MICRON

MT5LC2564 64K x 4 SRAM

3.3 VOLT SRAN

SRAM

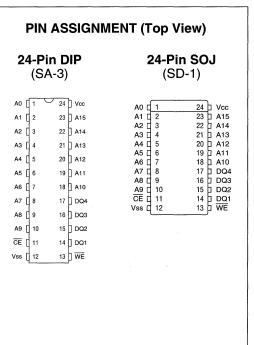
64K x 4 SRAM

LOW VOLTAGE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20, 25 and 35ns
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
35ns access	-35
Packages	
Plastic DIP (300 mil)	None
Plastic SOJ (300 mil)	DJ
• 2V data retention	L
Low power	Р
Temperature	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT
Automotive (-40°C to +125°C	C) AT
Extended (-55°C to +125°C	2) XT
• Part Number Example: MT5L	.C2564DJ-25 P


NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

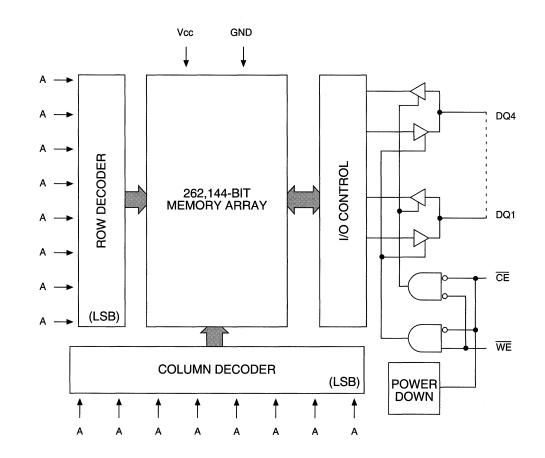
GENERAL DESCRIPTION

The MT5LC2564 is organized as a 65,536 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (CE) with all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode

when disabled. This allows system designers to meet low standby power requirements.


The "P" version provides a reduction in both operating current (ICC) and TTL standby current (ISB1). The latter is achieved through the use of gated inputs on the WE and address lines, which also facilitates the design of batterybacked systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible and 5V tolerant. These low-voltage parts are ideal for mixed 3.3V and 5V systems.

MT5LC2564 REV. 12/93

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	H	X	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

3.3 VOLT SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to	Vss0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

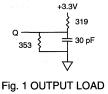
		e Angeler					MAX				
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-12	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le VIL; Vcc = MAX$ outputs open	X Icc	STD	73	125	110	95	90	85	mA	3, 14
Current. Operating	f = MAX = 1/tRC		Р	39	-	65	55	50	50	mA	
Power Supply	$\overline{CE} \ge V_{H}; V_{CC} = MAX$		STD	17	35	30	25	25	25	mA	14
Current: Standby	outputs open f = MAX = 1/tRC	ISB1	Р	8	-	18	15	12	12	mA	14
	$\overline{CE} \ge Vcc - 0.2V;$ Vcc = MAX	lana	STD	1.0	3	3	3	3	5	mA	14
	VCC = MAX $VIN \ge VCC - 0.2V \text{ or}$ $VIN \le VSS + 0.2V$	ISB2	Р	300	-	750	750	750	1,500	μA	14

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	С	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 3.3V ±0.3V)

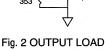

DESCRIPTION		-	12	-1	15	-1	-20 -25			-35			
Decomination	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle								•					
READ cycle time	^t RC	12		15		20		25		35		ns	
Address access time	^t AA		12		15		20		25		35	ns	
Chip Enable access time	^t ACE		12		15		20		25		35	ns	
Output hold from address change	tOH	3		3		3		3		3		ns	
Output hold from address change	tOH	-	-	4		4	1.1	4		4		ns	16
Chip Enable to output in Low-Z	^t LZCE	4		3		3		3		3		ns	7
Chip Enable to output in Low-Z	^t LZCE	-	-	4		4		4		4		ns	16
Chip disable to output in High-Z	^t HZCE		6		8		9		9		15	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25		35	ns	
WRITE Cycle													
WRITE cycle time	tWC	12		15		20		25		35		ns	
Chip Enable to end of write	tCW	8		10		12		15		20		ns	
Address valid to end of write	tAW	8		10		12		15		20		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	tAH	1		1		1		1	1	1		ns	
Address hold from end of write	^t AH		-	0		0		0		0	199	ns	16
WRITE pulse width	^t WP1	8		10		12		15		20		ns	
WRITE pulse width	^t WP2	12		12		15		15		20		ns	
Data setup time	^t DS	7		8		10		10		15		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10		12	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq tRC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: VIH \leq +6.0V and Vcc \leq 3.1V for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured \pm 200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.



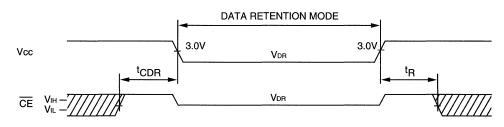
MT5LC2564 64K x 4 SRAM

+3.3V

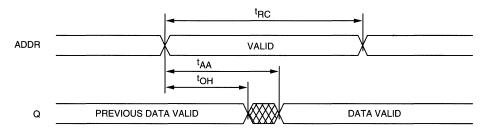
EQUIVALENT

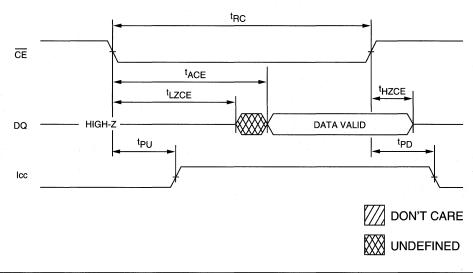
EQUIVALENT

- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Contact Micron for IT/AT/XT timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet.
- 14. Typical values are measured at 3.3V, 25°C and 20ns cycle time for P, 15ns for STD.
- 15. Typical currents are measured at 25°C.
- 16. This timing specification is valid only for P (low power) parts.

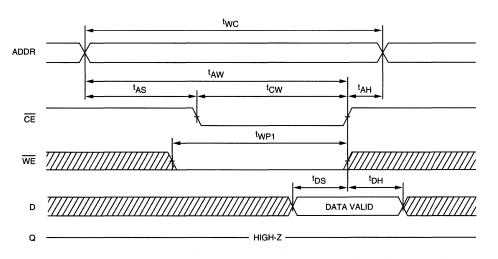

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2	1.1		V	
Data Retention Current L version	CE ≥ Vcc -0.2V Other inputs: VIN ≥ Vcc -0.2V or VIN ≤ Vss+0.2V Vcc = 2V	ICCDR		310	500	μΑ	15
Data Retention Current LP version	<u>CE</u> ≥ Vcc -0.2V Vcc = 2V	ICCDR		195	350	μA	15
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	tRC			ns	4, 11

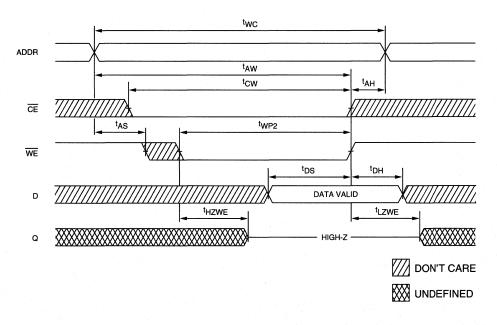

2-21


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}



READ CYCLE NO. 2 7, 8, 10



MT5LC2564 64K x 4 SRAM

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

MT5LC2564 REV. 12/93