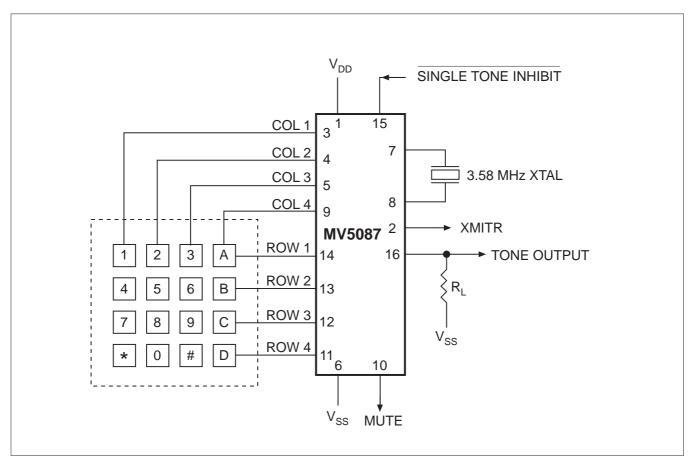


Figure 7: Connection diagram