

MV4325

PROGRAMMABLE KEYPAD PULSE DIALLER

The MV4325 Keypad Pulse Dialler contains all the logic necessary to interface a 2 of 7 keypad and convert this key information to control and mute pulses simulating a telephone rotary dial. The MV4325 has programmable access pause capability to provide automatic interruption of dialing needed when accessing the toll network, WATS line or public network. The device is fabricated using Plessey Semiconductors' ISO-CMOS technology which enables the device to function down to 2.0V making it ideal for long loop operation.

The MV4325 will accept up to 20 digits and access pauses and will redial stored information at a later time by activation of # key. Device current in standby is less than 1 μ A at 1.0V.

The MV4325 is available in Ceramic DIL (DG, -40°C to $+85^{\circ}\text{C}).$

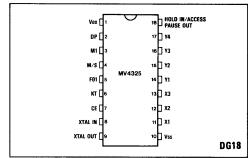


Fig.1 Pin connections (top view)

FEATURES

Last Number Redial

Multiple Access Pause Programming

Any Valid Keypad Input or HOLD IN Causes Exit from Access Pause

Oscillator Start Up Controlled from Keypad Input

Oscillator Power Down whilst not Dialling

300 Hz Key Tone indicates Valid Key

2.0V to 7.0V Supply Voltage Operating Range

Stores up to 20 Digits and Access Pauses

- Digit Memory Retained down to 1.0V at 1 μ A
- Selectable Mark/Space Ratio 663 : 333 or 60 : 40
- 10Hz Dialling Speed (932Hz Fast Test):)

APPLICATIONS

Pushbutton Telephones with Last Number Redial

Repertory Dialers

Tone to Pulse Converters

MV4325

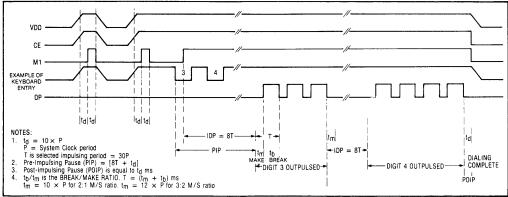
ABSOLUTE MAXIMUM RATINGS

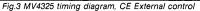
The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

	MIN	MAX		MIN	MAX
V _{DD} -V _{SS}	-0.3V	10V			
Voltage on any pin	V _{SS} -0.3V	V _{DD} + 0.3V			
Current at any pin		10mA			
Operating Temperature	-40 °C	+85°C	Power Dissipation		1000mW
Storage Temperature	-65 °C	+ 150 °C			

DC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): T_{amb} = +25°C, f_{CLK} = 3.579545 MHz; V_{DD} = +3.0 V All voltages wrt V_{SS}


	CHARACTERISTIC			SYMBOL	MIN	TYP*	MAX	UNITS	TEST CONDITIONS				
1	S U	Supply Volta	ge Operating Range	V _{DD}	2.0		7.0	v					
2	P	Standby Sup	ply Current	IDDS			1.0	μA	$CE = M/S = F01 = HOLD IN = V_{SS}, V_{DD} = 1$				
3	¥	Operating Su	upply Current	IDD		100	150	μA	3.579545 MHz Crystal, CXTALOUT = 12pF				
4		Pull-Up Tran	sistor Source Current	ΙL	- 0.5	- 3.0	-12	μA	V _{IN} = V _{SS}	x ₁ ,x ₂ ,x ₃			
5	ł	Input Leakag	nput Leakage Current nput Leakage Current Pull-Down Transistor Sink Current			0.1		nA	$v_{IN} = v_{DD}$	Y ₁ ,Y ₂ ,Y ₃ ,Y ₄			
6	N P	Input Leakage Current		ΙIL		- 0.1		nA	V _{IN} = V _{SS}	M/S, F01			
7	U	Pull-Down Ti	ransistor Sink Current	Чн	0.5	3.0	8.0	μA	$V_{IN} = V_{DD}$				
8		Input Low Level Voltage		VIL			0.9	v	All inputs				
9		Input High Level Voltage		V _{IH}	2.1			V					
10		Voltage	Low-Level	VOL		0	0.01	V	No Load				
11	0	Levels	High-level	v _{он}	2.99	3		v					
<u>12</u> 13	T P U	Drive Current	N-Channel	10L 10L	0.8 0.2	2.0 0.5		mA mA	V _{OUT} = 2.3V V _{OUT} = 0.5V	DP, M ₁ , M ₂ , KT			
14 15	т	Current	P-Channel Source	^I ОН IОН	- 0.8 - 0.2	- 2.0 0.5		mA mA	V _{OUT} = 0.7V V _{OUT} = 2.5V				
16	-	Input Low Le	evel Voltage	VIL			0.9	v					
17	N /	Input High Level Voltage		V _{IH}	2.1			V					
18	0	Output Low Level Current		ΙΟL		15		۸نر	V _{OUT} = 0.5V	CE,			
19	T	Output High	Level Current	юн		- 12		μA	V _{OUT} = 2.5V	HOLD IN/ACCESS			
20	U	Input Force	High Current (from V _{OL})	IFH		55		Αυ	$V_{IN} = 2.5V$	PAUSE OUT			
21	<u>'</u>	Input Force	Low Current (from VOH)	۱ _{FL}		- 70		Αų	V _{IN} = 0.5V				


* Typical parametric values are for Design Aid Only, not guaranteed and not subject to production testing. Timing waveforms are subject to production functional test.

AC ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): T_{amb} = +25°C; f_{CLK} = 3.579545 MHz; V_{DD} = +3.0 V

		CHARACTERISTIC	SYMBOL	MIN	түр•	мах	UNITS	TEST CONDITIONS
1		Output Rise Time	t _R		1.0		μs	DP, M ₁
2		Output Fall Time	tF		1.0		μs	C _L = 50pF
3	D	Maximum Clock Frequency	fclk	3.58			MHz	3.579545 MHz Crystal
4	Y	Mark to Crosse Patia	M/S		2:1			$M/S = O/C (V_{SS})$
5	N A	Mark to Space Ratio	11/5		3:2			$M/S = V_{DD}$
6	M	System Clock Frequency (Internal)			300		Hz	F01 = V _{SS}
7	С	Impulsing Rate = I/T			10		Hz	$F01 = V_{SS}$
8		Fast Test Impulsing Rate			14.9		Hz	$F01 = V_{DD}$
9		Clock Start Up Time	ton		1.5	4	ms	Timed from CE 1'1'
10		Input Capacitance	C _{in}		5.0		pF	Any Input

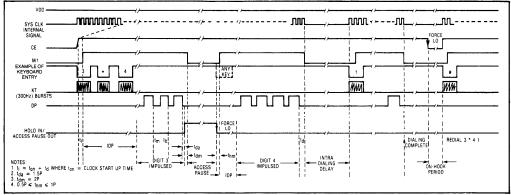


Fig.4 MV4325 timing diagram, CE Internal control

MV4325

PIN FUNCTIONS

V _{DD}	Positive voltag	e sup	ply								
DP	Dial Pulsing O	utput	Buffer								
M1	Mute Output E	Suffer									
M/S	Mark/Space (Break/Make) Ratio select. On-chip pull-down transistor to V _{SS} . O/C 2:1										
	Note: O/C = Open Circuit V _{DD} 3:2										
F01	Impulsing Rate Selection. On-chip pull-down transistor to V _{SS} .		F01			ctual* sing Rate	System Clock frequency				
				0/C	10Hz	10).13Hz	303.9Hz			
	* Assumes f _{CLK} = 3.579545MHz.			v _{DD}	932Hz	932.17Hz		27,965.1Hz			
CE	Chip Enable. A	n acti	ve input. Control	is internal via stat	ic keyboard decode	e, or by	external fo	orcing.			
XTAL IN	Crystal Input.	Active	, clamped low if C	CE = '0', high impe	dance if CE = '1'.						
XTAL OUT	Crystal Output. Buffer to drive crystal. Capacitive load on-chip.										
v _{ss}	System ground	ł									
x ₁ ,x ₂ ,x ₃	Column keybo	ard In	puts. On-chip pull	-up transistors to	V _{DD} . Active LOW.						
Y ₁ ,Y ₂ ,Y ₃ ,Y ₄	Row keyboard	Inpute	s. On-chip pull-up	transistors to V _{DI}	D. Active LOW.						
HOLD IN/	INPUT/OUTPUT	0/C	Normal Operation	n							
ACCESS	INPUT	V _{DD}	No impulsing. If	activated during in	mpulsing, hold occu	irs whe	n the curre	ent digit is complete.			
PAUSE OUT	OUTPUT	V _{DD}	Logic "1" level c	vel output indicates access pause condition.							
кт	300Hz	Squ	are wave bursts i	ndicate valid keyp	ad input.						

]	KEYPAD INPUT CODE								
No. of O/P Pulses	Digit	Υ,	Y₂	Y ₃	Y₄	Χ,	X ₂	X3		
1	1	0	1	1	1	0	1	1		
2	2	0	1	1	1	1	0	1		
3	3	0	1	1	1	1	1	0		
4	4	1	0	1	1	0	1	1		
5	5	1	0	1	1	1	0	1		
6	6	1	0	1	1	1	1	0		
7	7	1	1	0	1	0	1	1		
8	8	1	1	0	1	1	0	1		
9	9	1	1	0	1	1	1	0		
10	0	1	1	1	0	1	0	1		
RE-DIAL		1	1	1	0	1	1	0		
ACCESS PAUSE		1	1	1	0	0	1	1		

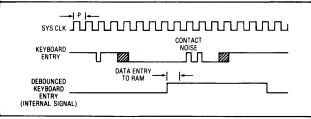


Fig.5 Keypad input debounce timing diagram

OPERATING NOTES

The MV4325 programmable keypad pulse dialer is optimized for use in key operated pulse dialling telephone sets and contains features which make it particularly suitable for applications where redial of last number dialled and repertory dial facilities are required.

Keypad information is accepted directly from a dual contact keypad having two single pole switches per key: one switch common to the column and one switch common to the row. The common row contacts are connected Y1 to Y4 and the common column contacts connected X1 to X3. The other side of each switch is connected to a common VSS line. The keypad code is shown in Table 1.

The MV4325 will accept up to 20 digits and access pauses, e.g. 18 digits plus 2 access pauses or alternately 19 digits plus 1 access pause. Prior to a keypad input being accepted contact bounce is eliminated by a circuit which ensures that any input which is valid for less than 10ms is rejected and any input valid for greater than 17ms is accepted as a valid key input. This circuit operates similarly on the trailing edge of a valid key input preventing multiple digit recognition in the presence of noise. Debounce operation is shown in Fig.5.

The first key entered in any dialling sequence initiates the oscillator on the MV4325 by internally taking CE high. Digits may be entered asynchronously from the keypad. Dialling and mute functions are output as shown in Fig.3 and Fig.4. Fig.3 shows use of the MV4325 with external control of CE. This mode is useful if a bistable latching relay is used to mute and switch the complete pulse dialer circuit. In this mode the pulse occurring on M1 when CE is taken high with no keypad input can be used to initiate the bistable latching relay.

Fig.4 shows the timing diagram of the MV4325 including access pause and redial mode. Initially CE is low and goes high on recognition of the first valid key input. Keypad data is entered asynchronously and dialling commences after recognition of the leading edge of the first valid key input. When an access pause is reached M1 goes low and Hold In/Access Pause Out goes high indicating the device is in an access pause. This output signal can be used to enable an external dial tone recognition circuit. Exit from the access pause is achieved by one of two methods. One method is by the next valid key operation. If a valid digit is entered, the digit will be entered in the next consecutive storage location in the digit memory. If the key # is activated, redialling of the number in memory will occur only if the device is in the redial mode. The alternative method to exit from an access pause is to pulse Hold In/Access Pause Out low, resetting the output latch associated with this input/output pin.

Fig.4 shows a pause in dialling between the completion of dialling digit 4 and keying digit 1. In this condition, the oscillator powers down to minimize power consumption and interfering signals, whilst CE remains high. On recognition of the next digit, the digit is entered in the next consecutive memory location and dialling resumes.

The end of a key entry sequence is indicated to the MV4325 by externally pulsing or clamping CE low. This causes the on-chip latch holding CE high to reset.

If the first key entered after a CE low period is #, redial of the last number dialled will occur. Access pause operation is as previously described. In the standby condition the MV4325 dissipates less than 1.0µW.

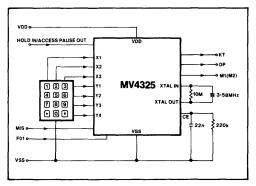


Fig.6 Application diagram